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Abstract

In 3-dimensional image analysis, the methods through converting shape information of
the target object into the unified data format, which is completely independent of its
shape, are widely used. The Spherical-Attribute-Image (SAI) method is one of such
methods. In the SAT method, a 3-dimensional shape model is first approximated with
the mesh structure. Next geometrical attribute defined on each point of the mesh is
mapped onto a spherical surface. Shape information of any model is expressed on the
spherical image. The image, called SA7, is used for the analysis.

In the process of constructing the SAI, the deformable surface method is used. The
method deforms the spherical mesh into the model by converging some metric about
difference between the two. In the case that the model is quite different from a sphere,
for example the model including some depressions, however, the wrong convergence
happens and resultantly prevents to obtain an appropriate SAIL. Then, we propose a
method for leading to the correct convergence using the intermediate shape model
between the model and a sphere.

In the SAI method, the SAI obtained from some model may be quite different from the
image obtained from the partially lacking model, especially in the case lacking regions
are bigger. That has an adverse affect on the analysis. Then, we propose a method for
reducing the affect by appropriately weighting the difference of the geometrical
attribute between two SAls.

In actuality, we measured skulls of fowls with a laser scanner and generated precise
3-dimensional shape models of their skulls. Using these models we generated and
analyzed their SAls, and estimated phylogenetic relationships between related breeds

of the fowls for evaluating validity of our proposed method.
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Chapter 1 Introduction

About the shape information of a 3-dimensional shape model which is measured in any
way, 3-dimensional analysis is a method that we analyze its structure, let it lack
unnecessary information and extract characteristic information. About the main
purposes of doing 3-dimensional analysis, we list the industrial purpose, the medical
purpose, and so on. We give examples which are quality control by checking the shape
of products and the transformation of the examples, and we support for medical
practice by measuring and analyzing a part of the human body shape. 3-dimensional
analysis is essential for our life now.

The spherical attribute image (SAI) method is a method for analyzing 3-dimensional
shape by mapping a geometrical attributes of 3-dimensional mesh model onto a sphere
in order to represent the entire shape of a 3-dimensional object. The attributes are
defined on each point of the mesh and the SAIs are invariant against translation,
rotation and scaling of the object. With the SAI, by using the "simplex angles" as the
geometrical attributes mapping onto a sphere, it is possible to reconstruct the original
3-dimensional shape from the SAI only. Moreover, since the SAIs are invariant against
translation, rotation and scaling, it is possible to compare the difference of object
shapes by comparison of the SAls whether the original object had been translated and
rotated. By linear interpolation of the attributes on the different SAls, the synthetic
3-dimensional shape can be reconstructed. This synthetic shape is the neutral shape of
the multiple origins.

To generate SAls, some methods of mapping geometrical attributes defined at each
point of 3-dimensional models onto spheres have been proposed, including: Gauss
Mapping [1], Extended Gaussian Image (EGD [2] and Complex Extended Gaussian
Image (CEGD) [3], etc.

These method can only treat the objects which are convex and topologically equal to a
sphere. However, objects which are usually analyzed are not satisfied with this
condition. Because of this, we use SAI method in this thesis.

For generating SAls, we first need to approximate surface of 3-dimensional model by

.8 -



semi-regular mesh model. Semi-regular mesh is the mesh satisfied with the following
two features. One is homogeneity, that is, all nodes of the mesh have three neighbor
nodes. The other is local regularity, that is, all distances between any two neighbor
nodes are equal. In this thesis, we used the Deformable Surface Method. This method
deforms a spherical original mesh to fit to the object's surface by iterative calculation.
With regard to the deformable surface method, some related research was carried out:
Irregular meshes [4], finite element models [4], balloon models [5] and the applications
of medical imaging [6].

However, in practice, if the mesh converges onto a part of depression by the original
method [7], some unfavorable cases are happened. Because the mesh covers over the
depression and does not fit onto the area, the mesh is satisfied with local regularity
and bad approximation of surface of 3-dimensional model. Otherwise, because the
mesh approximates the depression of surface of 3-dimensional model by emphasizing
the parameter of the mesh approximation, the mesh has good approximation of surface
of 3-dimensional model and no local regularity.

The cause of the problem is to realize the two features by one step. It is difficult to
obtain the mesh with two features: good surface approximation of 3-dimensional shape
model and local regularity. We propose this new method, and examine this advantage.
And, for solving this problem, we obtain one feature by one step. After all, we realize
two feature by two steps. Concretely speaking, (1) we try to obtain good surface
approximation of 3-dimensional shape model, and generate a series of models whose
shapes are gradually changing from initial sphere mesh to the boundary of
3-dimensional shape model, and (2) we fit the sphere semi-regular mesh onto a series
of models in order considering the local regularity. Moreover, these models from initial
sphere mesh to the boundary of 3-dimensional shape model are named "guiding
intermediate shapes".

Moreover, using SAls generated from 3-dimensional shape models, we are able to do
3-dimensional analysis among any 3-dimensional models. Because the geometrical
attributes are mapped onto SAl's surface, we define the dissimilarity between two

SAls by comparing their geometrical attributes. And, we define the distance between
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two 3-dimensional shape models by taking advantage of the dissimilarity between two
SAls. Moreover, assuming the distances among several 3-dimensional shape models to
be similarities, and comparing similarities, we can classify several 3-dimensional
shape models by statistical classifier, e.g. hierarchical cluster analysis [13]. Finally, we
generate dendrogram.

The thesis is organized as follows: In Chapter 2, we describe the concept and algorithm
of the spherical attribute image (SAI) method that is one of the methods for mapping
geometrical attributes of 3-dimensional shape models onto spheres. In Chapter 3, we
first pick up the problem of the former method of generating SAls. Next, we propose
the new method and prove the advantage of our proposed method. In Chapter 4, we
define the distance between two 3-dimensional shape models by taking advantage of
two SAls. Moreover, we analyze several 3-dimensional shape models, and generate

dendrogram. Finally, in Chapter 5, we conclude this thesis and describe future works.
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Chapter 2 Spherical Attribute Image (SAI)

In this chapter, we describe the concept of the spherical attribute image (SAI) method,
one of the methods for mapping the geometrical attributes of the 3-dimensional mesh

surface onto a sphere; we then describe the algorithm for generating an SAI.

2.1 The concept of the Spherical Attribute Image (SAI) method

The spherical attribute image (SAI) method is a method for mapping a geometrical
attributes of 3-dimensional mesh model onto a sphere in order to represent the entire
shape of a 3-dimensional object. The attributes are defined on each point of the mesh
and the SAls are invariant against translation, rotation and scaling of the object.

With the SAI, by using the "simplex angles" as the geometrical attributes mapping
onto a sphere, it is possible to reconstruct the original 3-dimensional shape from the
SAT only.

Moreover, since the SAls are invariant against translation, rotation and scaling, it is
possible to compare the difference of object shapes by comparison of the SAIs whether
the original object had been rotated.

By linear interpolation of the attributes on the different SAls, the synthetic
3-dimensional shape can be reconstructed. This synthetic shape is the neutral shape of

the multiple origins.

2.1.1 Representation of a 2-dimensional curve

Before representation of a 3-dimensional shape, it is helpful to understand how one
can represent a 2-dimensional shape. Now, there is a sequence of 2-dimensional points
as the object representation. A natural way of representing this shape is the
approximation of their boundaries to the list of line segments as shown in Fig. 2.1.
Here, the line segments have equal lengths. The connected points of the lines are
called "nodes;" one can discretely map the geometrical attributes of all nodes onto a
circle while keeping the sequence of the nodes (See Fig. 2.2).

Since they are mapped onto a circle, these attributes are invariant against rotation
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and scaling. If the line segments have sufficient density, the representation can make
the same attribute-mapped circle as the object that had been rotated. Scaling is the

same.

2!

Figure 2. 1: Approximation of 2-dimensional shape by the line segments

Figure 2. 2: Mapping the Attribute onto a circle

In this representation, each geometrical attribute is the "turning angle" that is one of
the discrete curvatures. The turning angles are defined at each node of the line

segments, and they are exterior angles of the two lines connected to the node (See Fig.
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2.3).

Figure 2. 3: Definition of turning angle

Under this definition, a turning angle « 1is positive when the curve at the node is
convex; & 1s negative when the curve is concave, and « is zero when the curve is
flat.

In addition, since these attributes are defined by only the relative position of the node
and the two neighbor nodes, they are invariant against rotation. And since these
attributes are angles, they are invariant against scaling. These attributes are suitable
for this method of shape representation.

The algorithm of this method of comparing multiple 2-dimensional shapes is shown
below:

(1) Approximate a boundary of a 2-dimensional shape to a list of line segments

(2) Calculate the turning angles as geometrical attributes at all nodes

(3) Map the attributes onto a circle, keeping their sequence

(4) Turn the circles to minimize the difference of the attributes that are mapped at the

same place on the circle
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(5) Compare the attributes at each place on the circle

Then, the circle on which the turning angles are mapped can reconstruct the original
2-dimensional shape. If the positions of two neighbor nodes P, P, are known, a node
P has to exist on the perpendicular bisector of the line connected between the two
neighbors. And, from the definition of the turning angle, the absolute value of the
turning angle is proportional to the distance between P and the line connecting the
two neighbors. That is, the position of a node P can be determined by the turning
angle at the node P.

From these facts, if it has the same number of nodes, arbitrary line segments can
transform to the original shape by minimizing the "error" iteratively at all nodes
simultaneously; here, the error is the distance between a position of the node and the
"true" position of the node that is determined by the positions of the two neighbor
nodes and the turning angle.

In this method, generation of the attribute-mapped circle from the shape is called
"forward mapping," and reconstruction of the original shape from the

attribute-mapped circle is called "inverse mapping."

