
FEATURE LINE EXTRACTION SYSTEM FOR PAINTER

ROBOTS

by

Kenta Kitamoto

A Senior Thesis

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 15, 2006

in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science

Thesis Supervisor: Katsushi Ikeuchi
Professor of Information Science

ABSTRACT

Our laboratory is constructing a painter robot. The first step in painting is to extract desirable feature

lines such as silhouette and boundary lines, which represent the object to be drawn. For this purpose,

this thesis proposes a system that extracts feature lines from a textured 3D polygonal model.

First, the system builds a textured 3D model of the target object from multiple cameras using the

technique of multiple-view geometry. Here we employ a graph-cut algorithm to refine the separation

between the foreground and the background region in the captured images. As a result, the system can

generate a high-quality 3D model. Then, the system extracts and combines two types of edges: geometry

edges obtained from polygonal data, and photometry edges obtained from a rendered image. Both of

them are observed from a virtual viewpoint.

We apply the proposed system to a textured 3D polygonal model of a human and verify that the

system is effective to obtain appropriate feature lines for drawings.

Acknowledgements

First of all, I would like to thank Prof. Katsushi Ikeuchi for giving me the opportunity to

work on our system and for being my advisor. I also thank to Dr. Koichi Ogawara for giving

me a great deal of knowledge and materials, and proofreading this thesis. In addition, I’m

grateful to all members of the Ikeuchi laboratory for their encouragement.

Contents

1 Introduction 1

1.1 Related Work and Our Robot . 1

1.2 Drawing of 3D Object . 2

1.3 Thesis Contribution and Overview . 4

2 3D Modeling 6

2.1 Volume Intersection . 7

2.2 Silhouette Extraction . 10

2.2.1 Background Subtraction . 10

2.2.2 Graph-cut Image Segmentation . 13

2.2.3 Combination of Two Techniques . 15

2.3 Surface Reconstruction . 17

2.4 Texture Mapping . 19

3 Feature Line Extraction 21

3.1 Geometry Edges . 21

3.2 Photometry Edges . 24

4 Experimental Results 26

4.1 Environment . 26

4.2 3D Shape Reconstruction . 27

4.2.1 Silhouettes . 27

4.2.2 Textured 3D Polygon . 29

4.3 Line Extraction . 29

4.3.1 Geometry Edges . 30

4.3.2 Photometry Edges . 31

4.3.3 Combined Edges . 31

i

5 Conclusion 33

5.1 Summary . 33

5.2 Future Work . 33

References 35

ii

List of Figures

1.1 Our Painter Robot . 3

1.2 Detail of Robot System . 3

2.1 Silhouette Volume Intersection[19] . 7

2.2 Space Carving Method . 9

2.3 Octree Division . 10

2.4 Color Model in the RGB color space . 12

2.5 Result of Background Subtraction . 13

2.6 Silhouette Extraction using Graph-cut . 14

2.7 Failed Examples of Graph-cut Algorithm 15

2.8 Result of Combined Silhouette Extraction 16

2.9 Set of Facets in Original Marching Cubes[26] 18

2.10 Topological Inconsistency[26] . 18

2.11 Employed Set of Facets[27] . 18

2.12 Camera Selection for Texturing . 19

2.13 Texture Mapping with Hidden Surface Detection 20

3.1 Model of Geometry Edges . 22

3.2 Result of Geometry Edge Extraction . 23

3.3 Result of Photometry Edge Extraction . 25

4.1 Environment . 26

4.2 Background Images . 27

4.3 Foreground Images . 27

4.4 Result of Silhouette Extraction . 28

4.5 3D Polygonal Model . 29

4.6 Textured 3D Model . 30

4.7 Geometry Edges . 30

4.8 Photometry Edges . 31

iii

4.9 Final Resultant Edges . 32

iv

Chapter 1

Introduction

Recently, robots have accomplished a wide variety of tasks in many fields. They are

expected to reduce human labor drastically in the area of industry, and the main purpose in

developing robots is for practical use. Also, they have begun to play an active part in the area

of entertainment and are performing in many places, such as expos and public institutions.

Additionally, some researchers have focused on the development of artist robots, motivated

by a wish to have lifeless things imitate human behavior.

In line with this trend, our laboratory is working on a painter robot project. The goal of

this project is to construct a painter robot that can draw an oil painting of various objects: a

human, a scene, a fruit arrangement, and so on. We aim at realizing not only drawing but also

painting. The origin of our motivation is the analysis-by-synthesis of painting processes of

human, and we aim not only at drawing by a robot but also at extracting general processes of

painting action.

In this thesis we propose a system that extracts feature lines from data of object to be

drawn. When we let the robot describe a line drawing, we have to give it feature lines to

be drawn, such as silhouette and boundary lines, which represent the object. If we want oil

paintings or watercolor paintings, the robot needs designation of area and color to be painted,

in addition to feature lines. As the first step of this project, we start with line drawing.

1.1 Related Work and Our Robot

In the field of painter robots, drawing of human portraits has been the main thrust of

study. Nakajima et al. built a portrait-drawing robot system that consists of image processing

hardware that specializes in feature line detection from an image of a human face, and robot

hardware to draw detected lines with a specially-made writing brush [1]. In recent attempts,

1

Calinon et al. created a humanoid robot capable of drawing portraits with a quill pen through

a human-like process of drawing [2]. While [1] attempted to draw portraits only by silhouette

or boundary lines, [2] enabled their robot to fill the areas bounded by the contours. Both of

these two creations use a humanoid robot and are for entertainment.

Among other types of painter robots, the application of robot teaching techniques to art

has resulted in a calligrapher robot that learns brushwork from expert human calligraphers[3].

This robot consists of single robot arm, and is designed for the industrial use of putting pictures

on ceramics. The PumaPaint Project[4] aims for networked robotics and employs painting as

an experimental task; users can control the single-arm PUMA robot through the network by

manipulating the location of brush strokes and the pressure the brush exerts on the canvas.

