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ABSTRACT

In the field of flexible rope manipulation, planning and manipulation methods have been

studied seperately over the past years. Yet, putting together these approaches to implement

one whole manipulation system gives rise to a variety of implementational problems.

This work presents a new approach to implement a knot tying system. We chose knot tying

as a case study of flexible object manipulation because the knot theory was available and

because knot tying operations could be clearly classified into few categories. For the planning

phase, we used a method based on the Knot Planning from Observation (KPO) paradigm,

which effectively generates knot tying plans based on visual examples demonstrated by human

beings. For the manipulation phase, we developed a method to determine robot operations

by extracting visual information from the examples used in the planning phase. This yields

a simple solution to determining manipulation parameters.

The results of experimental tests are also reported, indicating that our proposed system

solves some of the implementational problems in flexible object manipulation. We also show

new problems that have come to light through the experiments.

論文要旨

これまで柔軟物操作の分野において、プランニングと操作の手法は別々に研究されてきた。し

かし、両者を統合して一つの柔軟物操作システムを構築しようとすると、実装上の様々な問題が

浮かび上がってくる。

　本研究では紐結び作業を行うシステムを実装する新たな手法を提案する。我々が紐結び作業に

注目したのは、紐結びに関して結び目理論という数学的体系が存在すること、また、紐結びの動

作が明確に分類可能だということに因る。紐結び作業のプランニングには観察による紐結び動作

学習 (KPO)パラダイムを利用し、人間の示す手本から効率的に紐結びのプランを生成した。紐

の操作にはプランニング時に与えられた手本から視覚情報を抽出することでロボットの動作を生

成する手法を開発した。視覚情報を用いることでロボットを動作させるのに必要なパラメータが

簡単に獲得できるようになった。

　また本論文では実験結果を示し、本手法に基づくシステムでは実装上のいくつかの問題に対す

る解決を与えることができたことを述べる。さらに、実験を通して新たに明らかとなった実装上

の問題点を報告する。
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Chapter 1

Introduction

Not only are robots presently playing an important role in manufacture, but they

are also expected to accomplish a much wider variety of tasks in the future. To be able

to work on more intelligent activities, manipulating objects is an important activity

the robot must learn to do and has been studied for over a decade.

Till the 1990s much of the work in robotics was dedicated to study on rigid object

manipulation. On the other hand, deformable objects were left alone because the

precise form and position of deformable objects are difficult to attain; they may change

greatly by just a simple operation, and the changes are difficult to predict. However,

deformable object manipulation has become inevitable in accomplishing complex tasks,

because there are many situations in real life where we have to handle deformable

objects. Everyday tasks such as connecting cables between electronic equipment and

tying shoelaces all involve handling of such objects.

Roughly two types of methods were introduced for deformable object manipulation.

One is a model-based method, in which the objective is to predict deformation of

the object. The most common model-based method is the Finite Element Method

(FEM), which models the deformation of objects caused by move of the object, external

force or contact with other objects. FEM is widely used for it is applicable to a

wide variety of objects. For example, Wada modeled rope [11] and cloth [10] based

on this method. Because FEM requires much computation, others modelled objects

in a different manner using heuristic knowledge of objects. For manipulating linear

deformable objects such as rope there are methods using differential geometry [9], and

for cloth methods using static 2D models [6] and 3D models [12].

Another method for deformable object manipulation is to use a vision-based method,

which checks object state from visual feedback. Inaba et al. built a system which
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checks and corrects manipulation operations []. Hopcroft et al. introduced a vision-

based high-level language for describing knot tying and implemented a manipulation

system using it [1]. Matsuno et al. used dual manipulation systems together with a

vision system [4].

By using the above methods, manipulation of deformable objects became possible

to a larger extent, but each robot operation to be performed was manually programmed

by using robot commands. This was inefficient because the programmes took much

time to write, needed to be newly written for each task, and had to be rewritten every

time the task was altered. This gave rise to the next challenge: how to automatically

determine what operations should be done on the object to accomplish a task, in other

words task planning.

One solution to this problem is the Learning from Observation (LFO) paradigm.

The approach of this paradigm is to use observed data in acquiring task plans. First,

the robot observes a human perform the task, and collects data from the observation.

The observed data is then parsed into task primitives. Task primitives are fundamental

units of movements required to accomplish the tasks. By parsing the observed data

into these primitives, a sequence of task primitives is obtained. This sequence is the

plan of the task. Task planning by LFO decreases programming time and eliminates

the need for expertise in robot programming to teach robots new tasks. This is the

reason LPO has been applied to various manipulation systems that handle rigid objects

[2, 8, 3].

In this thesis we prospose a deformable object manipulation system that implement

together planning and manipulation steps for tying knots in rope on the basis of

the LFO paradigm. We chose the knot tying task for two reasons. First, because

rope (and similar objects, e.g. wires and cords) is one of the most simple but often-

used deformable objects in our daily lives. Second, because knot tying has a good

mathematical background called the knot theory [7], which clearly classifies knot tying

operations into few categories [5]. Planning is conducted using elements of knot tying

plans (knot states, task primitives, task primitive identification method) which are

already designed by our laboratory [5]. Manipulation is achieved by extending the

vision-based method so that we could reuse the observed data in the planning phase

to simply determine parameters necessary for translating the plans into executable

robot operations.

The outline of this thesis is as follows: In chapter 2 we give a broad view of our

knot tying system. Next in chapter 3 and 4 we describe the planning and manipulation

methods in detail. Then in chapter 5 we show the results of experiments knot tying
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tasks and discuss the evaluations of the system. Finally in chapter 6 we offer some

conclusions.
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Chapter 2

Outline of the Knot Tying System

The goal of our system is to tie knots in ropes that are placed on a flat surface such

as a table. We decided to lay the rope on a surface to ease image recoginition and

manipulation. The system works in two phases: the planning and the manipulation

phase. Figure 2.1 illustrates the system architecture.