2.1.2 Expansion to 3-dimensional surfaces

The SAI method is the direct expansion to 3-dimension of the method of representing
2-dimensional shapes described in the previous section. The "SAI" is a sphere on whose
surface the geometrical attributes of the original 3-dimensional shapes are mapped.

In the SAI method, first, the "semi-regular" mesh model approximates the boundary of
3-dimensional shape. The semi-regular mesh is the mesh that is not self-interacting,
and all the vertices have exactly three neighbor vertices. The mesh is a direct
expansion of the line segments; all their nodes have exactly two neighbor nodes.

In this method, the mesh has to satisfy a constraint called "local regularity." This
constraint is the expansion to 3-dimension of the constraint that all line segments have
equal length. We will describe local regularity in a 3-dimension case in Section 2.2.3.

Next, the "simplex angle," one of the geometrical attributes, is calculated at each node
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of the mesh. The attribute is an expansion to 3-dimension of the turning angle. Like
the turning angle, the simplex angle can be calculated only by relative positions of the
node and its three neighbors; its sign shows whether the surface is convex or concave,
and its absolute value is proportional to the distance between the node and the triangle
that is made by the three neighbors. We will describe the simplex angle in Section
2.2.1.

In the SAI method, as in the case of 2-dimension, "forward mapping" is the generation
of the attribute-mapped sphere from the 3-dimensional shape, and "inverse mapping"
is the reconstruction of the original 3-dimensional shape from the attribute-mapped

sphere.

2.2 The SAI Algorithm

In this section, we describe the details of the SAI algorithm. We first describe the
definition of the simplex angle. Next, we describe how to make the geodesic dome be
the initial spherical mesh for deforming, and how to deform the mesh to the object's
surface. Then, we describe how to map the simplex angle calculated at each mesh node
on the sphere using the property of deformable surface that the mesh nodes before and

after deforming have one-to-one correspondences.

2.2.1 Simplex Angle

The simplex angle is a geometrical attribute that calculated at each node of a
semi-regular mesh by the relative positions of the node and its three neighbor nodes.
Let P be the position of a node, and B, P,, P, be the positions of three neighbor
nodes of P. And let O be the center of the circumscribed sphere of the tetrahedron
P P P, P,, C be the center of the circumcircle of the triangle P P, P,. And let Z
be a line connected O and C, and Il be a plane that includes Z and P (See Fig.
2.4). Moreover, consider a section plane of the circumscribed sphere of the tetrahedron
P P, P, P, by the plane II.

On the section plane, the circumcircle of the triangle P, P, P, becomes the subtense of

P . The exterior angle ¢ of P on the plane is the simplex angle at the mesh node P
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(See Fig. 2.5).
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Figure 2. 5: Definition of simplex angle
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From these definitions, the simplex angle ¢ can be written as Equation (2.1), where
r is the radius of the circumcircle of the triangle P P, P,, R is the radius of the

circumscribed sphere of the tetrahedron P P, P, P,, and N 1is the normal vector of

the triangle P P, P,.

% e
cos¢p =——sion\OC - N
¢ R & (2.1)

sing = %Sigﬂ(P—P; . N)

Note that the domain of ¢ is [— T, 72'].

Under this definition of the simplex angle, like the turning angle, because this
geometrical attribute is an angle that is calculated only by the relative positions of the
node and its neighbors, the simplex angle is invariant against rotation and scaling.
Moreover, when the simplex angle is positive, the node P is over the neighbor
triangle P, P, P,. When it is negative, P is under the triangle. And when it is zero,
P is on the triangle. That is, when the simplex angle is positive/ negative/ zero, the
surface at the node is convex/ concave/ flat. And, from the definition, the absolute value
of the simplex angle is proportional to the distance between the node P and the
neighbor triangle P, P, P;.

These features of the simplex angle show that this angle is a natural expansion to
3-dimension of the turning angle. The SAI is generated by calculating this simplex
angle at each node of the shape-approximated mesh and by mapping them onto the

sphere.

2.2.2 Geodesic Dome: generating the initial mesh

The initial mesh of the deformable surface has to be a sphere-circumscribed
semi-regular mesh. In this thesis, we first generated a sphere-circumscribed regular
mesh named the “geodesic dome,” and dualized it onto the semi-regular mesh.
Generally, geodesic domes are sphere-circumscribed polyhedrons made of triangles.
There are thousands of such polyhedrons, but for generating a more symmetrical mesh,

it is desirable that: (1) the ratio of the lengths of three sides of the triangles is nearly
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equal to 1, that is, each triangle of the polyhedron is nearly equal to a regular triangle
(2) the triangles are as similar in shape as possible. In the sphere-circumscribed
polyhedrons, it is well-known that there are three polyhedrons that completely fulfill
the conditions, that is, there are three regular solids as shown in Fig. 2.6 made of only
regular triangles: the regular tetrahedron, the regular octahedron, and the regular

dodecahedron.

Figure 2. 6: Regular tetrahedron, octahedron and dodecahedron

Since, in these three polyhedrons, the regular dodecahedron is most similar to the
sphere, dividing its facial triangles can generate a more sphere-similar geodesic dome.
First, bisecting three edges of each triangle and generating two new lines connecting
between the new point and the original points makes the polyhedron more
sphere-similar. Therefore each original triangle is divided into four triangles. Because
this new polyhedron is not circumscribed to the sphere, the newly generated points
(the medians of three edges) have to project from the center of the sphere onto the
surface of the sphere. As a result, this operation divides each triangle into one regular
triangle and three isosceles triangles. By repeating this operation at all vertices of the
polyhedron, a more sphere-similar geodesic dome can be generated. Figure 2.7 shows

the aforementioned process. In the figure, a red triangle is a regular triangle.

- 18 -



il

Figure 2. 7: The processes of dividing the geodesic dome

Tterating this operation can generate the geodesic dome with arbitrary density. After
iterating » -times, the generated geodesic dome has 20x 4" triangles. In this thesis,
we used the geodesic dome with n =15 shown in Fig. 2.8 as the initial mesh for

generating SAls. This geodesic dome is a polyhedron that contains 20480 triangles.

Figure 2. 8: Geodesic dome that contains 20480 triangles

Next, calculating the dual mesh of the geodesic dome (notice that it is a regular mesh)

can generate a semi-regular and sphere-similar mesh. In this case, the generated
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semi-regular mesh has 20480 vertices; all the mesh nodes have exactly three neighbor
nodes, and this mesh is made up of many hexagons and very few pentagons (See Fig.

2.9).

Figure 2. 9: Generated dual mesh and its macrograph

2.2.3 Deformable Surface

In this section, we describe how to deform the initial mesh that is the spherical
semi-regular mesh described in the previous section to the 3-dimensional objective
model. The term “model” means the object whose shape is approximated. This method
assumes that the barycenter of the initial mesh is equal to the barycenter of the
objective model and that the initial mesh is large enough to fully cover the model.
Now, consider the two imaginary “forces;” they can be calculated by the relative
positions between the model and each node of the mesh, and by the “smoothness” of the
mesh itself. And these forces independently move each node. By iteratively solving the
equation of motion about these forces, the mesh is deformed to the model.

In this method, it is important that the mesh’s geometrical structure is retained during
the deformation, that is, that the three neighbors of each node are fixed. Therefore, by
using a deformable surface, each node of the initial mesh and each node of the
deformed mesh have one-to-one correspondences. These correspondences make it
possible that the attributes defined at each node of the deformed mesh are mapped

onto the initial spherical mesh.
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Moreover, by keeping a constraint named “local regularity” during deformation, the
original shape can be reconstructed from the SAI that is an attribute-mapped sphere.
These features are products of the force defined by the smoothness of the mesh itself,
that is, the force is the “internal force” described in the following section.

Local regularity is the expansion to 3-dimension of the constraint that all line
segments have equal lengths. Specifically, at each node of the mesh, this constraint is
that the foot perpendicular from the node to the neighbor triangle is equal to the
barycenter of the neighbor triangle. That is, as shown in Fig. 2.10, let P be the node
of the mesh, and P, P,, P, be the three neighbor nodes. And consider the tetrahedron
P P, P, P,. Local regularity is the constraint that the foot O of perpendicular from

P totriangle P P, P, is equal to the barycenter G of triangle P, P, P,.

II:l
i

lI|'l

Figure 2. 10: Definition of local regularity

The algorithm of deformable surface can be written as follows:

(1) Calculate the “forces” at each node of the mesh

(2) Move each node by the equation of motion about the forces

(3) If the sum of distances between each node and the model is smaller than the

threshold, this algorithm is finished
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(4) Otherwise, go back to Step (1). Step (1) and (2) are repeated until the sum of

distances between each node and the model is smaller than the threshold.

The equation of motion at the ith node P, of the mesh can be written as Equation
(2.2).

d’*P dP, - =
dtZI +k7tl = cXI-?E)ct +ﬁFlnt (22)

Here, a is the force named “external force” that is defined by the distance between
the node and the model, and this force makes the node closer to the model and deforms
the shape of the mesh. Eﬂ; is the force named “internal force” that is defined by the
internal structure of the mesh itself, and this force makes the mesh keep the structure
of the semi-regular mesh, as well as local regularity.

a, [ are the coefficients for adjusting the influences of two forces. If & 1is too large,
the shape of the mesh becomes more similar to the model but the mesh cannot keep the
structure of a semi-regular mesh and local regularity. On the other hand, if £ is too
large, the shape of the mesh becomes the shape that completely retains the structure
and the constraint, that is, the shape becomes a sphere. There is a trade-off between
accuracy of shape approximation and regularity of the mesh. In the following section,

we concretely describe the external and internal forces.

(1) External Force (Data Force)
The external force is defined by the relative positions of the node and the model, and
this force deforms the mesh to the shape of the model. This force considers the model to

be a simple set of the 3-dimensional points, and does not use its connectivity.