To summarize all the works described above, all of them prepare instructions to draw a

picture for their robots by using some method, and the robots draw a picture by following the

instructions. They cannot change their behavior during their drawing process according to the

result of drawing. Moreover, most of them generate instructions from a 2D image, such as

portrait photographs.

Our painter robot is shown in Figure 1.1 and 1.2. She is originally constructed to ex-

periment a framework of ”learning from observation” through a variety of familiar tasks. In

addition to drawing a picture, she is challenged to knot a rope[5], execute assembly tasks[6],

and so on. She is designed to imitate the upper part of the human body, especially the eyes,

arms, and multi-fingered hands. Given information of the picture to draw, she does it using

visual feedback, obtained from her 9-eye stereo vision system, and force feedback, obtained

from sensors attached to her hand; she draws a line along the given route until it reach an

adequate length, seeing the picture she draws with her 9 eyes. So our painter robot is more

robust than systems that draw a line by simply tracing a route generated in advance, and her

drawing process is also more similar to the human process of drawing.

1.2 Drawing of 3D Object

Our interest on this project is not only in the drawing of a 2D image but also in drawing a

3D model. 2D image processing is much easier than dealing with a 3D object, and previous

works on painter robots have tended to focus on representation based on 2D image analysis,

as seen in [1, 2]. On the other hand, many recent studies on computer graphics have focused

on non-photorealistic rendering of 3D objects [7, 8], in addition to those of 2D images [9, 10].

In this thesis, we take up a method to deal with a 3D object, which is more interesting than the

processing of a 2D image. We are interested in processing a 3D object for two main reasons:

high quality feature line extraction, and variation of viewpoints.

2

Figure 1.1: Our Painter Robot

Figure 1.2: Detail of Robot System

3

Feature line extraction from a 2D image is based on edge detection, and most approaches

to edge detection utilize derivative techniques. The detected edges are interpreted as lines to

be drawn, and compared with the model of the object, if needed. Of course, these methods are

useful in drawing a 3D object, and we also utilize photometry edges as an important resource.

However, there are some cases in which edge detection fails: an unclearly colored image, a

monochrome object of complicated shape, overlapping objects of similar colors, and so on.

We have difficulty in detecting edges from these objects because colors of pixels surrounding

desirable edges resemble each other. This difficulty originates in poor quality of the image or

limited information of the object obtained from a 2D image.

Geometric information obtained from 3D data solves the difficulty. By using geometric

features, such as an object boundary and curvatures, we can obtain edges that couldn’t be seen

in 2D images. These geometric edges add more quality to edges detected from 2D images.

Also, 3D data enable us to see the target object from an arbitrary virtual viewpoint. We

can see the object from unusual viewpoints, such as overhead heights, and a unique image of

the object can be obtained. Furthermore, poor camerawork is supplemented with the aid of 3D

technique. When we express the object by only one or more photographs, the object might be

recognized unclearly because of an inadequate viewpoint, and this failure can’t be recovered

once we finished photographing. We can adjust the viewpoint by using a 3D technique, and

recover poor camerawork in the process of making 3D data. Similarly, this flexibility of

viewpoint also helps to obtain high-quality edges. It depends on a viewpoint whether an edge

can be seen, and we can adjust the virtual viewpoint to the angle from which the desirable

edges are seen clearly.

For all these reasons, dealing with a 3D object is effective in drawing by robots, and a

high-quality 3D model is needed in this work. In this paper, we propose a framework to

obtain a high-quality 3D model by using a graph-cut algorithm [11].

1.3 Thesis Contribution and Overview

This thesis describes our system, which realizes feature line extraction from reconstructed

3D model. By using this system, we can obtain a textured 3D polygonal model and feature

lines to be drawn in an automated way. A 3D model is reconstructed only by providing this

system with captured images and camera calibrations, and feature lines are calculated only by

deciding a virtual viewpoint. All we have to do for painting by robots is to convert results into

a format that a robot can accept. This automated system can be helpful in realizing drawing

by a robot.

One characteristic approach performed in this thesis is refinement of silhouette extraction

4

that is utilized in a series of 3D shape reconstruction. We employ graph-cut algorithm to give

robustness to background subtraction, which is often used in computer vision and weak at

slight environmental changes. This approach can be applied not only to 3D modeling but also

to variety of tasks in computer vision, such as object recognition.

The process of this system is as follows:

1. Build a 3D model of the target object from multiple cameras

2. Map adequate textures on the model

3. Render the model

4. Extract and combine geometry and photometry edges

We introduce each step of our system in the following sections. First, in Chapter 2, we

propose a method to build a 3D model by using the technique of multiple-view geometry, in

which we employ a graph-cut algorithm to refine the model. Here we present the method to

reconstruct surfaces of the model and map adequate textures on the obtained 3D model. Next

in Chapter 3, we describe how to render the 3D model based on a virtual viewpoint selected

arbitrarily and extract two types of edges: geometry and photometry edges.

After introducing our system, we show the experimental result of the system in Chapter 4.

And finally in Chapter 5, we offer some conclusion and proposals for future work.

5

Chapter 2

3D Modeling

It is an old and difficult problem in computer vision to generate a 3D model of a scene

given multiple 2D photographs taken of the scene. This problem applies to robot navigation,

special effects for motion pictures, games, virtual reality, and so on. Because of its wide

application, some broad classes of 3D reconstruction techniques have been developed.

One of the traditional methods for dealing with this problem, called stereo vision [12,

13, 14], is based on image matching. It calculates correspondences across 2D images on the

basis of color intensity and/or image features, and then reconstructs the 3D shape by using

triangulation and surface fitting. However, this approach has some disadvantages such as that:

• Viewpoints must be close together to avoid triangulation error.

• Correspondence across images may be lost spanning changes in viewpoint.

