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Abstract 
In 3-dimensional image analysis, the methods through converting shape information of 

the target object into the unified data format, which is completely independent of its 

shape, are widely used. The Spherical-Attribute-Image (SAI) method is one of such 

methods. In the SAI method, a 3-dimensional shape model is first approximated with 

the mesh structure. Next geometrical attribute defined on each point of the mesh is 

mapped onto a spherical surface. Shape information of any model is expressed on the 

spherical image. The image, called SAI, is used for the analysis. 

In the process of constructing the SAI, the deformable surface method is used. The 

method deforms the spherical mesh into the model by converging some metric about 

difference between the two. In the case that the model is quite different from a sphere, 

for example the model including some depressions, however, the wrong convergence 

happens and resultantly prevents to obtain an appropriate SAI. Then, we propose a 

method for leading to the correct convergence using the intermediate shape model 

between the model and a sphere. 

In the SAI method, the SAI obtained from some model may be quite different from the 

image obtained from the partially lacking model, especially in the case lacking regions 

are bigger. That has an adverse affect on the analysis. Then, we propose a method for 

reducing the affect by appropriately weighting the difference of the geometrical 

attribute between two SAIs. 

In actuality, we measured skulls of fowls with a laser scanner and generated precise 

3-dimensional shape models of their skulls. Using these models we generated and 

analyzed their SAIs, and estimated phylogenetic relationships between related breeds 

of the fowls for evaluating validity of our proposed method. 
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論文要旨 

３次元画像解析において，解析対象物体の特徴を物体形状に全く依存しない統一されたデータ

形式に変換し，解析を行う手法が広く用いられている．その手法の一つである Spherical 

Attribute Image (SAI) 法では，３次元形状モデルをメッシュ構造で表面近似し，メッシュ上

の各点で定義される幾何学的特徴量を球面上にマッピングし，形状情報を球面上で表現した

SAI と呼ばれるデータ形式に変換し，解析を行う． 

データ変換の過程において，球状メッシュを変形しモデル表面に収束させていく Deformable 

Surface の手法が用いられているが，窪み箇所を含むモデルのような，球と形状が大きく異な

るモデルでは誤収束のため好ましい変換を得ることが困難である．そこで，球とモデルの中間

的な形状データを用いて誤収束を回避する手法を提案する． 

また SAI 法では，ある形状モデルから得られる SAI と，そこから一部分が欠損したモデルか

ら得られる SAI とでは，欠損の程度によっては大きく異なってしまい，解析に悪影響を与える

という問題がある．そこで，SAI 間の幾何学的特徴量の差に適切な重み付けを行うことにより，

欠損の影響を軽減する手法を提案する． 

実際に，レーザースキャナを用いて鶏の頭蓋骨標本を測定し生成した３次元形状モデルを用い

て，提案手法により SAI を生成，解析し，鶏の種間の系統関係の推定を行い，本手法の有用性

を示す． 
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Chapter 1 Introduction 
 
About the shape information of a 3-dimensional shape model which is measured in any 

way, 3-dimensional analysis is a method that we analyze its structure, let it lack 

unnecessary information and extract characteristic information. About the main 

purposes of doing 3-dimensional analysis, we list the industrial purpose, the medical 

purpose, and so on. We give examples which are quality control by checking the shape 

of products and the transformation of the examples, and we support for medical 

practice by measuring and analyzing a part of the human body shape. 3-dimensional 

analysis is essential for our life now. 

The spherical attribute image (SAI) method is a method for analyzing 3-dimensional 

shape by mapping a geometrical attributes of 3-dimensional mesh model onto a sphere 

in order to represent the entire shape of a 3-dimensional object. The attributes are 

defined on each point of the mesh and the SAIs are invariant against translation, 

rotation and scaling of the object. With the SAI, by using the "simplex angles" as the 

geometrical attributes mapping onto a sphere, it is possible to reconstruct the original 

3-dimensional shape from the SAI only. Moreover, since the SAIs are invariant against 

translation, rotation and scaling, it is possible to compare the difference of object 

shapes by comparison of the SAIs whether the original object had been translated and 

rotated. By linear interpolation of the attributes on the different SAIs, the synthetic 

3-dimensional shape can be reconstructed. This synthetic shape is the neutral shape of 

the multiple origins. 