The planning phase is built on the basis of the KPO paradigm [5]. This paradigm

is an application of the LFO paradigm to knot tying based on the knot theory. It

provides us with methodology of describing plans and generating plans described in

such a way.

In the planning phase, knot tying plans are generated from data acquired from

examples shown by humans. The plans are generated in the following steps:

1. Observation

Obtain sequential 2D images of a knot-tying performance

2. K-data Conversion

From each 2D image, obtain a geometric representation of knot state (K-data)

3. P-data Conversion

From each K-data, convert it to a topological representation of knot state (P-

data)

4. Plan Generation

From the sequence of P-data, identify movement primitives between each state

In the observation step, sequential snapshots of knots are taken as a human per-

forms a knot tying task. The snapshots are in 3D, and are captured by using stereo

vision are projected onto a 2D plane to make 2D images. These images are converted
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Figure 2.1: Architecture of knot tying system
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to K-data, and then to P-data in the following steps. The K-data is a geometric

representation of a knot, and the P-data a topological one, which we will show later.

Last of all, in the plan generation step, we compare each pair of successive P-data

and identify the movement primitives that make transition occur between them. As a

result, we obtain a knot tying plan, which is a sequence of movement primitives.

The generated plan is then passed onto the manipulation phase. Here, a knot

tying task is executed according to the given plan by using visual information to

extract robot operation parameters. The manipulation phase works for each movement

primitive in the following steps:

1. Object-level Parameter Acquisition

Determine object-level parameters by using the movement primitive and K-data

2. Present Knot State Acquisition

Obtain the present state of the rope which the robot will manipulate

3. Robot-level Parameter Acquisition

Acquire robot-level parameters by using object-level parameters and the present

knot state

4. Robot Command Conversion

Generate and execute a sequence of robot operations using robot-level parame-

ters

In the first step, we make use of observed data in the planning phase to obtain

object-level parameters. These parameters give reference to knot positions and direc-

tions without using robot coordinates. In the second step we use the vision system to

capture an image of the rope the robot will work on and acquire its K-data and P-data

as we do in the planning phase. Then in the third, the object-level parameters are

mapped onto the present knot to acquire robot-level parameters. These are param-

eters that are given in robot coordinates. Finally, in the robot command conversion

step, the robot operations are carried out to tie a knot in the rope.

In the next chapter we will cover the KPO paradigm which was previously in-

troduced by Morita [5]. Then in the following chapter we will present a detailed

description of our manipulation methods for executing plans.
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Chapter 3

Knot Planning from Observation Paradigm

As we have seen in the previous chapter, the KPO paradigm is an application of the

LFO paradigm to knot tying based on the knot theory. In a KPO system, knot tying

plans can be generated from observed data of a knot tying performance.

The paradigm determines three important elements required for the planning pro-

cess, which are:

• How to represent knot states

• What to choose as movement primitives

• How to identify the movement primitive that caused the knot state transition

These will be explained in the following sections.

3.1 Representation of Knot States

First we will show how knot states are represented.

In the knot theory, a knot is defined as a simple closed curve without width in a

3D space. In this paradigm, a knot is redefined as a simple open curve with two open

ends.

To obtain a knot state 3D knots need to be projected onto 2D planes. For a 2D

projection to be converted back to a 3D knot, it is required that the projections have

the following properties:

• All intersections on a 2D knot projection are point-intersections, i.e. the crossing

of part of the rope over/under another only occurs at a cross point on the rope,

not over a continuous section of the rope
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• The rope always crosses itself at an intersection

• There are no triple intersections in the rope; there are only simple intersections

of one part of the rope over another

• The open ends on the rope do not become cross points of an intersection

Knot states are given a topological representation in the KPO paradigm. Although

geometric representations give us an accurate picture of a knot, it is necessary to have

an abstract representation that does not depend on parametric information. The

reason can be shown through a simple example. The two knots illustrated in Figure

3.1 are essentially the same in terms how crossing occurs in the rope. That is, the

knots are different in shape, but the same in the way they knotted. Geometrically,

however, they are judged as different knots. This is inconvenient because it would

mislead the system to think a state transition should have occurred between the two

states.

Figure 3.1: Equivalent knots

To solve this problem, we use P-data, a topological representation of knot states.

P-data is generated from 2D knot projection in the following process:

1. Choose an open end as the starting point. We call this end the start terminal

and the other end the end terminal.

2. From the start terminal, trace the rope to the end terminal. Give an ID number

to each intersection you meet on the way. The first intersection is numbered 1.

(Each intersection will be numbered twice.)

3. Again, trace the rope from the start terminal to the end terminal. At each

intersection, determine the intersection’s vertical position and sign.
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4. For each intersection, calculate its cross attribute.

The vertical position is whether the intersection is an upper intersection (where the

rope crosses over itself) or a lower one (where the rope crosses under itself). The sign

of an intersection is determined by the sign of the following formula.

(−→l upper ×−→l lower) · −→ez

where −→l upper is the direction vector of the rope of the upper intersection at that

intersection, and −→l lower is that of the lower intersection, and −→ez is a unit vector

parallel to the normal line of the projection plane. From the vertical position and sign,

the cross attribute of an intersection is determined in the following way: 1:upper/−,

2:lower/−, 3:upper/+, 4:lower/+.