• There are no explicit solutions in handling occlusion differences.

Volume intersection [15, 16, 17], which is the method we employed for this project, is

an alternative approach of 3D shape reconstruction. This method estimates the shape of 3D

object from silhouettes in each 2D image, and overcomes some of the disadvantages of stereo

vision as seen in Section 2.1. Although it has some disadvantages, combining other methods,

such as voxel coloring [18], can solve some of them.

In this chapter, first we introduce the way to build a 3D model by using a volume inter-

section method and explain how the graph-cut algorithm contributes to this method. Then we

show the method to reconstruct surfaces of the model as a polygon representation from its

voxel representation and map textures on obtained surface planes.

6

2.1 Volume Intersection

Volume intersection uses a finite set of cameras, each of which contributes a viewpoint

and a 2D image captured from that viewpoint, and gives a shape of the object by intersecting

the volumes due to silhouettes on the 2D images, as shown in Figure 2.1.

Figure 2.1: Silhouette Volume Intersection[19]

Suppose that a silhouette of the object Si is given from each 2D image Ii. Then Si gives

a solid cone Ci by perspective projection of Si from a corresponding viewpoint Vi. If parallel

projection is used, Ci is a solid cylinder. Given that n images are available, the result of volume

intersection Rn is obtained in this way:

Rn =

n⋂

i=1

Ci (2.1)

This technique is based on the fact that the object is included in a cone or cylinder formed

by back-projecting a silhouette Si of the object from a corresponding viewpoint Vi. The convex

polyhedron Rn formed by this method is called visual hull, and means a maximal shape that

gives the same silhouette as the actual object for all cameras [16]. The size of the visual hull

decreases monotonically with the number of images n, and this decrease implies improvement

of the quality. However, even when an infinite number of images is used, not all concavities

can be modeled with a visual hull.

We chose the volume intersection method because of merits compared with other 3D re-

construction techniques:

• No restriction on unobserved parts

7

We can approximately reconstruct parts that are not observed in common by two or

more cameras.

• No need to handle matching problem of points

Matching problem is difficult if the target point is far away.

• Natural reconstruction of whole shape of the object

Maximal shape is obtained even if uncertain parts remain.

• Possibility to take in voxel coloring

Concave parts can be reconstructed by checking photo consistency of each voxel.

In this project, it is most important to reconstruct the whole shape of the object. Volume

intersection method is superior for this purpose.

We start with a set of source images {Ii} that are simply projections of the object onto n

known image planes. Each of these n images must then be segmented into a binary image

containing foreground regions to which the object projects; everything else is background. If

these foreground regions are then back-projected into 3D space and intersected, the resultant

volume is the inferred visual hull of the object. It is evident that higher quality of separation

between the foreground and the background contributes to generate a better 3D model.

In implementing the volume intersection technique, we have to select one principle out of

possible methods as below:

(a) Back-project contours of each silhouette as polygons and intersect polygons.

(b) Back-project all pixels of each silhouette as polygons and intersect polygons.

(c) Divide the space into voxels, and back-project all silhouettes checking whether each voxel

is included by each of them.

(d) Divide the space into voxels, and project each voxel upon all image planes checking

whether it is included by each silhouette.

The former two principles are polygon-based, and the latter two are voxel-based. Polygon-

based methods are generally high quality because the quality is restricted only by the resolu-

tion of images. On the other hand, voxel-based methods are also restricted by the resolution of

voxels. However, method (a) demands complicated processes, such as judging intersections

of planes, and costs a lot of processing time. Processes of method (b) are somewhat simpler

than (a), but needs excessive amounts of polygons and memory. Methods (c) and (d) are not

so complicated because they are realized with loops of voxels and silhouettes, and necessary

8

foreach v ∈V begin

v := true;

foreach i ∈ I begin

p := pixel obtained by projecting v onto the plane of i;

if p /∈ silhouette in i then

v := false;

break;

endif

end

end

Figure 2.2: Space Carving Method

V : set of all voxels

I : set of all images

true : v is in the visual hull

false : v is not in the visual hull

memory depends only on resolution of voxels. We employed method (d), which is shown in

Figure 2.2 and called space carving[20], because of the ease of implementation.

Pursuing high resolution of voxels and efficiency of calculations, we combined the octree

algorithm[17] with space carving. After finishing space carving for a set of voxels, each voxel

included in the visual hull is divided into 8 voxels as seen in Figure 2.3. Then space carving is

performed again, beginning from the new set of voxels, which consists only of divided voxels;

voxels that are not included in the visual hull on the previous stage are eliminated.

Volume intersection includes the possibility to incorporate a voxel coloring method, al-

though not implemented yet in our system. This method is based on photo consistency, i.e.,

that a voxel should have the same color as the corresponding pixels in each source image. The

algorithm is as follows:

1. Take a voxel on the surface of a 3D model.

2. Back-project the voxel onto all images.

3. Check if the voxel satisfies photo consistency and delete it if not.

4. Repeat 1..3 until all surface voxels satisfy photo consistency

9

Figure 2.3: Octree Division

In step 3, photo consistency is judged by a statistical approach. For instance, by calculating

variances σR
2,σG

2,σB
2 of the RGB colors obtained in step 2, summing them up to σ 2 (i.e.,

σ2 = σR
2 + σG

2 + σB
2) and comparing with a given threshold τ (i.e., if σ2 < τ , the voxel is

photo consistent), this judgment is performed.

2.2 Silhouette Extraction

Volume intersection needs silhouettes of the object, and quality of silhouettes affect The

quality of the built 3D model. In this section, we propose a method to obtain high-quality

silhouettes by using two methods: background subtraction and graph-cut image segmentation.

2.2.1 Background Subtraction

In order to achieve silhouette extraction, background subtraction technique is widely used.