Consider the ith node F, of the mesh. If the “closest” point M ,; of P in the

_—

model is given, the external force F,, at P, is defined as Equation (2.3), where ﬁ

1

is the normal vector of the neighbor triangle of the node P..

—(Pz‘Mci 'Ni i 2.3
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Here, the term “closest” means that the Euclidean distance between the two points is
closest. G(x) is 1 when the parameter x is 1 or less, and decrease rapidly when x
isover 1. D isthe threshold for judging the correspondence between the node and the
closest point in the model. If the distance between the two points is larger than D, the
correspondence may be incorrect; this value has to be adjusted according to the scale.
The suitable choice of the G(x) and D reduces the situation that the deforming falls

into local minima. In this thesis, we used the function shown in Equation (2.4) as

G(x).

1 (0<x<1)
G(x)= 1 (x>1) (2.4
x2

Also, projecting the external force on the direction of ﬁ, reduces the negative effect of
the external force on the local regularity.

Generally, if the model is the very dense model such as the one scanned with a
high-performance laser scanner, it is difficult to search the closest point M i) in the
model. Let N Dbe total number of the points in the model and let 7 be number of the
nodes of the mesh, the naive all-search algorithm costs O(N ) at each node in
computational time.

But, in the deformable surface method, only the mesh is changed and the model is
fixed during deformation. Therefore, by using k-d tree data structure for keeping the
positions of the points, the computational cost of searching can be reduced. Accordingly,
calculation of external force at each node costs O(log N ) in computational time, the

total computational cost at each stage of the iteration is O(n log N )

(2) Internal Force (Smoothness Force)

The internal force is defined by the relative positions between the node and the three
neighbor nodes; the force makes the mesh keep its local regularity. In Section 2.1, we
describe how the circle, the point on which is mapped turning angles, can reconstruct
the original shape.

We have described that the SAI method is the expansion to 3-dimension of this method,
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and that local regularity is the expansion of the constraint that all line segments have
equal lengths. In the case of 2-dimension, it is because the node has to be bound on a
specific line that the constraint is required.

In an SAI let P be a node of the mesh, let P, P,, P, be the three neighbors of P,
and Q be the foot of perpendicular from P to the triangle F, P, P,. The simplex
angle mapped on P can determine the distance between P and the triangle
P, P, P,. That is, if the simplex angle and the position of ( are given, the
3-dimensional position of P can be calculated, because P 1is bound on the
perpendicular of P, P, P, that passes Q.

Now, since ( is a point on the triangle P P, P,, the position of O can be

represented as follows.
O=¢P +¢&,P,+&P
(2.5)
g +e, te =1
£,&,,&; are called “metric parameters.” The position of P can be determined by the

positions of its three neighbors P, P,, P, the simplex angle, and metric parameters.

As the result, “local regularity” brings Q close to the neighbor triangle’s barycenter

I o : 1
G= EPI + EPZ +§P3 , that is, it brings metric parameters close to &, = ¢, =&, = 3

—_—

Finally, the internal force F

Int

at the node P can be defined as Equation (2.6).
F, =(G-0) (2.6)

2.2.4 From Shape to Attribute: Forward Mapping
In this section, we concretely describe the method to calculate the equations of motion.
From the discussions in the previous sections, the equation of motion of the ith node

P of the mesh can be written as Equation (2.7).

d’p dP -
dtZI +k7tl = cXI-?E)ct +ﬁFlnt (27)

Since this equation is a continuous differential equation, it is difficult to solve it
analytically. Therefore, we solved it numerically by using the Euler method that is one

of the discretized numerical methods. The Eular method solves the equation by
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iteratively calculating Equation (2.8), where P(t), F"  and F!” arethe ith node,

i Ext,i Int,i

its external force, and its internal force at the ith iteration, respectively.

—_—

= _pl2)) 70 0

Ext,i Int,i

PY =Py (1-k)P (2.8)

i i

By iteration of this calculation until the error function E is smaller than the

threshold, this method can generate a mesh that is fitted to the model. £ 1is the sum

of all distances between each node P, and its closest point M ), that is, can be

written as Equation (2.9).

E= Z‘RMcl(i) (2.9)

2.2.5 From Attribute to Shape: Inverse Mapping

In this section, we describe how we reconstructed the original shape from an SAI In
forward mapping, the two forces affect each node of the mesh: external force and
internal force. The internal force is similar to that one in forward mapping. Concretely,
it can be written as En; =(G-0).

But, in the inverse mapping, the external force is the force to keep the distance
between the node P and its neighbor triangle P, P, P, at the distance calculated by
the simplex angle. As we have described in section 2.2.1, the simplex angle is
proportional to the distance between the node P and the triangle P P, P,;.

Here, the distance ¢ can be calculated by solving Equation (2.10) which is a
transformation of the equation of simplex angle, where » is the radius of the
circumcircle of the triangle P, P, P, and [ is the distance between the center of the

circumscribed sphere of the tetrahedron P P, P, P, and the foot of the perpendicular

from P to the neighbor triangle P, P, P;.

+ arctan (2.10)

= arctan
¢ r—1 r+l

Therefore, the distance ¢ can be written as Equation (2.11), where ¢ is the simplex

angle at the node P.
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At tan® =) (2 <W<)
tan ¢ 2
«/Fz—tani¢(lz—rz)"’ (0<|¢|<§j
t= and g (2.11)
(e
2 2 _T
h [¢_ 2j
0 (¢=0)

As the result, the internal force £, in the inverse mapping is defined using ¢ as

follows.

)ﬁ (2.12)

Fru =[PP
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Chapter 3 Generation of SAls with no insufficiency of
approximation at depression

In this chapter, we solve the problem of insufficiency of approximation of semi-regular
mesh to 3-dimensional shape model when generating SAI. For generating SAls with no
insufficiency of approximation at depression, we operate several steps for the mesh to
get two features, local regularity and an approximation of surface of 3-dimensional
model. First, we get the boundary of 3-dimensional shape model. Next, we construct a
set of several shape datum called “guiding intermediate shapes” from the boundary of
3-dimensional shape model. The guiding intermediate shapes changes from sphere
shape which is equal to initial mesh to the shape which is equal to the boundary of
3-dimensional shape model. Finally, by converging the mesh to guiding intermediate
shapes from sphere shape to the shape which is equal to the boundary of 3-dimensional
shape model, we get the semi-regular mesh which has two features of local regularity
and the approximation of surface of 3-dimensional model. Moreover, by mapping
geometrical attributes onto a sphere, we generate SAI of 3-dimensional shape model.

In this chapter, first, we describe a defect of former method when generating SAls at
depression. And, we describe the concept and abstract of proposed method against the
problem. Next, as ready of constructing guiding intermediate shapes by our proposed
method, we describe morphing closed curve with renewing energy function defined at
nodes constructing closed curve step by step. And, we describe constructing guiding
intermediate shapes and generating SAI using guiding intermediate shape. Finally, we
conduct an experiment using artificial 3-dimensional shape model and show the

advantage of our proposed method.

3.1 Defect of former method generating SAI at depression

With former method generating SAI at depression, we use one of the deformable
surface methods that initial mesh which is sphere shape put around 3-dimensional
shape model, calculate iteratively, deform the shape, and fitting onto the surface of

3-dimensional model. And, we try to construct semi-regular mesh which has two
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features of local regularity and the approximation of surface of 3-dimensional model.
Then, we generate SAI mapping geometrical attributes "simplex angle" onto a sphere
surface.

When approximating 3-dimensional shape model onto mesh model at depression, we
have a problem that mesh is not converged onto surface of 3-dimensional model
because the mesh covers over the depression. As a result of this converging local
minima, the mesh is satisfied with only local regularity, but is not satisfied with the
approximation of surface of 3-dimensional model (See Fig. 3.1). Or, the mesh is
satisfied with only the approximation of surface of 3-dimensional model, but is not

satisfied with local regularity (See Fig. 3.2).

Figure 3. 2: Mesh with no local regularity, and good approximation of model surface

We regard the cause of this converging local minima as that we try for semi-regular
mesh to acquire two features which are local regularity and the approximation of
surface of 3-dimensional model with single process.

Then, we propose a new method against this converging local minima at depression.



Our new method is that mesh acquires two features of local regularity and the
approximation of 3-dimensional shape model not with single process but with
multi-process. With single process, the mesh can not obtain all information need for
two features from 3-dimensional shape model. However, the mesh can obtain
information need for one feature with one process. Then, the mesh can obtain all
information need for all features with multi-process. Note that we perform two
processes in this thesis, because the mesh need two features.

With first process, we generate the deformation series of 3-dimensional shape model
without considering local regularity. With the second process, we obtain the
approximation of 3-dimensional shape model which is satisfied with local regularity
using the series. Concretely speaking about these two processes, (1) we construct a set
of model datum called "guiding intermediate shapes" which shape changes from the
shape of initial mesh to the boundary of 3-dimensional shape model. Note that guiding
intermediate shapes have the feature of the approximation of 3-dimensional shape
model., and (2) we converge semi-regular mesh onto guiding intermediate shapes one
by one. And, we obtain for semi-regular mesh two features that are local regularity and
the approximation of surface of 3-dimensional model. We use these two processes for

not happening to the mesh converging local minima.

3.2 Overview of Generating “guiding intermediate shapes”

In this section, we describe the overview of generating “guiding intermediate shapes”.
To generate guiding intermediate shapes, we first cut a series of proper sections.
Second, we morph each section to a circle. Finally, we unify the results of morphing of
all sections, and generate a series of 3-dimensional shape models which are guiding

intermediate shapes.