An example of a 2D knot projection and its corresponding P-data is given in Figure

3.2 and 3.3. The normal line of the projection plane is upward from this paper. The

i-th column holds the data for the i-th intersection on the projected knot. The first row

shows the ID number of the intersection, in other words, i. The second row represents

the other ID number assigned to the i-th intersection, and the third row the cross

attribute of the intersection.

＋ ｰ＋ ｰ
1   2   3   4   5   64   5   6   1   2   3signverticalsignverticalvalue

ー upper → 1ー lower → 2＋ upper → 3＋ lower → 43   1   2   4   2   1

11
22

3344
55

66

＋U＋U －U－U －L ＋L －L －U－L－L ＋L＋L －L－L －U－U

Figure 3.2: 2D knot projection
Figure 3.3: P-data of Projection

3.2 Definition of Movement Primitives

Next we will give definitions of movement primitives, which are basic movements

to make a transition from a knot state to another.

3.2.1 The Four Movement Primitives

In determining movement primitives, we must first define properties movement

primitives should fulfill. To do this, Reidemeister first defined equivalent knots as two

knots that can be deformed to the other without cutting it. Note that stretching and
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shortening of the knot are allowed. Then he proved that an equivalent knot can be

obtained by either stretching, shortening the knot or finitely repeating three types of

moves on the knot. Note that Reidemeister’s proof was based on the definition that a

knot is a simple closed curve. Whereas stretching and shortening do not change the

knot state, the three moves, referred to as Reidemeister moves, result in a transition

of knot state.

Due to this proof, we define movement primitives as moves that change the knot

state. Movement primitives fulfill the following properties:

• Only one segment of the rope is moved in each primitive

• The transition by a movement primitive is direct; they move from one knot state

to another without moving to an intermediate knot state in between

Reidemeister Moves

Naturally, from the above definition Reidemeister moves are movement primitives

of knot tying tasks. Below, we explain each type of move.

Reidemeister move I adds or removes an intersection to the knot by creating or

destroying a simple loop. Reidemeister move II adds or removes two intersections

by crossing a segment of rope over another segment. Reidemeister move III moves a

segment of rope across an intersection. The number of intersections does not change

in this move. Figure 3.4 illustrates the three moves.

Reidemeister move I Reidemeister move II Reidemeister move III
Figure 3.4: The three Reidemeister moves

Cross Move

Due to the fact that the three Reidemeister moves were defined as a knot being

a simple closed curve, we add to the primitives a Cross move for dealing with simple

open curves. The Cross move is adds or removes an intersection on a rope by crossing

an open end over/under a segment of rope. The illustration of a Cross move is given

in Figure 3.5.
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Figure 3.5: The Cross move

3.2.2 Sufficiency of the Primitives

Transition of knot states can be classified into two categories:

1. A crossing of an open end over/under a segment of rope

2. A crossing of a segment of rope other segments

The first category of transition can be realized by the Cross move. The second category

can be achieved by repetition of Reidemeister moves. This can be easily shown by

extending the Reidemeister’s proof on knot-equivalence to simple open curves.

It can actually shown that the four primitives defined in this paper are sufficient

in tying typical knots such as overhand knot, bowline knot, harness hitch, bow tie,

single loop bow, two-half knot, and taut-line hitch.

3.3 Movement Primitive Identification

Lastly, we show how to identify the movement primitives that caused the transition

from a P-data to the next, in other words, how to generate a knot tying plan.

3.3.1 Preliminaries

First, we define some functions used in this step.

Definition 1: Given a P-data P, n(P) returns the number of columns in P, which

is twice the number of intersections.

Definition 2: Given a P-data P, σ(i | P) returns the other ID number assigned to

the P -th intersection. When it is clear what P is, we simply write σ(i). Note that if

σ(i | P)=j, σ(j | P)=i.

Definition 3: Given a P-data P, attr(i | P) returns the cross attribute of the i -th

intersection. When it is clear what P is, we simply write attr(i).

11



For example, by applying these function to the P-data in Figure 3.3 we obtain

n(P)=6, σ(2 | P)=5, attr(3 | P)=2.

Now we go on to specifying the primitives. In the following explanation, Pt denotes

the P-data obtained from a knot projection at time t. Primitives are specified on the

following assumptions:

• Intersections of a knot increases by a transition, i.e. n(Pt−1) ≤ n(Pt)

• The start point of the knot before and after the transition stays the same

The basic idea of specifying the primitives is by comparing the t-1 -th P-data Pt−1

and t-th P-data Pt. We prepare a function for each primitive type. Assuming that the

transition to Pt is achieved by movement primitive mp, the function for mp transforms

Pt to generate the P-data before the transition. If mp(Pt) = Pt−1, we can say the

transition which occurred between Pt−1 and Pt was mp. The transformation functions

are described below.

3.3.2 Reidermeister Move I

The transition function for Reidemeister move I, RI(Pt|i), is based on two changes

caused by this move. Assuming that Reidemeister move I is applied to the i -th

segment(1 ≤ i ≤ n(Pt−1) + 1) of Pt−1 and results in Pt, the changes are:

• n(Pt)=n(Pt−1)+2

• σ(i|Pt)=i+1

The first change means that one intersection is added to the knot by Reidemeister

move I. The second one shows that, the new intersection will be given two continuous

numbers. Figure 3.6 gives an example of this change of P-data.

1   2   3   4   5   64   5   6   1   2   33   1   2   4   2   1
1   2   3   4   5   6   7   86   7   4   3   8   1   2   53   1   1   2   2   4   2   1

Figure 3.6: Transition caused by Reidemeister move I
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From these changes, RI(Pt|i) can be defined as a function that transforms Pt by

removing the i -th and (i+1)-th columns, and subtracting 2 from the ID numbersw of

(i+2)-th to n(Pt)-th intersections.