The basic scheme of background subtraction is to calculate the difference between two images:

the current image that has the object in it and the reference image that models the background

scene. The most simple type of this method utilizes two pictures taken from the same view-

point: a foreground picture F that includes the target object and a background picture B that

does not. Let p denote a pixel in both F and B, and F(p),B(p) denote the properly encoded

color value of the pixel p in F,B. If p satisfies the following inequality, then the foreground

region contains p:

|F(p)−B(p)| > τ (2.2)

10

Here τ is a predefined threshold.

The above is a basic method, and many improved versions are proposed. The idea of this

method is based on color consistency of the background region. This method is very simple

and easy to automate. But the simplest method is too weak for fluctuations of the color of

each pixel, such as a slight change of background and shadows due to the target object. To

avoid these errors, we employed a statistical approach that utilizes a novel computational color

model of brightness distortion and chromaticity distortion [21].

The employed method creates a statistical model for each pixel using a set of N back-

ground images. A pixel i in the reference image is modeled by a 4-tuple < Ei,si,ai,bi >. Each

of them respectively denotes the expected color value, the standard deviation of color value,

the variation of the brightness distortion, and the variation of the brightness distortion.

First, we calculate the most basic statistics of background images as follows:

Ei = [µR(i),µG(i),µB(i)] (2.3)

si = [σR(i),σG(i),σB(i)] (2.4)

Here muR(i),µG(i),µB(i) and σR(i),σG(i),σB(i) are the arithmetic means and the standard

deviations of the ith pixel’s red, green, blue values.

Second, we calculate the brightness distortion αi and color distortion CDi corresponding

to a current image that we want to subtract from the background. Let Ii = [IR(i), IG(i), IB(i)]

denote the pixel i’s RGB color value in the current image. Then,

αi =

IR(i)µR(i)
σ2R(i)

+
IG(i)µG(i)

σ2
G(i)

+
IB(i)µB(i)

σ2B(i)
(

µR(i)
σR(i)

)2

+

(

µG(i)
σG(i)

)2

+

(

µB(i)
σB(i)

)2 (2.5)

CDi = ‖Ii −αiEI‖ (2.6)

Note that αi minimizes (Ii −αiEi)
2. As seen in Figure 2.4, the difference between Ii and Ei is

decomposed into brightness (αi) and chromaticity (CDi). αi means a ratio of brightness and

CDi means a distance of chromaticity.

Third, ai and bi introduced above is calculated as root mean standard(RMS):

ai =

√

√

√

√

√

N

∑
n=1

(αi −1)2

N
(2.7)

bi =

√

√

√

√

√

N

∑
n=1

(CDi)
2

N
(2.8)

11

O
R

G

B

i
E

i
I

ii
Eα

i
CD

Figure 2.4: Color Model in the RGB color space

ai and bi are utilized to normalize αi and CDi. Since the different pixels yield different distri-

butions of αi and CDi, they must be rescaled in order to use a single threshold for all of the

pixels.

α̂i =
αi −1

ai
(2.9)

ĈDi =
CDi

bi
(2.10)

Finally, each pixel i is classified into four categories: B(Background), F(Foreground),

S(Shaded background or shadow), and H(Highlighted background). The label L(i) of a pixel

i is determined by the following decision procedure:

L(i) =





F : ĈDi > τCD, else

B : α̂i < τα1 and α̂i > τα2, else

S : α̂i < 0, else

H : otherwise

(2.11)

Here τCD, τα1 and τα2 are thresholds that can be selected by using a statistical learning proce-

dure automatically based on a given detection rate r. r satisfies 0 < r < 1 and means the rate

of error that is ignored in the distribution.

In spite of these prudent procedures, results of this method is not always satisfactory for

volume intersection because of a wrong boundary and/or holes in the silhouette, as seen in

12

(a) Background Picture (b) Current Picture

(c) Labeling Result (d) Silhouette

In (c), a pixel labeled as B,F,S,H is represented respectively by white, blue, red, green.

Figure 2.5: Result of Background Subtraction

Figure 2.5. We propose a novel method to solve this problem in the rest of this section.

2.2.2 Graph-cut Image Segmentation

Image segmentation to foreground and background regions is formulated as a graph-cut

problem in [11]. An image segmentation problem can be posed as a binary labeling problem.

Suppose that the image is a graph G = (V,E), where V is the set of all vertices and E is the

set of all edges that connects adjacent vertices. In our system, V is the set of all small regions

in the image obtained by pre-dividing pixels based on color similarity using the watershed

algorithm[22], and E is the set of connections between adjacent regions. The labeling problem

is to assign a unique label xi for each vertex i ∈ V . Here xi ∈ {0,1}; xi = 1 means that

i is foreground and xi = 0 means background. The solution X = {xi} can be obtained by

minimizing a Gibbs energy E(X) [23]:

G(X) = ∑
i∈V

G1(xi) + ∑
(i, j)∈E

G2(xi,x j) (2.12)

where G1(xi) is the likelihood energy, encoding the cost when the label of vertex i is xi, and

G2(xi,x j) is the prior energy, denoting the cost when the labels of adjacent vertices i and j are

13

xi and x j respectively. The specific form of G1(xi) and G2(xi,x j) is given in [11], and some

of {xi} must have been given as initial value to calculate G1(xi). This energy minimization

problem can be posed as a graph-cut problem and solved efficiently by using a technique

described in [24].

(a) Original Image (b) Designation of fore-

ground and background

(c) Extracted Silhouette

In (b), the foreground and background regions are designated with green lines and a blue line respectively, and the

resultant boundary is shown by a red polygon.

Figure 2.6: Silhouette Extraction using Graph-cut

When we use this technique for image segmentation, we have to designate some pixels of

foreground and background, as shown in Figure 2.6(b). Beginning with a lesser designation

of pixels, this technique gives us a very fine separation of foreground and background region,

as seen in Figure 2.6(c).