3.3 Morphing closed curve by gradual renewing of energy function
In this thesis, for constructing guiding intermediate shapes, we morph closed curve
which is expressed the list of line segments. Energy function for converging closed

curve is defined at a node defined at the end of a line segment.
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In this section, for example of morphing something converging by energy function, we
consider closed curve defined energy function at each node of line segments. We morph
closed curve from initial shape of closed curve to circular shape (sphere shape is
expressed by regular polygon.) gradually by converging energy function to maximum

or minimum. The detail definition of energy function is described at Section 3.3.3.

3.3.1 Morphing by converging calculation with repeating same number of times

We morph closed curve by converging calculation with repeating same number of times.
Figure 3.3 shows the graph of energy function at converging calculation. The sum of
repeating number of times is about 57000. The converging circumstances (See Fig. 3.4)
every 5700 repeating number of times does not move constantly, and the result of
morphing closed curve is not good. Unless we morph closed curve moving constantly,
the distance of closed curve moving is long. The guiding intermediate shapes
describing detail as follows are a set of models, and need to change the shape gradually.
Because of this reason, this result is not satisfied with our proposed method generating

SAls at depression. Then, the moving distance of closed curve must be constant.

0.5 f
T

0.4 |

%0.3 \\

S 02 N

0. \EHH

0 . L . . . . )
0 100 200 200 400 500 600 a0

repeat ( X 100 times)

Figure 3. 3: Graph of repeating number of times and energy with repeating same

number of times
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Figure 3. 4: Morphing by converging calculation with repeating same number of times

3.3.2 Morphing by converging calculation with renewing energy function

The method of morphing, by converging calculation with repeating same number of
times, can not be realized morphing with closed curve constant moving. Then, we
realize morphing with closed curve changing the shape constantly, by converging
calculation with renewing energy function defined at each node of line segments.

We morph closed curve by converging calculation with renewing energy function.
Energy function is sum of two kinds of energy functions. One is the energy function
called the “angle energy function” which is defined from angle between a node and both
neighbor nodes. Another is the energy function called the “distance energy function
“which is defined from distance between two neighbor nodes. In this thesis, we assume
that each distance between two neighbor nodes is constant. Because of this assumption,
we don't renew distance energy function. In this section, we pick up angle energy

function.

(1) Renewing angle energy function
The angle energy function is defined error between present angle and the angle at time
of converging between a node and its neighbor nodes. Moreover, the angle energy

function has function of closing present angle to the angle at time of converging. The
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larger is the error, the larger is the angle energy function. The smaller is the error, the
smaller is the angle energy function. Then, the angle at the time of converging is
renewed by linear transform from the initial angle to the angle at the circle shape (the
angle is equal to an interior angle of regular polygon). By this renewing the angle at

the time of converging, we renew the angle energy function.

(2) Results of morphing

Figure 3.5 is a graph of repeat number of times and energy at converging calculation
with renewing energy function. The beginning of repeat calculation shows energy
decreasing and it shows converging by first energy function. Next, at the same time of
renewing energy function, energy increases. Then, new converging is performed by
new energy function. And so on, by repeating of renewing energy function and

converging, we realize morphing with constant moving distance of closed curve (See

Fig. 3.6).
0.07 r
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&0 0.04 \(\
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L 403 |
<1}
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0 . . .
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repeat ( X 100 times)

Figure 3. 5: Graph of repeat number of times and energy with renewing angle energy

function

- 32 -



Figure 3. 6: Morphing by converging calculation with renewing energy function

3.4 Generation of SAIs using guiding intermediate shapes
In this section, we describe the detail about guiding intermediate shapes, and how to
converge the mesh using guiding intermediate shapes. And, we describe how to

construct guiding intermediate shapes.

3.4.1 The guiding intermediate shapes

The guiding intermediate shapes consist of a set of points. And, the guiding
intermediate shapes guide mesh which initial shape is sphere (See Fig. 3.7) onto
3-dimensional shape model (See Fig. 3.8). The guiding intermediate shapes are a
sequence of several shapes changing from sphere shape to the shape of the

approximation of 3-dimensional shape model (See Fig. 3.9).
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Figure 3. 7: The mesh which initial shape is sphere

Figure 3. 8: 3-dimensional shape model

Figure 3. 9: The guiding intermediate shapes



3.4.2 Converging the mesh using guiding intermediate shapes

We converge the mesh whose initial shape is sphere onto a guiding intermediate shape
whose shape is near by the shape of initial mesh (See Fig. 3.10). We repeat converging
the mesh several times renewing the guiding intermediate shape step by step, using

the original SAI method. Finally, we converge the mesh onto a set of points which

consist of 3-dimensional shape model.

Figure 3. 10: Circumstances of converging the mesh using guiding intermediate shapes

3.4.3 How to construct the guiding intermediate shapes

In this section, we describe how to construct the guiding intermediate shapes. Various
methods how to construct the guiding intermediate shapes are considered. Then, we
consider the method to construct 3-dimensional guiding intermediate shapes by
merging several 2-dimensional datum which express sections of 3-dimensional shape
model.

First, we do sampling sections of 3-dimensional shape model. And, we gradually morph
the sections to the sections of the initial mesh which is the shape of circle by gradually
renewing energy function that we describe its details in Section 3.3. Finally, we merge
each result of morphed sections, and the results of merging sections are the guiding
intermediate shapes. We describe the method and detail of constructing the guiding

intermediate shapes as follows.
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(1) Sampling outline of 3-dimensional shape model

We do sampling the outline of 3-dimensional shape model. In this chapter, because of
artificially generating 3-dimensional shape model, it is easy sampling the outline of
3-dimensional shape model. However, in the case of obtaining 3-dimensional shape
model by measuring a real sample, we take advantage of the fact that we describe
following. Because the data which is obtained by measuring a real sample is expressed
a set of triangle patches, a set of triangle patches’ boundaries which cross over the

section expresses the outline of 3-dimensional shape model.

(2) Morphing the outline of 3-dimensional shape model

We morph the outline of 3-dimensional shape model to the shape of initial mesh which
is circle. And, the results of this morphing the outlines are merged at all sections. We
reverse this results. Then, they are the guiding intermediate shapes. About how to
change the outline to circle shape gradually, we take advantage of repeat calculation by
gradually renewing energy function whose detail is described in Section 3.3.

Moreover, this energy function consist of two kind of energy functions, one is the angle
energy function defined with the angle between a node and both neighbor nodes,
another is the distance energy function defined with the distance between two

neighbor nodes.

(2.1) The angle energy function
We define two vectors between a node and both neighbor nodes (See Fig. 3.11). Let the
angle between two vectors be H[rad](—ﬂ <f< 7[) Then, the angle when energy is

minimum at converging a node is Ho[rad](—ﬁ <f< 7[) The error between present

angle and the angle when energy is minimum is expressed the error ratio as Equation

(3.1).

0-06,

<1) (3.1)
2r

rate = (—1 < rate

angle angle

Using the error ratio, the angle energy function is defined as follows (See Fig. 3.12).

E

2
angle

= rate (3.2

angle
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The angle energy function E takes minimum value at 0 =6, (See Fig. 3.11).

angle
At each morphing process, the angle energy function is renewed every repeat
calculation of converging the mesh. How to renew the angle energy function is

changing the angle 6, when the energy is minimum at every morphing process.

We use the linear transform between the angle 6., at initial condition of the outline

tart

and the angle 6, (= 7 — (interior angle of regular polygon)) of regular polygon whose
shape is near by the shape of circle. And, we renew the angle 6, as follows.

We assume generating N morphing images. At generating » th morphing image, the
angle energy function is defined by t:ﬁ as Equation (3.3). Like normal repeat

calculation, we repeat converging calculation until the sum of all energy functions
which are the angle energy function and the distance energy function is less than a

threshold. After converging calculation, the angle energy function is renewed by

n+l

for generating 7 +1th morphing image.

—
N (3.3)

0, =(1-16,,, +t0, ., (0<t<1)

goal

Figure 3. 11: The angle energy affecting between a node and both two neighbor nodes
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ol ¢ ! rate

Figure 3. 12: Graph of the angle energy function

(2.2) The distance energy function

We consider the distance d between two neighbor nodes (See Fig. 3.13). Moreover, we
define the distance d, when the energy is minimum at converging calculation. The
error is expressed by the error ratio between present distance d and the distance d,
which is the distance when the energy is minimum as Equation (3.4).

d-d, (_1 <ratey, < +OO) (3.4)

rategy =
0

Using this error ratio, we define the distance energy function as Equation (3.5). We
consider Equation (3.5) as a spring model (See Fig. 3.14).

E,, =rateg,’ (3.5)
At morphing the outline, we renew the distance energy function every repeat
calculation of converging. How to renew the distance energy function is that we renew
the distance d, when the energy is minimum as follows.
We renew the distance d|, using the linear transformation between the distance d,,

at initial outline condition and the distance d at final outline condition as

goal
Equation (3.6).
About the angle energy function, we assume that we generate N morphing images.

When we generate nth morphing image, we define the distance energy function by

t= ﬁ Like normal repeat calculation, until the sum of all energy functions which are

- 38 -



the angle energy function and the distance energy function is less than a threshold, we

repeat converging calculation. When the converging calculation is finished, the

distance energy function is renewed as t:n— for generating n+1th morphing
image.
n
t=—
N (3.6)
dy=(1-1)dy, +td,, (0<t<1)
d <d,
d>d,
o -— d

Figure 3. 13: The distance energy affecting between two neighbor nodes

-1 0 1 rate

Figure 3. 14: Graph of the distance energy function

(2.3) The energy defined at each node
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At each node, one angle energy function and two distance energy functions are defined.
We define the sum of all energy functions as the energy at each node as Equation (3.7).
Note that £ is the ratio between the angle energy function and the distance energy

function. (In this thesis, letitbe f=1.)