3.3.3 Reidermeister Move II

The transition function for Reidemeister move II, RII(Pt|i) is defined similarly.

Assume that Reidemeister move II is applied to the i -th and j -th segments(1 ≤ i <

j ≤ n(Pt−1) + 1) of Pt−1 and results in Pt, then the changes caused by the move are:

• n(Pt) = n(Pt−1)+4

• (σ(i|Pt)=j+2 ∩ σ(i+1 | Pt)=j+3) ∪
(σ(i|Pt)=j+3 ∩ σ(i+1 | Pt)=j+2)

• |attr(i—Pt)-attr(i+1—Pt)|=2

The first change means that two intersections are added, the second that the added

intersections are adjacent to one another, and the third that the vertical positions

(upper/lower) of the new intersections should be the same although the signs should

be different. An example is shown in Figure 3.7.

1   2   3   4   5   64   5   6   1   2   33   1   2   4   2   1
1   2   3   4   5   6   7   8   9  106   7   8   9 10   1   2   3   4   53   1   3   1   2   4   2   4   2   1

Figure 3.7: Transition caused by Reidemeister move II

From these changes, RII(Pt|i) is defined as a function that removes from Pt the

i -th, (i+1)-th, (j+2)-th, and (j+3)-th columns, and subtracts 2 from the ID num-

bers of (i+2)-th to (j+1)-th intersections and 4 from those of the (j+4)-th to Pt-th

intersections.

3.3.4 Reidermeister Move III

The transition function for Reidemeister move III, RIII(P |i) is defined as follows.

Assume that Reidemeister move III is applied to the i -th, j -th and k -th segments(2 ≤

13



i, j, k ≤ n(Pt−1) − 1) of Pt−1 and results in Pt. The i -th segment is surrounded by

two upper intersections, the j -th by one upper and one lower intersection, and k -th by

two lower intersections. The three segments can be in any order, and compose three

intersections. Each intersectios has two numbers of the set { i -1, i, j -1, j, k -1, k }.
The assignment of the numbers has 8 variations, which are (See Figure 3.8):

• Type A. σ(i − 1) = j − 1, σ(i) = k − 1, σ(j ) = k

• Type B. σ(i − 1) = j − 1, σ(i) = k , σ(j ) = k − 1

• Type C. σ(i − 1) = j , σ(i) = k − 1, σ(j − 1) = k

• Type D. σ(i − 1) = j , σ(i) = k , σ(j − 1) = k − 1

• Type E. σ(i − 1) = k − 1, σ(i) = j − 1, σ(j ) = k

• Type F. σ(i − 1) = k , σ(i) = j − 1, σ(j ) = k − 1

• Type G. σ(i − 1) = k − 1, σ(i) = j , σ(j − 1) = k

• Type H. σ(i − 1) = k , σ(i) = j , σ(j − 1) = k − 1

Considering geometric restrictions, the change caused by Reidemeister move III is

one of the following:

• Type A ↔ Type H

• Type B ↔ Type G

• Type C ↔ Type F

• Type D ↔ Type E

Note that unlike the other moves, the number of intersections do not change, i.e.

n(Pt) = n(Pt−1 ). An example is shown in Figure 3.9.

Based on this change, RIII(P |i) is defined as a function that removes from P

the (i -1)-th, i -th, (j -1)-th, j -th, (k -1)-th, k -th intersections. Unlike the other moves,

comparison is made between RIII(Pt|i) and RIII(Pt−1|i).

3.3.5 Cross Move

The transition functions for Cross move, Cs(Pt|i) and Cs(Pt|i) are defined as fol-

lows. The former is a function for Cross move applied to the start terminal, the latter
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Figure 3.8: Types of Reidemeister move III
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Figure 3.9: Transition caused by Reidemeister move III
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the end terminal. Assume that the terminal is crossed over the j -th segment of Pt−1

and results in Pt.

If the start terminal is crossed over, the changes caused by the move are:

• n(Pt) = n(Pt−1)+2

• i + 1 = σ(1 | Pt)

The first change means that one intersection is added, and the second that the

anew intersection is i+1. An example is shown in Figure 3.10.

From these changes, Cs(Pt|i) is defined as a function that removes the 1st and

(i+1)-th column and subtracts 1 from the ID numbers of the i -th to n(Pt) intersec-

tions.

If the end terminal is crossed over, the changes caused are:

• n(Pt) = n(Pt−1)+2

• i = σ(n(Pt) | Pt)

The first change means that one intersection is added, and the second that the

anew intersection is i. An example is shown in Figure 3.11.

From these changes, Ce(Pt|i) is defined as a function that removes the last and

i -th column and subtracts 1 from the ID numbers of the (i+1)-th to (n(Pt)-1)-th

intersections.
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Figure 3.10: Transition caused by Cross move applied to start terminal

1   2   3   4   5   64   5   6   1   2   33   1   2   4   2   1
1   2   3   4   5   6   7   85   6   8   7   1   2   4   33   1   4   2   4   2   1   3

Figure 3.11: Transition caused by Cross move applied to end terminal
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Chapter 4

Manipulation Methods

Our main focus was to devise a method to execute knot tying plans generated in the

planning phase. Before explaining each step in detail, we discuss our basic strategies.

Firstly, we chose only to manipulate the Cross move, and following this rule we

allowed in the planning phase only knot tying performances that could be parsed into

a sequence of Cross moves. The main reason for this is to simplify manipulation. Our

choice of the Cross move is due to the fact that it is the most essential move in knot

tying. That is, it is fundamentally possible to tie all types of knots by only this move.