To generate SAIs, some methods of mapping geometrical attributes defined at each 

point of 3-dimensional models onto spheres have been proposed, including: Gauss 

Mapping [1], Extended Gaussian Image (EGI) [2] and Complex Extended Gaussian 

Image (CEGI) [3], etc. 

These method can only treat the objects which are convex and topologically equal to a 

sphere. However, objects which are usually analyzed are not satisfied with this 

condition. Because of this, we use SAI method in this thesis. 

For generating SAIs, we first need to approximate surface of 3-dimensional model by 
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semi-regular mesh model. Semi-regular mesh is the mesh satisfied with the following 

two features. One is homogeneity, that is, all nodes of the mesh have three neighbor 

nodes. The other is local regularity, that is, all distances between any two neighbor 

nodes are equal. In this thesis, we used the Deformable Surface Method. This method 

deforms a spherical original mesh to fit to the object's surface by iterative calculation. 

With regard to the deformable surface method, some related research was carried out: 

Irregular meshes [4], finite element models [4], balloon models [5] and the applications 

of medical imaging [6]. 

However, in practice, if the mesh converges onto a part of depression by the original 

method [7], some unfavorable cases are happened. Because the mesh covers over the 

depression and does not fit onto the area, the mesh is satisfied with local regularity 

and bad approximation of surface of 3-dimensional model. Otherwise, because the 

mesh approximates the depression of surface of 3-dimensional model by emphasizing 

the parameter of the mesh approximation, the mesh has good approximation of surface 

of 3-dimensional model and no local regularity. 

The cause of the problem is to realize the two features by one step. It is difficult to 

obtain the mesh with two features: good surface approximation of 3-dimensional shape 

model and local regularity. We propose this new method, and examine this advantage. 

And, for solving this problem, we obtain one feature by one step. After all, we realize 

two feature by two steps. Concretely speaking, (1) we try to obtain good surface 

approximation of 3-dimensional shape model, and generate a series of models whose 

shapes are gradually changing from initial sphere mesh to the boundary of 

3-dimensional shape model, and (2) we fit the sphere semi-regular mesh onto a series 

of models in order considering the local regularity. Moreover, these models from initial 

sphere mesh to the boundary of 3-dimensional shape model are named "guiding 

intermediate shapes". 

Moreover, using SAIs generated from 3-dimensional shape models, we are able to do 

3-dimensional analysis among any 3-dimensional models. Because the geometrical 

attributes are mapped onto SAI's surface, we define the dissimilarity between two 

SAIs by comparing their geometrical attributes. And, we define the distance between 



- １０ - 

two 3-dimensional shape models by taking advantage of the dissimilarity between two 

SAIs. Moreover, assuming the distances among several 3-dimensional shape models to 

be similarities, and comparing similarities, we can classify several 3-dimensional 

shape models by statistical classifier, e.g. hierarchical cluster analysis [13]. Finally, we 

generate dendrogram. 

The thesis is organized as follows: In Chapter 2, we describe the concept and algorithm 

of the spherical attribute image (SAI) method that is one of the methods for mapping 

geometrical attributes of 3-dimensional shape models onto spheres. In Chapter 3, we 

first pick up the problem of the former method of generating SAIs. Next, we propose 

the new method and prove the advantage of our proposed method. In Chapter 4, we 

define the distance between two 3-dimensional shape models by taking advantage of 

two SAIs. Moreover, we analyze several 3-dimensional shape models, and generate 

dendrogram. Finally, in Chapter 5, we conclude this thesis and describe future works. 
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Chapter 2 Spherical Attribute Image (SAI) 
 

In this chapter, we describe the concept of the spherical attribute image (SAI) method, 

one of the methods for mapping the geometrical attributes of the 3-dimensional mesh 

surface onto a sphere; we then describe the algorithm for generating an SAI. 