The merit of this method is that we can obtain a clear boundary between foreground and

background regions. However, this method needs designation of some pixels of foreground

and background initially, although it does not need much designation. This method fails if

appropriate pixels of foreground and background are not given, as seen in Figure 2.7. In prac-

tical use, this designation of pixels must be given manually, intending a necessary foreground

and unnecessary background region by seeing the image.

When we use the volume intersection method, we often use many images to improve the

quality of the 3D model. It is too troublesome to apply the graph-cut algorithm manually

to all used images. Besides, our system aims to automate the whole process of feature line

extraction. For these reasons, we cannot support the use of the graph-cut algorithm in a manual

way.

14

(a) Poor designation of foreground

(b) Poor designation of background

Figure 2.7: Failed Examples of Graph-cut Algorithm

2.2.3 Combination of Two Techniques

We propose combining the background subtraction method with the graph-cut algorithm.

The proposed procedure is as follows:

1. Apply background subtraction twice to the target image using two different detection

rates r1,r2. Here r1 > r2, and let S1,S2 denote resultant binary images corresponding to

r1,r2.

2. Employ the foreground region in S1 with a slight adjustment for designation as fore-

ground in the graph-cut algorithm.

3. Employ the background region in S2 with slight adjustment for designation as back-

ground in graph-cut algorithm.

4. Execute the graph-cut algorithm using the result above as an initial designation.

First, we apply a background subtraction method to the target image. Here the large detec-

tion rate r1 results in a small and reliable foreground region. On the other hand, the small rate

r2 results in a large and uncertain foreground region. To reverse this, the background region is

small and reliable. For example, r1,r2 can be set to 0.999 and 0.7 respectively.

15

(a) Original Images

(b) Foreground and Adjustment

(c) Background and Adjustment

(d) Designation and Result

Figure 2.8: Result of Combined Silhouette Extraction

16

In the second step, the foreground region in the resulting image S1 can include a slight

error, such as some pixels outside the target object. Although the error pixels are few, they

can largely influence a result of graph-cut algorithm. For that reason, we added a function to

eliminate all small foreground regions that are not connected to the largest region. Also in the

third step, we can eliminate all small background regions by a similar function. And finally,

we can apply the graph-cut algorithm to the original image.

This combination of two techniques can make up for the defects of each technique. The

background subtraction method automatically gives the initial designation to the graph-cut

algorithm, and the graph-cut algorithm calculates finer separation than the background sub-

traction method. A fine silhouette of the object can be obtained by using this combined method

and used in volume intersection.

2.3 Surface Reconstruction

The method described in the previous section gives us a 3D model of the target object as

a set of voxels. Of course, we can render it as it is and texture on it. However, surfaces of a

voxel-based 3D model are rugged and unnatural. Moreover, such surfaces may form wrong

edges: a wrong normal vector of each plane causes a wrong geometry edge, and a rendered

image with aliases causes the wrong photometry edges.

Marching cubes [25] is widely used in order to reconstruct a polygonal 3D model from

a volumetric data set in which each voxel has scalar value. This method first binarizes the

value of each voxel using a threshold; 0 is assigned if the voxel is outside the surface, and 1

is assigned if inside. In this system, our set of voxels is originally binary and no thresholds

are needed. Then it considers cubes whose vertices are 8 adjacent voxels. Here note that the

surface intersects those cubes where some vertices are 0 and the others are 1. The surface is

reconstructed by checking the pattern of vertices in each cube.

The possible state of 8 vertices in a cube is 28 = 256, and they can be reduced to 15 by

using symmetry, such as rotation, mirroring, and state reversing. Therefore we can locate a

surface in each cube by comparing the vertices’ state with facets shown in Figure 2.9. Here

a vertex of triangles is obtained by linear interpolation of a corresponding cube edge. In our

system, the value of each voxel is binary and the interpolated point is just a midpoint.

Although marching cubes is a very practical and simple algorithm, it has a problem of

topological inconsistency, i.e., there can be holes in created surfaces in some cases such as Fig-

ure 2.10. To overcome this defect, we employed facets introduced in [27]. Consequently, the

surface of our volumetric model is represented as a polygon that consists of triangle patches.

17

Figure 2.9: Set of Facets in Original Marching Cubes[26]

Figure 2.10: Topological Inconsistency[26]

Figure 2.11: Employed Set of Facets[27]

18

2.4 Texture Mapping

Given a 3D polygonal model of the object, our 3D modeling is finalized by mapping

a proper texture on each triangle patch. Here we have to determine which image is to be

textured on a patch. It is natural that a patch is textured by the image that is taken by the

camera facing the patch.

We solved this problem by using the normal of each patch and camera position. We apply

this algorithm to each patch:

1. Calculate the normal vector n and normalized direction vectors p1, ...,pN from the patch

to all N camera positions c1, ...,cN.

2. Compute inner products ui = n ·pi (i = 1, ...,N).

3. Select I such that uI = max{ui} and texture this patch using the Ith image.

n

Camera 1

Camera 2

Camera 3

Camera 4

p1

p2

p3

p4

Figure 2.12: Camera Selection for Texturing

However, this algorithm fails in texturing patches hidden by another part. Z-buffer solves

this visibility problem by removing unsuitable images. If a patch is hidden when seen from a

camera, the image taken by the camera cannot be a candidate for texturing the patch.

19

Z-bufferCamera Image 3D model Simple Texturing Occlusion Sensitive

Texturing

Figure 2.13: Texture Mapping with Hidden Surface Detection

20

Chapter 3

Feature Line Extraction

We obtained a textured 3D polygonal model by using the method described in the previ-

ous chapter. In this chapter, we propose a method to extract feature lines based on a virtual

viewpoint selected arbitrarily.

First, we render the 3D model by the standard technique of 3D computer graphics using

OpenGL. Here, a virtual viewpoint can be given easily by OpenGL’s functions of perspective

transformation. We employed OpenGL because of powerful and various functions that allow

rapid development of a high-quality 3D graphic program, such as 3D coordinate system as

default, automatic z-buffer calculation, and easy texture mapping. Feature lines are extracted

on the basis of the rendered result and the virtual position of the viewpoint.