Overhand knots, bow ties, bowline knots and figure eight knots are examples of knots

actually tied by a sequence of Cross move operations. To achieve a Cross move we

always moved the terminal segment and crossed it over the other segment, regardless

of requirement to cross the rope under itself. We took such a stance because it would

simplify manipulation to a one hand movement, which is much easier compared to use

of both hands which would arise the problem of collision avoidance; another topic to

be handled later on.

Secondly, we decided to use geometric information of knots in order to determinine

robot operations. Given a plan, in this case a sequence of Cross moves, we gain two

pieces of information:

• which terminal to move

• which segment to cross

These are insufficient in terms of executing them. That is, they only determine abstract

operations but do not give precise information needed for robot operations such as

position and direction. So we decided to obtain geometric data of knots, and therefore

introduced a geometric knot representation called K-data.
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Thirdly, we defined two levels of parameters for expressing robot operation infor-

mation: object-level parameters and robot-level parameters. Object-level parameters

give reference to knot positions and directions according to the ropes’s geometric struc-

ture. We defined such a parameter because parameters depending on metric properties

of a knot are apt to change and cannot be determined at programming time and de-

pendence on metric properties would force a fixtures on knots, which would be too

restrictive. On the other hand, robot-level parameters refer to knot positions and di-

rections using robot coordinates, in other words metric properties of a knot. This is

because for the actual robot operations, metric information is essential.

Fourthly, and most importantly, we decided to retrieve geometric data from the

knot images obtained in the planning phase. As we have mentioned in our second

strategy, we made use of geometric information for determining robot operations; the

problem was from where to gain such data. To this problem Morita et al devised a

method to reconstruct a knot from P-data and obtain necessary information from it[].

While this gives a more flexible choice of the geometric representation to be made,

it arises a new problem of choosing the most suitable representation for knot tying.

Therefore, we obtained knots’ geometric data from the images acquired in the planning

phase, regarding them as examples demonstrating the most suitable shapes the knot

should form at each step.

In this chapter we will first introduce a geometric representation for knots and

robot operations. Then we will explain each manipulation step in detail. The first

three steps are dedicated to acquiring robot operation paramaters, and in the last step

a sequence of robot operations will be executed.

4.1 Preliminaries

4.1.1 Geometric Representation of Knot States

Here we give the definition of K-data and also show how K-data corresponds with

P-data.

K-data

As in the KPO paradigm, we define a knot as a simple open curve with two open

ends in a 3D space and from it we may obtain a 2D projection.

K-data is a geometric representation of knot states, which is made from 2D knot

projections. K-data holds essentially two pieces of information, which are a vector of
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specific points on the rope and a vector of rope segments.

The vector of points in K-data consists of cross points of intersections and the

two open ends of the rope. The points are numbered, starting from one end of the

rope (the start terminal), then tracing along the rope meeting each cross point, and

finally ending at the other end (the end terminal). Note that cross points will be given

numbers twice. Each point holds information to tell whether it is an upper cross point

(a point where the rope crosses over itself) or a lower cross point (a point where the

rope crosses under itself) or an open end.

The segments are sections of a rope starting and ending at either a cross point or

an open end. The vector of segments are ordered similarly to the points; first with

the segment starting from the start terminal, followed by the segment adjacent to it,

then the next segment adjacent to the previous one, till it reached the segment ending

at the end terminal. Each segment has as its property the starting and ending points

and also a chain of directions. This chain describes the shape of the rope segment.

We discretize the segment of rope as a chain of points for visual feedback purposes.

For each point we obtain its direction vector, and hold this information as a direction

chain.

Figure 4.1 is an example of a knot with its points and segments numbered as in

the K-data.

Figure 4.1: Numbering of segments and points in a knot

K-data and P-data

While K-data represents geometric information, P-data represents topologic. How-

ever, conversion from K-data to P-data is simply achieved by applying the P-data gen-

eration algorithm introduced in 3.1. By excluding the two end points in the K-data,
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intersections of P-data are obtained. The two corresponding intersections and cross

attributes are acquired easily in a similar way.

4.1.2 Robot Operations

In this section we present the robot operation functions we provided for knot tying.

The function arguments are given in robot coordinates. We assume that rope will be

placed on a 2D plane such as a table, and that the Z-axis is in the direction upward

from the plane. Operations are defined as follows:

• graspRope(x, y, z, θ)

Grasps the rope at coordinate (x, y, z ). The robot hand will be rotated so that

it will be parallel to the direction of the rope θ.

• liftRope(z )

Move the rope by z in the direction of the z axis

• moveRope(x, y, z, θ)

Move the rope from the present position to point (x, y, z ). The rope should be

in the direction of θ at that point.

• releaseRope()

Release the rope at the present position.

4.2 Object-level Parameter Acquisition

For each knot tying move, we obtained object-level parameters from the Cross

move acquired from the plan and the K-data of the two knots between which the

Cross move occurred. In both K-data we find the two segments (the terminal segment

and the segment which it crosses) invloved in the Cross move. By comparing those

segments in the pre-Cross-move K-data and pro-Cross-move K-data we exract obhect-

level parameters. The Cross move parameters are defined as follows:

• terminal

Which terminal to move (start terminal / end terminal)

• segment

Segment number to cross

21



• position

Position in the segment to cross (0 < position < 1, in which 0 is the starting

point and 1 the ending point of the segment)

• direction

Terminal’s vertical direction relative to the segment (over / under)

• argument

Argument of the terminal’s direction vector relative to the segment

• length

Relative length of the new segment

(Let the total rope length be 1, then 0 < length < 1)

An example of parameters for the Cross move is shown in Figure 4.2 will be

terminal=end terminal, segment=1, position=0.25, direction=under, argument=90,

length=0.1.