Enode = Eangle + ﬂEdistl + ﬂEdistZ (37)
The sum of all energy functions at all nodes is defined as follow equation.
Eall = Z Enode (38)

Moreover, the threshold E, ., Which a threshold used for stopping repeat
calculation is defined as follow equation using the error error(%) about the angle

energy function and the distance energy function.

error =1%
! _ 2
E pge = error
! _ 2
gist — €rror (3.9

E
Enode = Eangle + ﬂEdistl + ﬂEdistZ
E threshold — Z E node

(8) The affine transformation for merging morphed closed curves for making guiding
intermediate shapes

The morphed closed curve is decided by repeating calculation of gradually renewing
each energy function. This morphing process can only determine shape of closed curve
and that is not functional to determine its proper location and orientation at all. Then,
the center of gravity of the closed curve is located at random. And, it is probable that
the closed curve itself rotates. Moreover, there is no consideration about the scaling of
the closed curve, because of morphing the outline at constant distance between two
neighbor nodes.

We need to determine its location and orientation properly.

In this section, we describe the detail of the affine transformation: translation, rotation,
scaling which are done to a set of the closed curves changing the shape from the

boundary of 3-dimensional shape model's section to the shape of circle.
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(8.1) Location

The proper location of the closed curve is decided in obedience to a set of the closed
curves obtained by morphing. The closed curve expresses the section boundary of
3-dimensional shape model. However, the center of gravity of the closed curve is
expresses the center of gravity of the section of sphere which is initial semi-regular
mesh shape. Here, the proper location of the center of gravity of a set of the closed
curves 1s decided by the linear transforming between the center of gravity of the
section of 3-dimensional shape model boundary.

To modify the location of the closed curve, first, we obtain the location of the center of
gravity of the closed curve which we modify the location. Next, we properly determine
where the center of gravity of the closed curve is. Finally, we transform the closed

curve by moving the distance between the present location and the proper location.

(8.2) Rotation

In this section, first, we define the orientation of a closed curve angle. orientation is the
difference between in some coordinate system (e.g. object-oriented coordinate system)
and in the world coordinate system. Next, we describe how to obtain the proper angle
of each closed curve from initial closed curve. Finally, we describe how to rotate the
closed curve.

First, we define the angle of the closed curve. Figure 3.15 shows that the closed curve
is expressed by list of # line segments. Here, we assume the length of each line
constant. Now, the points of each line segment end are called nodes, and they are
defined at the node number 0,1,---,n—1.

Here, we locate the regular polygon whose node number is n around the closed curve.
Each center of gravity (the closed curve and the regular polygon) is the same position.
Moreover, each node of the regular polygon is defined the node number 0,1,---,n—1.
We define the center of gravity of the closed curve and the regular polygon as the origin.
And, we define the line from the origin to any direction as the axis line. The direction of
the axis line is constant at morphing all closed curves.

Next, we rotate the regular polygon around the origin. We define vectors from each



node of the regular polygon to the node with the same number on the morphed curve.
We rotate the regular polygon when the sum of the vectors' lengths becomes minimum.
We determine the orientation of the closed curve from the angle 6, between the axis
line of regular polygon and the line of the closed curve when the sum of the vectors'

lengths is minimum (See Fig. 3.16).

Figure 3. 15: The vectors from the node of the regular polygon to the node of the closed

curve

total length of vectors

Figure 3. 16: Graph of the angle of the closed curve and the sum of vectors' lengths
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Next, we describe how to obtain the proper angle of the closed curve from the initial
closed curve. The orientation of the closed curve is uniquely determined at each
morphing. Then the proper angle of the closed curve is the same of the initial closed
curve's angle before morphing.

Finally, about a set of the closed curve obtained by morphing, we obtain the angle of
each closed curve of which rotation we modify. Then we rotate each closed curve in
proportion to the error between the present angle and the proper angle. Then, we can

modify the angle of a set of the closed curves.

(8.3) Scaling

The scaling of the guiding intermediate shapes changes from the same scale of the
initial mesh to the same scale of the section of 3-dimensional shape model boundary.
Then, it is necessary to modify the scaling of all closed curves. The scaling of the closed
curve changes from the same scale of the initial mesh to the same scale of the section of
3-dimensional shape model boundary. Here, we take advantage of the fact that the
distance between two neighbor nodes is constant so as to scale the closed curve.

Here, we define a proper distance between two neighbor nodes. The proper distance is
linear transformation between the distance at closed curve's approximation of the
section of 3-dimensional shape model boundary and the distance at closed curve's
approximation of the section of the initial mesh boundary which is the shape of circle.
To modify the scaling of the closed curve, we obtain the present distance between two
neighbor nodes of the closed curve which we modify the distance of. And we obtain the
proper distance between the neighbor nodes of the closed curve. Then, we scale the

closed curve at the error ratio between the present distance and the proper distance.

3.4.4 Merging the closed curves
Finally, we merge the closed curves morphed from several outline extracted from
3-dimensional shape model. We reverse the merging results, and the results are the

guiding intermediate shapes.
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3.5 Experiment
We have an experiment of converging mesh using our proposed method. In this section,

we describe this experiment in detail.

3.5.1 Detail of the experiment and about the data

We converge the closed surface by our proposed method and former method. And we
compare these two method in view of accuracy. We compare the degree of converging
the proper surface. And, we consider the caution about the comparison of the results of
these two methods. Moreover, we compare calculation time and consider about both
two methods.

We use initial mesh which divide the dodecahedron five times (See Fig. 3.17). The
number of faces of the mesh is 20x4° =20,480. And, we use artificial 3-dimensional
shape model (See Fig. 3.18). We generate ten guiding intermediate shapes from the

sphere shape to the boundary of 3-dimensional shape model (See Fig. 3.19).

Figure 3. 17: Initial mesh
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Figure 3. 18: The artificial 3-dimensional shape model
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Figure 3. 19: 10 guiding intermediate shapes

3.5.2 Result of the experiment

We converge the mesh by our proposed method using the guiding intermediate shapes
(See Fig. 3.20) and the former method (See Fig. 3.21, 3.22). We define an
approximation error of a node as the distance between the node and the closest point
on the proper surface. The error is visible mapping onto the mesh at the rate of

converging local minima scaling 10 times (See Fig. 3.23).

Figure 3. 20: The result of converging using guiding intermediate shapes and its

macrograph
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Figure 3. 21: The result of bad boundary approximation by former method and its

macrograph

Figure 3. 22: The result of unsatisfying local regularity by former method and its

macrograph

Figure 3. 23: The comparison of the converging result, left: using the guiding
intermediate shapes, center: the former method (bad boundary approximation), right:

the former method (unsatisfying local regularity)
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Here, by the method using guiding intermediate shape, the mesh has good
approximation of artificial 3-dimensional shape model boundary. However, by the
former method, the mesh has bad approximation of the boundary.

The length between two neighbor nodes of the mesh by both methods is Table 3.1. Both
of them, there is equal order of variance and nearly equal value of mean. Then, we
regard the conditions of converging the mesh by both methods as the same.

Moreover, by the former method (unsatisfied local regularity), the mesh is converged
onto depression at the center of the artificial 3-dimensional shape model (See Fig. 3.22).
However, the length of the mesh by the former method (unsatisfied local regularity) is
not the same order with the one by our proposed method using guiding intermediate
shapes (See Table 3.1). Moreover, Figure 3.22 shows that by this method the mesh

unsatisfied the feature of local regularity.

Table 3. 1: The comparison about the length between two neighbor nodes of the mesh

_ Varlance
variance rrent — (%)
trieat

proposed method 5411=107° | 1.079%1073 50150%)

former method:

1767107 | 1.105%107 1.559(%)

wrong approZimation of the surface area

former method:

1426%10~ | 1.048x107 | 13.61%)

unsatisfied with the local regularity

3.5.3 Discussion

At repeat calculation of converging the mesh, two kinds of force affect the mesh. One is
the force that the mesh converge onto the surface, the other is the force that each
length between two neighbor nodes of the mesh keeps constant. Here, we assume the
mesh converging situation according to the section of 3-dimensional shape model. At
converging the mesh by the former method, there are two kinds of areas (See Fig. 3.24).

One is the area converging surface early. Another is the area converging surface late.
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First, the length between two neighbor nodes at the area converged onto the surface
early time changes shorter and shorter. At the same time, the length at the area
converged onto the surface late time changes shorter and shorter. Then, the mesh is
insufficient at the area converged late time. However, the mesh at blue color area is
already converged and the energy is balanced. Then, the mesh at the converging area
hardly moves. As a result of this, (1) in the case of the force that the mesh is converged
onto the surface is stronger than the force keeping the length of the mesh, the length at
only the area converged onto the surface late time changes longer and longer. The
mesh has good approximation of 3-dimensional shape model boundary. But, The mesh
does not satisfy local regularity (See Fig. 3.25). Or, (2) in the case of the force that the
mesh is converged onto the surface is weaker than the force keeping the length of the
mesh, The length at the area converged onto the surface late time does not change. The
mesh satisfies local regularity. But, the mesh has bad approximation of 3-dimensional
shape model boundary (See Fig. 3.26). As a result of this, it is difficult that the mesh
has two features of local regularity and good approximation of 3-dimensional shape

model boundary at the same time.

Figure 3. 24: The section of converging the mesh onto 3-dimensional shape model

boundary by the former method
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Figure 3. 25: In the case of unsatisfying local regularity

Figure 3. 26: In the case of bad approximation of 3-dimensional shape model boundary

On the other hand, by our proposed method using guiding intermediate shapes, the
mesh is converged onto the surface of 3-dimensional shape model keeping balance. In

this reason, it is capable of the balanced converging the mesh (See Fig. 3.27).
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Figure 3. 27: Converging the mesh by the method using guiding intermediate shapes

3.5.4 The comparison of converging runtime and the consideration
Table 3.2 shows the comparison of converging runtime by the proposed method and the
former method. The numbers of iteration are the same 5500 times by both methods.