 

2.1 The concept of the Spherical Attribute Image (SAI) method 
The spherical attribute image (SAI) method is a method for mapping a geometrical 

attributes of 3-dimensional mesh model onto a sphere in order to represent the entire 

shape of a 3-dimensional object. The attributes are defined on each point of the mesh 

and the SAIs are invariant against translation, rotation and scaling of the object. 

With the SAI, by using the "simplex angles" as the geometrical attributes mapping 

onto a sphere, it is possible to reconstruct the original 3-dimensional shape from the 

SAI only. 

Moreover, since the SAIs are invariant against translation, rotation and scaling, it is 

possible to compare the difference of object shapes by comparison of the SAIs whether 

the original object had been rotated. 

By linear interpolation of the attributes on the different SAIs, the synthetic 

3-dimensional shape can be reconstructed. This synthetic shape is the neutral shape of 

the multiple origins. 

 

2.1.1 Representation of a 2-dimensional curve 

Before representation of a 3-dimensional shape, it is helpful to understand how one 

can represent a 2-dimensional shape. Now, there is a sequence of 2-dimensional points 

as the object representation. A natural way of representing this shape is the 

approximation of their boundaries to the list of line segments as shown in Fig. 2.1. 

Here, the line segments have equal lengths. The connected points of the lines are 

called "nodes;" one can discretely map the geometrical attributes of all nodes onto a 

circle while keeping the sequence of the nodes (See Fig. 2.2). 

Since they are mapped onto a circle, these attributes are invariant against rotation 
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and scaling. If the line segments have sufficient density, the representation can make 

the same attribute-mapped circle as the object that had been rotated. Scaling is the 

same. 

 

Figure 2. 1: Approximation of 2-dimensional shape by the line segments 

 

Figure 2. 2: Mapping the Attribute onto a circle 

In this representation, each geometrical attribute is the "turning angle" that is one of 

the discrete curvatures. The turning angles are defined at each node of the line 

segments, and they are exterior angles of the two lines connected to the node (See Fig. 
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2.3). 

 

Figure 2. 3: Definition of turning angle 

Under this definition, a turning angle α  is positive when the curve at the node is 

convex; α  is negative when the curve is concave, and α  is zero when the curve is 

flat. 

In addition, since these attributes are defined by only the relative position of the node 

and the two neighbor nodes, they are invariant against rotation. And since these 

attributes are angles, they are invariant against scaling. These attributes are suitable 

for this method of shape representation. 

The algorithm of this method of comparing multiple 2-dimensional shapes is shown 

below: 

(1) Approximate a boundary of a 2-dimensional shape to a list of line segments 

(2) Calculate the turning angles as geometrical attributes at all nodes 

(3) Map the attributes onto a circle, keeping their sequence 

(4) Turn the circles to minimize the difference of the attributes that are mapped at the 

same place on the circle 
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(5) Compare the attributes at each place on the circle 

 

Then, the circle on which the turning angles are mapped can reconstruct the original 

2-dimensional shape. If the positions of two neighbor nodes 1P , 2P  are known, a node 

P  has to exist on the perpendicular bisector of the line connected between the two 

neighbors. And, from the definition of the turning angle, the absolute value of the 

turning angle is proportional to the distance between P  and the line connecting the 

two neighbors. That is, the position of a node P  can be determined by the turning 

angle at the node P . 

From these facts, if it has the same number of nodes, arbitrary line segments can 

transform to the original shape by minimizing the "error" iteratively at all nodes 

simultaneously; here, the error is the distance between a position of the node and the 

"true" position of the node that is determined by the positions of the two neighbor 

nodes and the turning angle. 

In this method, generation of the attribute-mapped circle from the shape is called 

"forward mapping," and reconstruction of the original shape from the 

attribute-mapped circle is called "inverse mapping." 

 

2.1.2 Expansion to 3-dimensional surfaces 

The SAI method is the direct expansion to 3-dimension of the method of representing 

2-dimensional shapes described in the previous section. The "SAI" is a sphere on whose 

surface the geometrical attributes of the original 3-dimensional shapes are mapped. 