Figure 4.2: Example of object-level parameters acquired from K-data

4.3 Present Knot State Acquisition

In the present state acquisition step, we acquire geometric information of the knot

that will be manipulated. First a 3D image of the knot is captured by stereo vision.

Next the image will be projected onto a 2D plane and then converted to K-data. This

will all be done in the same manner as in the observation, projection, and K-data

conversion steps in the planning phase.

4.4 Robot-level Parameter Acquisition

In the robot-level parameter acquisition step, the aim is to obtain a path which the

rope should move along. The acquired object-level parameters are mapped onto the
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present knot K-data to obtain robot-level parameters to determine the path. More

specifically, the parameters are the positions and directions of the grasp, cross and

destination points. Note that we need to specify only one set of these three points per

movement primitive.

The position and direction of the grasp point are acquired as below.

1. Map the grasp point onto present knot K-data

Acquire the grasppoint-th point (counting from the terminal) on the terminal

segment, where

grasppoint = min{(length × (total rope length)), (length of terminal segment)/2, segmentoffset}

Segmentoffset is the minimum distance the point should be from the terminal,

if possible. We set this value to 50. The grasppoint is chosen from the threee

candidates so that it would not be too near or too far from the end of the rope

in order to make a firm grip on the rope.

2. Determine the grasp point on robot level

Find in the 3D knot image the point that corresponds to the grasp point in

K-data, and acquire its 3D robot coordinate

3. Determine the grasp direction from the K-data

On the direction chain of the terminal segment, obtain the direction at the grasp

point

The position and direction of the cross point are acquired as follows:

1. Map the cross point onto present knot K-data

Acquire the ( position × (segment-th segment length) ) point on the segment-th

segment

2. Determine the cross point on robot level

Find in the 3D knot image the point that corresponds to the cross point in

K-data, and acquire its 3D robot coordinate

3. Determine the rope direction at the cross point from K-data

On the direction chain of the segment-th segment, obtain the direction at the

cross point. Calculate the cross rope direction by adding to the direction argu-

ment.

23



The destination point is the final point that the grasp point should move to after

making a crossing at the cross point. The point lies in the direction of the cross point

direction. Therefore the direction of the destination point is the same as that of the

cross point. The position is determined in the following way

1. Determine the distance of the destination point from the cross point by calcu-

lating

distance = min{(length − grasppoint), distanceoffset}

2. Determine 3D robot coordinates by calculating

destination x = cross x + distance · cos (destination dir)

destination y = cross y + distance · sin (destination dir)

destination z = cross z

where destination x is the 3D robot X-coordinate and destination dir the direc-

tion of the destination point and likewise.

Distanceoffset is the minimum distance the rope should be moved past the cross

point. It is given in the number of segment points. We set this value to 30.

Determining the path from the grasp point to the cross point is also required in rope

manipulation because the results may change greatly depending on the path taken.

Figure 4.3 is an example of two paths both with the same grasp and cross points, but

different paths.

Figure 4.3: Different paths for movement between to points

We considered that the movement path would be a simple curve with the grasp

and cross points as the two ends. For obtaining this path, we used cubic Bezier curve.
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Let the two dimensional coordinate (x and y coordinates) of the grasp point be G and

its rope direction be angG , the two dimensional coordinate of the cross point be C and

its rope direction be angC , and the distance between the grasp and cross point be dis.

Then the four control points Pi(0 ≤ i ≤ 3) are determined as follows:

P0 = G

P1 = G + 0.5 · dis · (cos (angG), sin (angG))

P2 = C − 0.5 · dis · (cos (angC ), sin (angC ))

P3 = C

The first and fourth control points are the grasp and cross points so that they will

be the two ends of the Bezier curve. The second control point is located on a half

line starting from the grasp point and extending in the rope direction of the grasp

point. The distance between the first and second control point is given as half the

distance between the grasp and cross points. We determined this distance regarding it

reasonable enough for the rope not to take a too long way around to the cross point.

The third control point is determined in a similar way to the second, only that we use

a half line starting from the cross point and extending in the opposite of rope direction

of that point.

A point P (t) on the Bezier curve (t is a parameter between 0 to 1) can be calculated

by the formula below:

P (t) = P0B
3
0(t) + P1B

3
1(t) + P2B

3
2(t) + P3B

3
3(t)

where B3
0(t) = (1− t)3, B3

1(t) = 3t(1− t)2,

B3
2(t) = 3t2(1− t), B3

3(t) = t3

From the Bezier curve, we choose two middle points (this time we chose t=0.3 and

t=0.7) that the rope should pass through when moving from the starting to the cross

point. Besides these middle points, divided the Bezier curve into many small sections,

and at the point where a new section begins, we checked if the direction of the rope

changes from the previous section, and if it did, we made the rope also pass through

those points. The direction of the rope at those points is calculated from the gradient

of the tangent line.

4.5 Robot Command Conversion

Last of all, a Cross move is translated into robot level operations and executed in

the execution step.
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Using the given robot operations, the Cross move will be executed in the following

sequence:

1. graspRope(grasppoint x, grasppoint y, grasppoint z, grasppoint θ)

2. liftRope(lift z)

3. For all middlepoints the rope must pass through, moveRope(middlepoint1 x,

middlepoint1 y, middlepoint1 z, middlepoint1 θ)

4. moveRope(crosspoint x, crosspoint y, crosspoint z, crosspoint θ)

5. moveRope(destinationpoint x, destinationpoint y, destinationpoint z, destina-

tionpoint θ)

6. releaseRope()

The parameters grasppoint x, grasppoint y, grasppoint z, grasppoint θ stand for

the x, y, z coordinates and rope direction of the grasp point. The coordinates and

rope direction for the cross point, destination point and the middle points on the path

are expressed similarly. The parameter lift z denotes how much to lift the rope. We

set this value to 10cm.
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Chapter 5

Experimental Results

We will show experiments conducted in this research. First we will introduce the

platform on which we built our system. Second, we will describe how a knot image is

acquired. Last we will give some results of knot tying tasks.