The proposed method is faster than the former method.

Table 3. 2: The comparison of run-time

the total run time the run time of one loop
proposed method 557 &lzec) 0.7225 (zec]
(1.1 ()
former methaod 23732(zec) 4.315(zec)
(8.5h))
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The reason why our proposed method is faster than the former method is because of
the difference between the number of points constructing 3-dimensional shape model
and the number of points constructing the guiding intermediate shapes (See Table 3.3).
We calculate the energy defined with the mesh when we converge the mesh onto the
surface of 3-dimensional shape model. In this energy calculation, we perform nearest
neighbor nodes searching. In nearest neighbor nodes searching, the less points are

there, the less time we spend.

Table 3. 3: The comparison of the number of points constructing each model

points
J-dimensional shape model 288,977
middle shape data 33,840
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Chapter 4 Analysis using SAls

In this chapter, we perform 3D-object-shape analysis taking advantage of the
similarity between their SAls. We try to illustrate the result using a dendrogram.
First, we calculate the distance between each pair of 3-dimensional shape models. Note
that we regard the distance as similarity between each pair of 3-dimensional shape
models. Next, we construct the dendrogram by hierarchical cluster analysis with the
distance between each pair of SAls.

In this chapter, first, we describe how to calculate the distance between two
3-dimensional shape model. Next, we describe about hierarchical cluster analysis.
Moreover, we describe about fast calculation of the distance between two

3-dimensional shape models. Finally, we perform an experiment of analysis.

4.1 The distance between two models defined by SAls

In this section, we describe how to calculate the distance between two 3-dimensional
shape models taking advantage of their SAls. In each SAI, we first calculate the line
which goes through both the origin and the feature node. Then we rotate the two SAls
which we would like to compare so as to align the two lines (See Fig. 4.1). Next, one
SAI rotates around the axis little by little, and we calculate the difference from another
SAI. After one SAI turn one revolution, we define the minimum difference between two
SAls as the distance between two 3-dimensional shape models.

In this section, first, we describe how to define the difference between two SAIs and
calculate the difference. Next, we define the distance between two 3-dimensional shape
models using the difference between two SAIs.

Note that the difference between the two SAls depends on the configuration of their
coordinate systems but the distance between the two models can be uniquely decided

using the differences.
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Figure 4. 1: Two SAIs of which the axes overlap each other

4.1.1 Calculation of the difference between two SAIs

Using two SAls of two 3-dimensional shape models, we calculate the difference
between two SAls. We obtain the latitude and longitude at a node on one SAI surface.
On another SAI surface, we define the node which is nearest by the latitude and
longitude as the nearest neighbor node (See Fig. 4.2). Next, we calculate the absolute
value of the difference between the simplex angle of the node on one SAI surface and
the simplex angle of the nearest neighbor node on another SAI surface. And, we weight
the absolute value by the function Weight(@) which is defined the latitude € of the
node on one SAI sphere surface when we assume the characteristic node as the North

Pole.
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Figure 4. 2: Anode on one SAI sphere surface and the nearest neighbor node on

another SAI sphere surface

This function Weight(@) strengthens the absolute value between a node and its
nearest neighbor node which are around the characteristic node. And, the value is
0< Weight(@) <1. We assume a characteristic node on one SAI surface as the North
Pole (See Fig. 4.3). We define the absolute value between the latitude of the North Pole
and the latitude of a node as 90(0O <@°< 1800). Then, this function Weight(@) is
the function decided by . When & is small, in other words, when a node is near by
the characteristic node, the value of the function Weight(@) is almost 1. When € is
large, in other words, when a node is far from the characteristic node, the value of the
function Weight(@) is almost 0. However, if we don't weight, we define the function

Weight(@) as constant value Weight(6)=1.
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Figure 4. 3: Definition of

About the function Weight(@), we consider various variations, which is linear or

non-linear, and continuity or discontinuity. Here, taking advantage of 'Lambert's

cosine law'[8], we define the function Weight(9) as Equation (4.1). And, the graph of
the function Weight(@) is as Figure 4.4.

Weight(6) = %cos(0)+% (0°< 6 <180°) (4.1)
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Figure 4. 4: Graph of the function Weight(6)

Finally, about each nodes on one SAI, we calculate the weighted absolute value of the

difference between two simplex angles. We define the sum of the weighted absolute
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values as the difference between two SAls.

Error = Z Weight(0)x |SimplexAngle(N0de) - SimplexAngle'(Node'X (4.9)

VNode

4.1.2 Calculation of the distance between two 3-dimensional shape models

We calculate the distance between two 3-dimensional shape models, using the
difference between their SAls. About each SAI of two 3-dimensional shape models, two
SAls rotate around the center of SAls to overlap each characteristic node on SAI
sphere surface each other. Next, we define the line from a characteristic node on SAI
surface to the center of SAI as the axis. One SAI rotates around the axis little by little,
and we calculate the difference between one SAI and another SAI. While turning one
revolution, we continue calculating the difference. Finally, when the difference is
minimum at a rotation angle, we define the minimum difference as the distance

between two 3-dimensional shape models.

4.2 Hierarchical cluster analysis

We perform hierarchical cluster analysis to analyze 3-dimensional shape models using
the distances between each pair of 3-dimensional shape models.

In this section, they describe what hierarchical cluster analysis is and details of each

method of hierarchical cluster analysis.

4.2.1 What hierarchical cluster analysis is

It is assumed that there are n objects O,,0,,,0,. The similarity is d,(1,2,--,n)
between O, and O;. d; is symmetrical (d; =d ;).

The smaller the value is, the more similar O, and O ; are. In this case, the index is
called dissimilarity. In this section, they assume d j as dissimilarity.

Hierarchical cluster analysis is the method of analysis to generate the dendrogram
from each dissimilarity d ; between a pair of objects. The dendrogram is cut off at a
section, and they can obtain n clusters. The small cluster near by each leaf of

dendrogram is included in the large cluster near by the root of dendrogram.
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Each step of hierarchical cluster analysis is as follows.
(1) There are n clusters included one object.

(2) They refer to the dissimilarity dl.j, and generate one cluster united two clusters
which are the most similar.

(3) If there is only one cluster, then hierarchical cluster analysis is finished. Else, they
go next step (4).

(4) They calculate the dissimilarity d; between new cluster generated at (2) and
other clusters. And, they go back to (2).

Here, they can calculate dissimilarity d ; Without reference to the original data that

they calculate d i from. This is called combinatorial method which is easy to calculate

dissimilarity and is used generally.

4.2.2 Various methods of hierarchical cluster analysis
There are various calculation of dissimilarity which is calculated at step (4). Here, they

describe each variation of hierarchical cluster analysis.

(1) Nearest neighbor method
They unite cluster P andcluster 7, and they generate new cluster . The number of

) . . N ,n_,n (: n +n )
objects organized each clusteris 2’ ¢ poa/

They express the dissimilarity d, between cluster ! and other cluster 7 using

R d . C e e
dissimilarity 7", 7 between cluster P 49 ana r. They define this dissimilarity

as follows.

d, =min(d .d, ) (4.3)
When they apply this definition, dissimilarity between two clusters is defined by
dissimilarity between two objects which are included each cluster and are most similar
than all the other pairs of objects. Then, this method is called nearest neighbor method

or single linkage method.

(2) Furthest neighbor method

When they unite cluster P and cluster 7, and generate new cluster . They define
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dissimilarity d, between cluster ! and other cluster 7 as follows.

d, = max(dpr ,dqr) (4.4)
In contrast to the nearest neighbor method, they define dissimilarity between two
clusters as dissimilarity between two objects which are included each cluster and are
most dissimilar than all the other pairs of objects. Then, this method is called furthest

neighbor method or complete linkage method.

(8) Group average method
In nearest neighbor method and furthest neighbor method, they define dissimilarity of
new cluster united with a pair of clusters. But, these method are extreme, because the
dissimilarity is calculated using maximum or minimum dissimilarity of all pair of
objects included each cluster. Then, they define dissimilarity using the average of
dissimilarity included cluster ¢ and cluster r.
They express the relationship between before and after fusion as follows.

_ nd,+nd,

P e 4.5)
np + nq

(4) Centroid method
In centroid method, the dissimilarity between a pair of clusters is defined with the
dissimilarity among the center of cluster. Here, let each object be m -dimensional

observation value (xl by X, )

The center of gravity of cluster p, g is (;Ep),--',;gf)), (;Eq),--',;g)). The center of
gravity ¢ of cluster (}f’),---,}(,i)) is expressed as follows.
n,x 4,z
w2 e T (4.6)
n,+n,

Moreover, squared Euclidean distance EW2 between the centers of gravity of cluster

t and r 1is expressed as follows.

- 59 -



—(p) —(9) 2
nx; +n Xx; —(r)

2 m
— P a !
E =~ = E -X;

(4.7)
n ) n ) n.n )

= —r E’4+——4 EF P91 _[
n +n P n +n 1 ‘n +n F &
p q p q P q

They define d, -E°

; as dissimilarity. Then, they renew dissimilarity as follow

equation.
n n n.n
_ p q b q
d"‘_n +n dpr+n +n d’”_( )2dpq 4.8)
p " r " n,+n,

As described above, This method is meaning only when the dissimilarity is calculated

based on squared-Euclidean-distance manner.

(5) Median method

Median method is the method that centroid method is simplified. In centroid method,
they weight dissimilarities using the size of cluster n P However, at median
method, they constantly weight not using the size of cluster. The equation is expressed

as follow equation.

ld +ld —ld (4.9)

r = 5 pr 2 qr 4 pPq

d

These corresponds for the representative point of unified cluster to be measured
dissimilarity between a pair of clusters by squared Euclidean distance between

representative points.