We propose a method to extract geometry and photometry edges in the following sections.

As mentioned in Section 1.2, a textured 3D object provides not only photometry edges but also

geometry edges, and geometry edges complement where few photometry edges are extracted.

By combining these edges, the object is represented more precisely in 2D output.

3.1 Geometry Edges

Seen from a virtual viewpoint, we recognize an edge of a polygon as a geometry edge

when the position of the edge is maximally away in a curved surface. Then normals of the

edges should be nearly vertical to gaze direction. Based on this notion, our system judges if a

vertex composes a geometry edge by using normals of each vertex.

We compute geometry edges as a set of vertices. The algorithm is as follows:

1. Calculate a normal vector ni of each vertex vi by interpolation from adjacent vertices

and normalize it.

2. Represent a gaze direction as a direction vector p.

21

Object

Virtual Camera

Geometry Edges

Figure 3.1: Model of Geometry Edges

3. Calculate an inner product ui = ni · p for each ni.

4. Compare ui with predefined thresholdτ > 0. If |ui| < τ , vi is a geometry edge.

This algorithm almost returns a sufficient number of vertices, but it fails where a curva-

ture is abrupt and halfway vertices are skipped. To compensate for this defect, we added

every vertex that satisfies one of following conditions to geometry edges by considering the

xy coordinate of the vertex in the rendered result:

• x is the maximum of all vertices that have same y.

• x is the minimum of all vertices that have same y.

• y is the maximum of all vertices that have same x.

• y is the minimum of all vertices that have same x.

However, simple application of this algorithm causes some invalid edges if the polygon is

sparse. For that reason we selected proper edges out of neighboring n candidates; if candi-

dates v1,v2, ...,vn are calculated due to maximum x values for y,y+1, ...,y+(n−1), only one

candidate has the maximum x value of the n vertices. In our system, n is set to 3 based on the

experimental result (see Figure 3.2).

22

(a) Object (b) Polygon

(c) Simple Edges (d) Improved One (n = 1)

(e) Improved One (n = 3) (f) Improved One (n = 5)

Figure 3.2: Result of Geometry Edge Extraction

23

3.2 Photometry Edges

Photometry edges are extracted from a 2D image of a rendered 3D model by applying a

traditional 2D edge detection algorithm. In computer vision, edge detection from a 2D image

is an old problem, and many solution have been offered mainly based on a derivative technique

[28]. Among them, Canny’s edge detector [29] is widely used as the current standard edge

detection scheme because of high-quality edge detection; it can pick up delicate edges that

cannot be found by another method.

This method treats edge detection as a signal-processing problem and specifies an objec-

tive function to be optimized. The objective function was designed to achieve the following

optimization constraints:

• Important edges should not be missed, and there should not be no spurious response.

• The distance between the actual and located position of the edge should be minimal.

• Multiple responses to single edges should be minimized.

A first derivative of a Gaussian approximates this objective function very well.

Let I(x,y) denote an image. The algorithm of this method is as follows:

1. Smooth the image with a Gaussian filter to reduce noise and unwanted details and tex-

tures.

g(x,y) = Gσ (x,y)⊗ I(x,y) (3.1)

where

Gσ (x,y) =
1√

2πσ2
e−

x2+y2

2σ2 (3.2)

2. Calculate gradient of g(x,y) using any of the gradient operators (Sobel, Prewitt, Roberts,

etc.) to obtain

M(x,y) =
√

gx2(x,y)+gy2(x,y) (3.3)

and

θ(x,y) = arctan
{

gy(x,y)
gx(x,y)

}
(3.4)

3. Threshold M:

MT (x,y) =





M(x,y) i f M(x,y) > T

0 otherwise
(3.5)

where T is so chosen that all edge elements are kept while most of the noise is sup-

pressed.

24

4. Since the edges might have been broadened in step 1, suppress non-maximal pixels in

the edges in MT obtained above to thin the edge ridges. In order to do so, check to see

whether each non-zero MT is greater than its two neighbor along the gradient direction

θ(x,y). If not so, set it to 0.

5. Threshold the previous result by two different thresholds τ1 and τ2 (where τ1 < τ2) to

obtain two binary images B1 and B2. Note that compared to B1, B2 has less noise and

fewer false edges but larger gaps between edge segments.

6. Link edge segments in B2 to form continuous edges. In order to do so, trace each

segment in B2 to its end and then search its neighbor in B1 to find any edge segment in

B1 to bridge the gap until reaching another edge segment in B2.

In our system, the parameters σ ,T,τ1,τ2, which appeared in the algorithm, can be adjusted

while seeing the result. In addition, we can designate how far to search connecting edges in

the same way.

As seen in Figure 3.3, this method successes in extracting detailed feature lines. On the

other hand, it fails in finding some important lines (e.g. the boundary between the face and

the body) because of color similarity around the desirable line. Geometry edges are expected

to complement these lines.

(a) Original Image (b) Photometry Edges

Figure 3.3: Result of Photometry Edge Extraction

25

Chapter 4

Experimental Results

We implemented the system on the basis of the scheme described in Chapter 2 and 3, and

applied it to pictures of a human taken with calibrated multiple cameras. In this chapter, we

show our environment for experiment and a result obtained by means of our system.

4.1 Environment

We captured images of a human with 8 synchronized cameras arranged around the ceiling

of the experiment room, as seen in Figure 4.1. These cameras are connected to clusters, and

the clusters synchronize behavior of each camera and reserve pictures taken by each of them

at the rate of 30 frames per second. These cameras are well calibrated in advance.

(a) Experiment Space (b) Ceiling Cameras

Figure 4.1: Environment

We obtained 50 background pictures in which no humans are included, 50 foreground

26

pictures in which a human is included, and calibration data from each camera described above.