5.1 Platform

We built our system on a robot illustrated in Figure 5.1. The robot is designed

to imitate the upper part of the human body, especially the eyes, arms, and hands.

We chose a robot that had functions similar to human beings because for one thing it

was one our interests to make the robot accomplish intelligent tasks in a human-like

manner, and for another we considered such robots to have the most general-purpose

design to accomplish a wide variety of tasks.

Figure 5.1: Platform of knot tying system
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We will take a look at the three main parts of the robot.

5.1.1 Vision System

The vision system consists of a 9-eye stereo vision system for 3D observation. These

are set onto the head of the robot. The head can be panned and tilted so that the

robot may adjust its viewing direction.

The 9-eye stereo vision system is made by Komatsu and uses the multi-baseline

method to recognize its surrounding environment in realtime. The system has the

following features:

• Robust stereo matching

By stereo matching, the system calculates 8 stereo pairs(pairs of the central

camera and one of the 8 surrounding cameras). For each pixel, the most reliable

pair is chosen as the distance data.

• Realtime processing using hardware board

A 280 × 200 distance image is generated in realtime by doing stereo calculation

on the hardware(15fps to 30fps).

• Easy camera setting

The camera can easily be set up according to the users’ demands. Here we set

the focus distance longer and adjusted the 8 surrounding cameras to face inwards

in order to fastly generate high resolution distance images.

5.1.2 Hardware System

The robot has a head with the vision system mentioned above, and left and right

arms, each with a hand at the end.

The arms are PA10 robot arms made by Mitsubishi Heavy Industries. They have

7 degrees of freedom(DOFs). This is enough for the robot hand to move around in a

wide area of three dimesional space.

The robot hands imitate those of a human. Both hands have a thumb, and fingers

that face the thumb: four for the right hand and three for the left. The fingers are fewer

than the human hand, considering the size and shape of the hand. The fingers have 3

joints, thus 3 DOFs. Sensors are attached to the hand: contact sensors on the palm

and each finger cushion, force and torque sensors on all fingertips. For the movement

of joints we use the finger joint actuator made by Yaskawa Electric Corporation, and

for the fingertip sensors the BL NANO Sensor by BL AUTOTEC.
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The robot body is built on wheels which can move in omnidirection. This enables

the robot to dynamically change its viewing direction or working space, which results

in an expanded view and operation scope.

5.1.3 Software system

Robot software management is done by the Common Object Request Broker Ar-

chitecture (CORBA). CORBA is an open distributed object computing infrastructure.

Merging softwares developed on different machines on a network is made easy by using

CORBA as a bus. Adding external equipment, for example data gloves, also becomes

simple. We use the TAO ORB implementation of CORBA.

5.2 Image Processing

Here we explain how we acquire a 2D knot projection by using the vision system

and how we extract K-data from the projection.

We fixed the position of the robot body, the pan and tilt of the head, and the posi-

tion od the table on which the rope was placed to fix the vision system’s photographing

region.

5.2.1 2D Knot Projection Acquisition

First, 3D images are captured through a vision system, and RGB and disparity

data is acquired. From the disparity data we calculate the depth at each point in the

captured image. The depth is given in camera coordinates, in which the coordinate

center is fixed to the center of the 9-eye vision system. We then convert depth in

camera coordinates to that in robot coordinates. As we always place the knot on a

2D plane, a 2D knot projection is simply the same as 3D image data without the

Z-coordinates.

5.2.2 K-data Conversion

From the 2D knot projection, we extract K-data. The conversion process is as

follows:

1. Background substraction

Substract background data from the image to extract only the knot

2. Thinning

Change the knot into a thin line by using Hilditch filter
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3. Point Extraction

Find cross points and open ends in the knot by counting the neighboring points

for each knot point. Add them to the K-data point vector.

4. Segment Generation

For all the ponits found in the previous step, find any segment that connects it

to another point. If there is any, add them to the K-data segment vector. Note

that the segments will be counted twice.

5. Redundant Segment Elimination

Remove from the segment vector segments that are too short, regarding them as

recoginition error of the vision system.

6. Double Count Elimination

Remove one of the double-counted segments to leave only segment data for each

segment.

7. Point Merging

Merge points on the knot that are too close to one another, regarding them as

recognization error of the vision system. Make changes in the segment vector

accordingly.

8. Reordering

Reorder the segments and points so that they are in an order that can be traced

from one end of the knot to the other.

9. Vertical Position Extraction

By using disparity information obtained from the vision system, determine ver-

tical positions of the intersections at each point.

5.3 Results of Tying a Simple Knot

We conducted an experiment to tie a simple knot in a rope. A simple knot is

illustrated in step4 of Figure 5.2. It is the most basic type of knot and can be made

by executing only Cross moves.

The knot images of captured from the human performance are shown in Figure

5.2 (a). From these images, K-data is acquired. Figure 5.2 (b) illustrates how the

knot states are recognized after K-data conversion. The states we named state1,

state2, state3, and state4. The sequence of movement primitives and their object-level

parameters are given in Figure 5.2 (c).
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Figure 5.2: Knotting steps of a simple knot
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We manipulated the Cross move from state1 to state2 and state2 to state3 seper-

ately as the first step towards tying a simple knot. Figure 5.3 and 5.4 each show the

results of manipulation together with an illustration of the calculated movement path.