(6) Ward method

(») about the

They consider ith objects included cluster p as observation value x;
variable in Ward method [14]. They express sum of squares in cluster p as next

equation.

n, _ 2
(x (7) —x(f’)) (4.10)

JU

9%}
I

=1 =l
They unite cluster p, ¢q, and generate new cluster f.

Here, they define increase of sum of squares in cluster as AS g This equation is as
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follows.

AS, :Mi(xj(xv) _;g'p))z (4.11)

n,+n, 5

In Ward method, it is desirable that sum of squares in cluster is smaller and smaller.
At each step, they unite cluster p, g thatincrease of sum of squares in cluster AS g
by uniting clusters is smallest. Because of this, they use AS g @S dissimilarity d g
between cluster p, ¢q.
They unite cluster ¢ which is united two cluster p and ¢, and other cluster 7. The

increase of sum of squares AS L, 18 expressed as follows.

nn. S0 =
s, = s
e e (4.12)
n,+n, n,+n, n '
= —AS§, +—A§ , ———AS
n,+n, n,+n, n,+n,

Pq

The equation to renew dissimilarity is next equation.

n_ +n n +n
d =—t""rg 4 g " g4 (4.13)

r pr ar pq
n,+n, n,+n, n,+n,

When each cluster includes one object, they use dissimilarity among the origin objects

1
with E of squared Euclidean distance.

(7) Flexible method
In each method described above, they renew dissimilarity. Using parameter « b Oy

f, 7, they can express a common equation as follows.

d,=a,d,+ad,+pd,+)d, -d,

(4.14)

Lance and Williams (1967) [9] advocated the method using above equation. They called
a set of methods based on this equation as combinatorial method. Moreover, they

proposed flexible method that meets the demand of the condition of the range which is

a,ta,+f=la,=a,:f<1:y=0 about «,,a,,p,y. Considering the above
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. 1 ) 1
condition, parameter [ is only free. They use 1 < B <0, especially use f= R

(8) summary of hierarchical cluster analysis

About each method, they show the parameter at combinatorial method and feature at
Table 4.1. Here, monotonicity of the dendrogram is shown monotonic increasing of
dissimilarity when they hierarchically unite clusters. In this case, the branch of the
dendrogram doesn't grow up reversely. And, space-contracting/dilating/conserving is
the case of being near by other cluster/the case of being far from other cluster/the case
of being constant from other cluster, when they unite two clusters and generate one
new cluster. For example, in nearest neighbor method, space-contracting is happened.
And, more uniting clusters, nearer by the distance from other clusters. Then, it is

known that it is easy to generate the long chain cluster.

- 62 -



Table 4. 1: The correspondence the parameter at combinatorial method and each

hierarchical cluster analysis method.

monotonicity ] o
space-contracting, dilating
method ey a, 8 ¥ of the _
Or conserving
dendrogram
nearest 1 1 1
. = = ] = > space-contracting
neighbor 2 2 2
furthest 1 1 1
. = = 0 = < space-dilating
neighhbor 2 2 2
rou x X
Brovp -~ = ] ] & Spare-conserving
average H, A,
My g Byt
centroid — — - ] = Space-Conserving
H, H, 2,
) 1 1 1 )
median = = = 0 - Space Conserving
2 2 4
no+n n, ta M
Ward S L, z 0 & space-dilating
no+n, no+a, M, + H,
B=0 space-contractin g
) 1-4 1-4 .
flexible e e Fily! 0 & g=0 space - conserving
8 =0 space - dilating

4.3 Fast calculation of the distance between two 3-dimensional shape

models

When we calculate the distance between two 3-dimensional shape models, we calculate
the difference between their SAls. There are n nodes including one SAI. The order of
the calculation of the difference is O(nz) as described in Section 4.3.1. However, when
n 1s large, we spend a long time of calculation. Then, we will solve this problem not
using strict solution but using approximation solution. Concretely, from a node on one
SAI, we obtain the neighbor node on another SAI using approximation solution with
reference table whose the order of calculation is O(l).

In this section, first, we describe the problem about the cost of calculation of the
difference between two SAls. Next, we describe how to search nearest neighbor node

using approximation solution with reference table. Finally, we verify the effect and the
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accuracy of fast calculation by comparing approximation solution with strict solution.

4.3.1 The cost of calculation of the difference between two SAls

At calculation of the distance between two 3-dimensional shape models, we consider
the order of calculation of the difference between their SAIs. The order of calculation of
nearest neighbor node search by strict solution is O(n), when there are n nodes. And,
the order of calculation of the absolute value of the difference between two simplex
angles is O(n) Then, the order of calculation of the difference between two SAls is
O(nz). Here, the number of nodes included in an SAI using the experiment in this
thesis 1s 20480. Then, we spend very long time for the calculation. However, taking
advantage of reference table, we search nearest neighbor node in O(l). Moreover, we

calculate the difference between two SAls in O(n) This is fast calculation.

4.3.2 Reference table

We obtain simplex angle of nearest neighbor node by approximation solution using
reference table. Beforehand, we construct reference table by mapping simplex angle of
another SAI on a plane. About how to map simplex angle, we take advantage of
2-dimensional expression like a world map. Up to this time, there are a lot of
variations of 2-dimensional expression of a world map [10][11][12]. In this thesis, we
use the "Mercator projection”, in 1569, because this is one of the simplest method and
assumes the earth not ellipsoid by rotation but sphere.

The reference table is expressed on a 2-dimensional plane. One axis corresponds to
latitude, and the other axis corresponds to the longitude (See Fig. 4.5). It is possible to
easily access the target node using the reference table, if one knows its position in the

latitude-longitude coordinate.
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Figure 4. 5: Simplex angle reference table

Next, we describe how to generate reference table. We prepare a initial table whose
cells are empty. About a cell for which we would like to substitute the value of simplex
angle, we obtain latitude and longitude on SAI sphere surface. And, we obtain the node
which is nearest by the cell. Then, we substitute the value of simplex angle of the node
for the cell. And so on, we substitute simplex angles for other cells, and obtain
reference table.

Other approximation solution of nearest neighbor node search is using k-d tree. There
are n nodes in SAI. And, the order of calculation by k-d tree is 0(10g n) Because we

expect the faster solution, we select approximation solution of reference table which is

in the order O(l).

4.3.3 Verification of accuracy and the effect of reducing the computation time

In this experiment, first, we examine the difference between two SAls by strict
solution and by approximation solution. And, we calculate the error between the
differences by strict solution and by approximation solution, and verify accuracy.
Second, we examine the effect of reducing the computation time by approximation
solution compared with strict solution. And, we measure runtime of the calculation of

the difference between two SAls by both strict solution and approximation solution.
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For this purpose, first, we prepare a several SAls constructed by n nodes. Next, we
select two SAIs from all SAIs at random. And, we calculate the difference between two
SAls by strict solution and approximation solution using reference table. Moreover, we
measure the error occurring from the calculation by approximation solution. And, we
measure each runtime by strict solution or approximation solution. The result of this

experiment is Table 4.2.

Table 4. 2: Error and the rate of reducing runtime by approximation solution compared

with strict solution

the difference between 2 SAI Images runtime
. strict solution | approximation error strict solution | approximation ratio
SaAIF:EIIr of 2 solution ‘d i | solution ;
e d & o D= #l(%) t, (sec) b 5T (%)
k14 2 - ap ‘Esr.r
&) 13,3485 13,3858.0 0.253 14555 2 0.01 4
(2l 13,8319 13,844.7 0.083 15,165 1 0.007
30 14,7646 14,769.3 0032 17174 2 ooz
43 145118 145222 0072 16,746 2 0012
(53 138326 138535 0154 15187 2 0.013

The error of approximation solution compared with strict solution is less than 0.3% .
We regard approximation solution using reference table as accuracy enough. Also,
runtime of approximation solution compared with strict solution is reduced about
0.01% . Because strict solution is O(n) and approximation solution is O(l), the rate
of reducing runtime is about 1/n=1/20480 = 0.005(%) in theory. In practice, the
effect of reducing runtime is as half as the effect of reducing computation time in
theory, because the calculation time measured by performing actual calculation
justifies the consideration. But, we confirm the effect of reducing computation time by
approximation solution using reference table.

About approximation solution using reference table, before calculation of the difference
between two SAls, we need to generate reference table beforehand. Here, because the
number of nodes in SAI is n = 20480, we generate reference table that latitude and
longitude is 360 x180 = 64800 . It spends about four seconds to generate one reference
table. Moreover, once we generate a reference table of an SAI, we can use the reference

table to calculate the difference from other SAlIs. We can use the reference table. That
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is we, need only to generate the reference table once.

4.4 Experiment

In this section, we estimate phylogenetic relationships of fowls by analysis using SAls.
We prepare a number of fowl skull datum as 3-dimensional shape models. Next, we
generate SAls from these 3-dimensional shape models using our proposed method in
this thesis. Using the SAls, we calculate the distances between all pair of
3-dimensional shape models. We regard these distances as dissimilarity, perform
hierarchical cluster analysis, and generate the dendrogram of relationships of fowl
skulls. Finally, from the generated dendrogram, we estimate phylogenetic
relationships of fowls.

In this section, first, we describe how to obtain models of fowl skulls. Finally, we

analyze using SAIs and illustrate the result of this analysis.

4.4.1 Researches about estimation of phylogenetic relationships of fowls

Japan is inhabited by the unique native fowls called Nihon-Kei inhabits. Among these,
17 breeds, such as the Syamo (Syamo means a fighting fowl in Japanese.) and
Gifu-Jidori (Jidori means a domestic fowl in Japanese.), have been designated
protected breeds in Japan. Although these fowls originated in Southeast Asia and
China, they were imported to our country during the Yayoi period, which took place
hundreds of years B.C. The breeds were subsequently improved for various purposes of
use, including satisfying the Japanese fondness for meat and cockfights. As a result,
many characteristic breeds were produced.