We utilized all of the background pictures for background subtraction described in Section

2.2.1, and one set of the foreground pictures that are captured at the same time.

Figure 4.2: Background Images

Figure 4.3: Foreground Images

4.2 3D Shape Reconstruction

First, we constructed a textured 3D polygonal model of the human by using the technique

described in Chapter 2.

4.2.1 Silhouettes

As the result of silhouette extraction proposed in Section 2.2, we obtained three results

shown in Figure 4.4: results of background subtraction for two detection rate r1,r2 and the

final resultant silhouette by means of graph-cut algorithm. Based on the result of preliminary

experiments, r1 and r2 are set to 0.999 and 0.7 respectively.

We found in each result of Figure 4.4(a) that no foreground regions are outside the human

and some important inside regions are separated from largest foreground region, and therefore

we did not utilize the function to eliminate invalid foreground regions. On the other hand, in

27

(a) Background Subtraction (detection rate r1 = 0.999)

(b) Background Subtraction (detection rate r2 = 0.7)

(c) Designation

(d) Final Silhouette

Figure 4.4: Result of Silhouette Extraction

28

each result of Figure 4.4(b) some background regions are inside the human and therefore we

utilized the function to eliminate invalid background region.

Figure 4.4(d) indicates good separations of foreground and background region, and sug-

gests that our method is effective for refining the separation between the foreground and the

background region in the captured images. However, our experimental dataset is well sepa-

rated only by background subtraction to some extent, and we should examine the effectiveness

of our method by a variety of environments.

4.2.2 Textured 3D Polygon

We reconstructed the 3D polygonal model from obtained silhouettes of the human, by

applying the methods described in Section 2.1 and 2.3. Then we texture on the model using

the technique proposed in Section 2.4. The resultant polygonal model and textured model is

shown in Figure 4.5 and 4.6.

(a) (b)

Figure 4.5: 3D Polygonal Model

These results are sufficient to represent whole shape of the human body, and textured

well without wrong correspondence such as seen in Figure 2.13. However the surface of the

model is rough and some background textures are mapped on it. The quality of the resultant

model can be improved by integrating photo consistency with our method, or by introducing

some smoothing method to the result.

4.3 Line Extraction

We rendered the 3D model obtained in previous section from an arbitrary virtual view-

point, as we saw in the previous section. Then two types of feature lines are extracted and

29

(a) (b)

Figure 4.6: Textured 3D Model

combined.

4.3.1 Geometry Edges

We obtained geometry edges shown in Figure 4.7 from the obtained polygonal model by

using the method described in Section 3.1.

(a) (b)

Figure 4.7: Geometry Edges

In this experiment we did not utilize a dataset which has a characteristic shape, and there-

fore we can confirm only a few merits of geometry edges. We can see that geometry edges

represent silhouette of the human well in both of the Figure 4.7, and the hairstyle of the human

in Figure 4.7(b). We cannot recognize the hairstyle of the human from Figure 4.6(b) and this

is the typical case where geometry edges contributes to recognition of the object.

At present, geometry edges are expressed by vertices and a robot cannot draw them as it

30

is. We should convert them to a line expression using connection of the vertices.

4.3.2 Photometry Edges

We obtained photometry edges shown in Figure 4.8 from the rendered result of textured

3D model by using the method described in Section 3.2.

(a) (b)

Figure 4.8: Photometry Edges

The resultant edges offer some features of the model, such as boundaries and patterns

of clothes. However they contain some noises and are not enough to represent the human.

Although this is because of insufficient quality of the 3D model in part, we should contrive a

method to remove noises and refine the result.

4.3.3 Combined Edges

We combined two types of edges obtained in the previous parts of this section. The result

is shown in Figure 4.9.

The result indicates that both two types of edges complement each other. In Figure 4.9(b),

the hairstyle of the human is represented only by geometry edges, and the boundary of pants.

The quality of the result progresses by improvement of the quality of each type of edges.

31

(a) (b)

Red and blue areas denote geometry and photometry edges respectively.

Figure 4.9: Final Resultant Edges

32

Chapter 5

Conclusion

5.1 Summary

We proposed a feature extraction system that yields desirable lines to be drawn by a painter

robot from images obtained from multiple cameras. This is the first step to realize painting

by humanoid robot, and finally to understand human process of painting. Although we have

some problems on the quality of results, we obtained some important achievements.

First, we implemented a system to automatically extract feature lines of the object. We

can obtain a textured 3D polygonal model only by providing our system with captured images

and camera calibrations, and feature lines only by deciding a virtual viewpoint. We cannot

say that the extracted feature lines have sufficient quality. However we can conclude that they

roughly represent the target object, and desirable feature lines can be obtained by improving

quality as an extension of this work.

Second, we proposed a combination of background subtraction and graph-cut algorithm

as a part of 3D modeling. This approach gives robustness to former background subtraction

methods and enables us to obtain clear silhouette of the object. This technique can be applied

not only to 3D shape reconstruction but also to other areas in computer vision, such as ob-

ject recognition. However, we experimented this method for datasets to which background

subtraction gives good result to some extent, and the effectiveness of this method should be

examined more carefully.

5.2 Future Work

For the further improvement of our system, we are planning to work on the following

tasks:

• Quality of feature line extraction

33

At present, we obtain both types of feature lines as a set of pixels and the quality of the

lines are still insufficient. We will develop a method to convert the set of pixels to lines,

and to refine and simplify the lines.

• Refinement of the 3D model

Volume intersection has a limitation, such as reconstruction of concave parts. This

problem can be solved by using detailed information of silhouettes, such as colors. We

are developing a system that combines volume intersection and voxel coloring.

• Extension of our robust silhouette segmentation

Our silhouette extraction technique can be extended to sequence photographs. We are

expecting that a moving object can be segmented from background by using proposed

method, and this approach will be useful in the field of motion tracking, intelligent

transport systems(ITS), and so on.