The coordinates in the figure of the path are X- and Y-robot coordinates. Looking

at the movement paths generated for each Cross move, it appears that they were ap-

propriate for producing the target knot state. We can also see that manipulation was

conducted following the given path.

Figure 5.3: Manipulation of Cross move from state1 to state2

Figure 5.4: Manipulation of Cross move from state2 to state3

32



5.4 Discussion

While manipulation was successfully conducted as in the above examples, there

were some cases in which manipulation failed. An example of such cases is given in

Figure 5.5. This is a manipulation of a Cross moves from state1 to state2, It is given

a rope state different from that of to map the object-level parameters onto.

Figure 5.5: Example of manipulation failure

Looking at the paths, they seem to be as sufficient as those in the successful

examples for the rope to move on. However, the actual result of knot state after the

manipulation is quite different from what is expected. This we consider was due to

the bodily constraints of the robot. The problem seemed to be caused especially by

the rotation of the hand. In the successful examples, the right hand moved within

its limits in which collision with its own arm would not occur. In contrast, the robot

hand had to rotate in the direction opposite to which it was rotating in so that it

could avoid hand-arm collision. This change in rotatory direction is thought to have

resulted in an unexpected knot state after the manipulation.

The problem of the robot’s movement limitations became even more obvious when

we executed the Cross moves sequentially to perform a complete knot tying task. The

robot hand and arm had to move and rotate in a wider range, increasing possibility

of collisions.

To solve this problem of hand-arm collision, the following considerations would be
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possible.

First, and most important, we could improve the robot’s solution to inverse kine-

matics. Presently, the robot pose is determined by solving inverse kinematics. How-

ever, the multiple solutions may exist for a pose, and the choice of which solution to

use is done in the manner of redundant manipulation. Therefore, we could optimize

the solution selection so that the solution is chosen which hand-arm collision is least

probable to occur.

Second, we could optimize the work space for knot tying. Though the current

work space is adequate for pick and place or insertion movements, where moves are

mostly linear, it is seems too small for rotation movements. Improvement can be

made by reconsidering the position, in regard to the robot arm and hand, of the 2D

plane on which the rope is placed, and by permitting robot body movement during

the manipulation.

Third, we could design a method to make the robot regrasp the rope when collision

may occur. When there is danger of a hand-arm collision, the robot may put down

the rope and grasp it again in a pose which will avoid collision. This will arise a need

to devise a collision recognition module which models the hand and arm shape and

calculates their position relative to each other. Additional rope recognition will also

need to be conducted each time the rope is released and picked up again.

Fourth, we could implement move of rope using the robot fingers. The movement

of rope was realized by the arm move, and the hand was used only to hold the rope.

Thus we may introduce a robot operation in which the rope pose can be change by

twinsting the rope using robot fingers. Since the movement will be only within the

hand of the robot, hand-arm collision will be avoided.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

We proposed a manipulation method for a knot tying system to carry out knot tying

plans generated on the basis of the KPO paradigm. We concentrated on manipulating

the Cross move because it was the most simple and fundamental movement primitive.

First we presented a method to automatically determine robot operations from task

plans. We made extensive use of geometric data that can be obtained from observation

in the planning phase in order to determine the details of manipulation movements.

We obtained from grasping, crossing and destination points, which were acquired from

observation, a movement path using Bezier curves.

Next we implemented the observation and manipulation modules. In the obser-

vation module we successfully acquired task plans and parameters for manipulation

using several image processing techniques. We achieved visual feedback by connecting

the observation and manipulation modules.

Then we conducted experiments to evaluate our method, taking simple knot tying

as an example. The experimental results indicated that the movement paths generated

are on the whole appropriate for making a transition to the next knot state in a knot

tying task. Thus we may conclude that our method effectively determines manipula-

tion procedures on a thoeretical level, where the robot’s physical limitations can be

disregarded.

However, our findings also imply that the robot’s physical limitations are unignor-

able, in fact noticeable problems in manipulating deformable objects, where the course

taken by the robot hand grasping the object brings about great change in the resulting

object state. Thus we can also conclude that solving the robot’s physical limitation

problems is essential to deformable object manipulation.
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6.2 Future Works

In the next stage of the research, we plan to work on the following tasks:

• Hand-arm collision avoidance

We will devise a new method to overcome the physical limitations that we come

face to face in knotting rope. We will work on handling hand-arm collision on

the basis of considerations we made in the discussion section.

• Dual hand manipulation

When we take into account vertical positions (whether the rope is crossing over

itself or under) of the rope at an intersection, we need to make use both hands:

with one hand lift the rope, and with the other pass the rope under it. In

implementing dual hand manipulation, we will also have to tackle the problem

of hand-hand collision.

• Implementation of the other movement primitives

In this research we limited manipulation to the Cross move. To allow a wider

variety in moves, implementation of other primitives is necessary. Implementa-

tion is thought to be possible by taking an approach to similar to that of the

Cross move.

• Knotting in the air

Our knot was placed on a 2D plane for ease of recognition. In the future, we

hope to let the robot hold up the knot and manipulate it in the air. To do

this expansion of knot recognition schemes would be necessary. For example,

consideration of how to determine the projection plane, how to maintain the

knot state while manipulation is conducted.

• Improvement of the vision system

We plan to make an improvement in the vision system. The precision of the

current system is inadequate in that it is error-prone especially in determining

the knot coordinates and the vertical position of the rope at an intersection. We

are considering of replacing the current system with a range sensor which has

higher accuracy.
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