Hereditarily, these Japanese native fowls are important breeds. Recognizing their
importance made some amateur lovers preserve these fowls. Later on, the necessity for
their preservation by public means has been recognized. Therefore, various
investigations and research on their origin and on their phylogenetic relationships
have been performed.

Recently, analysis of relationships by blood according to ancient documents along with

analysis of forms, blood types, or DNA have been performed by Oana et al. [15],
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Hayashi et al. [16], Nishida et al. [17], Okada et al. [18], Hashiguchi et al. [19], Tanabe
et al. [20], and Takahashi [21]. The research can be classified into three categories: (1)
analyzing relationships by blood directly according to ancient documents etc., (2)
analyzing fowls' genes using their blood, e.g., DNA, etc., and (3) analyzing fowls'
shapes using the morphological analysis methods.

Among morphological analysis methods, i.e., analyzing interspecies differences in their
body forms, osteometric methods are common. These methods analyze the difference in
a shape by choosing characteristic parts among skeletal specimens. Concretely
speaking, they measure distances for the specifics points precisely and compare the
corresponding distances in different breeds by the multivariate analysis such as the
principal component analysis (PCA).

In these methods, only distances of the specific points of the specimens can be obtained,
but it is difficult to analyze form of the specimens totally and to distinguish individual
differences such as the size of each individual, and the interspecies morphological

differences. Then, we applied our proposed method for the morphological analysis.

4.4.2 Generating of 3-dimensional shape models

In this section, we describe how we measured the real objects such as the skeletal
specimens of fowls' skulls with a laser scanner and generated their precise
3-dimensional shape models.

First, we describe the technique of obtaining a 3-dimensional picture, called a range
image, from which depth information was mapped onto each pixel. Next, we describe
the method of alighment of the range images from different positions into a single
coordinate system. Finally, we describe the method for generating a single

3-dimensional model by merging range images which have already been aligned.

(1) Measurement
A laser scanner is a device for obtaining a range image by irradiating a real object with
a laser beam. This measurement gives us the accurate length from viewpoint to the

surface of the real object. The lengths are mapped onto each pixel of the range image as
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depth information. In this thesis, we used a laser scanner called VIVID910, a product
of KONICA MINOLTA, Inc.

Since the position of a laser scanner must be fixed when measuring a real object, the
shape of the object's back and the portion that is in shade cannot be acquired in one
measurement. Thus, it is necessary either to rotate the object or to change scanner's
position for measuring from sufficient multiple positions to enable us to measure the
entire object surfaces.

In this thesis, we measured the specimens of skulls of fowls. These samples included
the following breeds of native Japanese fowl: five Gifu-Jidoris, five Satsuma-Doris
(Dori or Tori means a fowl in Japanese.), five Syamos, five Ko-Syamos (Ko- means
small in Japanese.), five Hinaidoris, five Shokokus, two Koeyoshis, five Tomarus, and
five Totenkos. Also included were four European White Leghorns, five Red
Jungle-fowls, one Grey Jungle-fowl, and one Ceylon Jungle-fowl. The breeds are the
most standard and popular egg-breeds and we used them as benchmarks in the
analysis of the phylogenetic relations.

We measured the skulls of 53 individual fowls belonging to 13 different species.
Considering complexity of a shape of each individual fowl, measurements from 11

different viewpoints are enough to model the fowl.

(2) Alignment

The range images described in the previous section cannot be merged into a single
3-dimensional shape model because they are placed in different camera coordinate
systems that depend on the position of the laser scanner at the time of measurement.
Until now, the method of alignment of such range images into a single world coordinate
system involved the use of a software operation proposed by Besl and McKay [22] and
Nishino et al. [23]. In our research, using this method, we aligned 11 range images per

each individual into a single world coordinate system.

(3) Merging

The range images aligned into a single coordinate system in the previous section are a
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simple set of coordinates of 3-dimensional points without connectivity, face information,
etc. In those range images, since the points that were measured from different
viewpoints were measured repeatedly, the point density changes with places.
Therefore, it is difficult to analyze the geometrical shape of the range images.

To solve this problem, we considered merging range images already aligned and
representing the geometrical shape of the real object as a mesh model with face
information. Until now, Wheeler et al. [24] proposed a method of merging range images
and generating a mesh model using the Signed Distance Field. In our research, by
using this method, we generated the mesh model of each individual.

Figure 4.6 shows an example of merging. This is a merged mesh model of a Gifu-Jidori.
Such data obtained by merging are satisfied with all requests for "3-dimensional shape

model," i.e., can be applied to our proposed method.

Figure 4. 6: Merged mesh model of a Gifu-Jidori

4.4.3 Analysis using SAls and the result

We generated SAls from 3-dimensional shape models of fowl skull datum. And, we
calculated the distances between all pair of 3-dimensional shape models. Regarding
the distance as dissimilarity, we generated the dendrogram of relationships of fowl
skulls by performing hierarchical cluster analysis.

We prepared 53 samples (13 species) of fowl skull datum. We generated SAIs with
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20x 4> =20480 nodes. Then, when we calculate the distance between 3-dimensional
shape models, we need a characteristic node every SAI. Here, we used the specific
region named "stop." The "stop" is regarded as an important region for classifying the
skull shape of not only fowls but also of many animal species. We performed flexible
method ( f = —1/ 4 ) of hierarchical cluster analysis. Then, we generated the
dendrogram of relationships of the breeds (See Fig. 4.7). The horizontal axis is

expressed the distance between clusters.
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Figure 4. 7: The dendrogram of the relationships of the breeds

4.4.4 Discussion

From the dendrogram (See Fig. 4.7), we can see generated clusters of {shamo #1,
shamo #3, shamo #4}, {koshamo #2, koshamo #4}, {gihu #2, gihu #3, gihu #5}, thinai #1,
hinai #2, hinai #4, hinai #5, hinai #3}.
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Other samples are not classified into one cluster, if they belong the same species. We
consider that this unclassified is occurred in the cause of partial lack of fowl skull
datum. Figure 4.8 shows one example of the complete specimens of the fowl skull.
However some specimens, as shown in Fig. 4.9, lack some portions (in this case, the
portion of the jaw lacks). Considering the case to generate the SAIs from the complete
specimen and the specimen which is obtained by removing some portion from the same
specimen. Two SAls obtained from them should be quite different in spite that they are
from the same origin.

However, partial SAIs far from the area corresponding to the lacking portion should be
similar to each other. That is why we use the weighted distance between two SAls as
the dissimilarity of the 3-dimensional shape models. Fortunately, the "stop" area of

fowls skills hardly ever lack.

Figure 4. 8: Fowl skull with no lack and convergence circumstances of the mesh

Figure 4. 9: Fowl skull with partial lack and convergence circumstances of the mesh
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Chapter 5 Conclusion and Future Work

In this thesis, we improved the spherical-attribute-image (SAI) method for complicated
objects with depressions and partial fractures. For achieving that, we proposed two
novel methods: one is to take advantage of a data set called “guiding intermediate
shapes” in order to robustly obtain the semi-regular mesh which sufficiently
approximates the original 3-dimensional shape model with depressions. The other is to
define the distance between two 3-dimensional shape models using appropriately
weighted differences between all pairs of nodes on their SAls in order to reduce the
influence of partial fractures. In actuality, we verified the effectiveness of our proposed
methods.

First, we described the concept and the algorithm of the original SAI method. When
SAls are generated from 3-dimensional shape models, it is necessary to obtain the
semi-regular mesh which has the two features: the approximation of 3-dimensional
shape model's surface and local regularity. However, it is sometimes impossible for this
method to obtain such a mesh. We guessed that this impossibility is caused by
realizing the two quite conflicting features simultaneously, not the two-step manner.
Then, we divided this obtaining process into two steps. Concretely we first obtain a
series of guiding intermediate shapes which gradually deform from the initial
spherical mesh model to the target model; in this time we do not consider the
local-regularity at all. Then we fit the initial mesh model onto a series of models in
order considering the local regularity. As a result, we made it possible to obtain the
mesh satisfied with both features.

Next, we compared our proposed method for generating SAIs with the original SAI
method with respect to their accuracy and computational time using a virtual 3D
model. We actually illustrated the effectiveness of our proposed method using some
statistical measures, e.g. variation. Moreover, our method could use coarse point cloud
as the guiding intermediate shapes, since the shapes only need to roughly guide the
deformed mesh. As the result, we confirmed that our method achieved high-speed

generation of SAls through the comparison.
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Next, we redefined the distance between two 3-dimensional shape models using their
SAls. We appropriately weighted the difference between two simplex angles, which are
geometrical attributes mapped on the SAls, in accordance with their positions on the
SAls in order to reduce the influence of the partial fractures. And we proposed a fast
calculation of the distance using “Reference Table;” the order of the calculation is O(n),
where n is the number of nodes of SAIs.

After that, we performed the osteometrical analysis of fowls using our proposed
methods and hierarchical cluster analysis; the samples consisted of the skulls of 53
fowls (13 kinds of species) and some of them lacked a jaw part. We actually illustrated
the result using a dendrogram.

Considering the case of existing partial fractures again, one definitely reduces the
influence of them at the analysis. It is generally considered that there are the two
methods for realizing that as follows: (1) limitation of the areas which are used for the
analysis and (2) use of distances which is a sum of appropriately weighted differences
between all pairs of nodes on their SAls, that is, our proposed method. Note that, the
original SAI method may accept the former method. Although the question “which is
better?” is still an open problem, our proposed method may have an advantage to

cleverly, i.e., without no pre-processing, reduce the influence.
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