34

References

[1] F. Nakajima, D. Ohkawara and A. Nakata: Portrait Drawing Robots, Journal of the

Robotics Society of Japan, Vol. 3, No. 4, pp. 123-124, August 1985.

[2] S. Calinon and J. Epiney and A. Billard: A Humanoid Robot Drawing Human Portraits,

In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, pp.161-

166, 2005.

[3] H. Tsuge, K. Tani and T. Tanaka: Study of Sensing Methods for Sophisticated Robot

Teaching, Gifu Prefectural Research Institute of Manufacturing Information Technology,

Gifu, Japan, Techinical Report, 2001.

[4] M. Stein and C. Madden: The pumapaint project: Long term usage trends and the move to

three dimensions, In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), April 2005.

[5] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura and K. Ikeuchi: Knot Planning from

Observation, In Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA), pp.3887-3892, Sep. 2003.

[6] J. Takamatsu, K. Ogawara, H. Kimura and K. Ikeuchi: Understanding of Human Assem-

bly Tasks for Robot Execution — Generation of Optimal Trajectories Based on Transi-

tions of Contact Relations —, Journal of the Robotics Society of Japan, Vol. 22, No. 6,

2004.

[7] Danijela Markovic and Margrit Gelautz: Drawing the real, Proceedings of 3rd Interna-

tional Conference on Computer Graphics and Interactive Techniques in Australasia and

South East Asia (GRAPHITE’05), pp. 237-243, 2005.

[8] Tong-Yee Lee, Shaur-Uei Ya, Yong-Nien Chen and Ming-Te Chi: Real-Time 3D Artis-

tic Rendering System, Proceedings of Knowledge-Based Intelligent Information and En-

gineering Systems: 9th International Conference (KES’05), Vol. 3683, pp. 456-462,

September 2005.

35

[9] Atsushi Kasao and Kazunori Miyata: Algorithmic Painter: a NPR method to generate

various styles of painting, Journal of The Visual Computer, Vol. 22, No. 1, pp. 14-27,

January 2006.

[10] Hajime Matsui, Henry Johan and Tomoyuki Nishita: A Method to Create Colored Pen-

cil Style Images by Drawing Strokes Based on Boundaries of Regions, Proceedings of

Computer Graphics International (CGI’05), pp. 148-154, June 2005.

[11] Yin Li, Jian Sun, Chi-Keung Tang, Heung-Yeung Shum: Lazy Snapping, ACM Trans-

actions on Graphics, vol. 23(3), pp.303-308, August 2004.

[12] D. Marr and T. Poggio: Cooperative Computation of Stereo Disparity, Science, Vol. 194,

No. 4262, pp. 283-287, Oct. 1976.

[13] Y.Yang, A. Yuille, and J. Lu: Local, Global, and Multilevel Stereo Matching, Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 274-279,

1993.

[14] O. Faugeras and R. Keriven: Variational Principles, Surface Evolution, PDE’s, Level Set

Methods, and the Stereo Problem, IEEE Transactions on Image Processing, Vol. 7, No. 3,

pp. 336-344, March 1998.

[15] W. Martin and J. K. Aggarwal: Volumetric Descriptions of Objects from Multiple Views,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 5, No. 2, pp.150-

158, March 1983.

[16] A. Laurentini: The Visual Hull Concept for Silhouette-Based Image Understanding,

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 2, Feb.

1994.

[17] S. Srivastava and N. Ahuja: Octree Generation from Object Silhouettes in Perspective

Views, Computer Vision, Graphics and Image Processing, Vol. 49, No. 1, Jan. 1990, pp.

68-84.

[18] S. Seitz and C. Dyer: Photorealistic Scene Reconstruction by Voxel Coloring: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1067-1073,

June 1997.

[19] X. Wu, T.Wada, S.Tokai, T.Matsuyama: Parallel Volume Intersection Based on Plane-

to-Plane Projection, IPSJ Transactions on Computer Vision and Image Media, Vol.42,

No.SIG 6(CVIM 2), pp.33-43, June 2001.

36

[20] K. N. Kutulakos and Steven Seitz: A Theory of Shape by Space Carving, Technical

Report TR692, Computer Science Dept., U. Rochester, May 1998.

[21] D. Harwood T. Horprasert and L.S. Davis: A statistical approach for real-time robust

background subtraction and shadow detection, Proceedings of Asian Conference on Com-

puter Vision, Jan 2000.

[22] S. Vincent and P. Soille: Watersheds in Digital Spaces: An Efficient Algorithm Based on

Immersion Simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 13, No. 6, pp.583-598, June 1991.

[23] S. Geman and D. Geman: Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 6, No. 6, pp. 721-741, 1984.

[24] Yuri Boykov and Marie-Pierre Jolly: Interactive Graph Cuts for Optimal Boundary &

Region Segmentation of Objects in N-D images, In International Conference on Computer

Vision(ICCV), Vol. 1, pp. 105-112, 2001.

[25] William E. Lorensen and Harvey E. Cline: Marching Cubes: A high resolution 3D sur-

face construction algorithm, Proceedings of the 14th Annual Conference on Computer

Grphics and Interactive Techniques, pp. 163-169, 1987.

[26] Alex Goriachev: Marching Cubes, Online Document, May 2002, Available at

http://cs.technion.ac.il/˜u shani/cs236807-S2/

[27] Montani C. and Scateni R. and Scopigno R: Discretized Marching Cubes, Proceedings

of IEEE Computer Society Visualization ’94, pp. 281-287, 1994.

[28] D. Marr and E. C. Hildreth: Theory of edge detection, Proceedings of the Royal Society

of London B, Vol. 207, pp. 187-217, 1980.

[29] J. Canny: A computational approach to edge detection, IEEE Transaction on Pattern

Analysis and Machine Intelligence, Vol. 8, No. 6, pp.679-698, 1986.

37