In the SAI method, first, the "semi-regular" mesh model approximates the boundary of 

3-dimensional shape. The semi-regular mesh is the mesh that is not self-interacting, 

and all the vertices have exactly three neighbor vertices. The mesh is a direct 

expansion of the line segments; all their nodes have exactly two neighbor nodes. 

In this method, the mesh has to satisfy a constraint called "local regularity." This 

constraint is the expansion to 3-dimension of the constraint that all line segments have 

equal length. We will describe local regularity in a 3-dimension case in Section 2.2.3. 

Next, the "simplex angle," one of the geometrical attributes, is calculated at each node 
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of the mesh. The attribute is an expansion to 3-dimension of the turning angle. Like 

the turning angle, the simplex angle can be calculated only by relative positions of the 

node and its three neighbors; its sign shows whether the surface is convex or concave, 

and its absolute value is proportional to the distance between the node and the triangle 

that is made by the three neighbors. We will describe the simplex angle in Section 

2.2.1. 

In the SAI method, as in the case of 2-dimension, "forward mapping" is the generation 

of the attribute-mapped sphere from the 3-dimensional shape, and "inverse mapping" 

is the reconstruction of the original 3-dimensional shape from the attribute-mapped 

sphere. 

 

2.2 The SAI Algorithm 
In this section, we describe the details of the SAI algorithm. We first describe the 

definition of the simplex angle. Next, we describe how to make the geodesic dome be 

the initial spherical mesh for deforming, and how to deform the mesh to the object's 

surface. Then, we describe how to map the simplex angle calculated at each mesh node 

on the sphere using the property of deformable surface that the mesh nodes before and 

after deforming have one-to-one correspondences. 

 

2.2.1 Simplex Angle 

The simplex angle is a geometrical attribute that calculated at each node of a 

semi-regular mesh by the relative positions of the node and its three neighbor nodes. 

Let P  be the position of a node, and 1P , 2P , 3P  be the positions of three neighbor 

nodes of P . And let O  be the center of the circumscribed sphere of the tetrahedron 

P 1P 2P 3P , C  be the center of the circumcircle of the triangle 1P 2P 3P . And let Z  

be a line connected O  and C , and Π  be a plane that includes Z  and P  (See Fig. 

2.4). Moreover, consider a section plane of the circumscribed sphere of the tetrahedron 

P 1P 2P 3P  by the plane Π . 

On the section plane, the circumcircle of the triangle 1P 2P 3P  becomes the subtense of 

P . The exterior angle φ  of P  on the plane is the simplex angle at the mesh node P  
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(See Fig. 2.5). 

 

Figure 2. 4: The concept of simplex angle 

 

Figure 2. 5: Definition of simplex angle 
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From these definitions, the simplex angle φ  can be written as Equation (2.1), where 

r  is the radius of the circumcircle of the triangle 1P 2P 3P , R  is the radius of the 

circumscribed sphere of the tetrahedron P 1P 2P 3P , and N  is the normal vector of 

the triangle 1P 2P 3P . 

( )
( )NPPsign

R
r

NOCsign
R

OC

⋅=

⋅=

1sin

cos

φ

φ
 (2.1) 

Note that the domain of φ  is [ ]ππ ,− . 

Under this definition of the simplex angle, like the turning angle, because this 

geometrical attribute is an angle that is calculated only by the relative positions of the 

node and its neighbors, the simplex angle is invariant against rotation and scaling. 

Moreover, when the simplex angle is positive, the node P  is over the neighbor 

triangle 1P 2P 3P . When it is negative, P  is under the triangle. And when it is zero, 

P  is on the triangle. That is, when the simplex angle is positive/ negative/ zero, the 

surface at the node is convex/ concave/ flat. And, from the definition, the absolute value 

of the simplex angle is proportional to the distance between the node P  and the 

neighbor triangle 1P 2P 3P . 

These features of the simplex angle show that this angle is a natural expansion to 

3-dimension of the turning angle. The SAI is generated by calculating this simplex 

angle at each node of the shape-approximated mesh and by mapping them onto the 

sphere. 

 

2.2.2 Geodesic Dome: generating the initial mesh 

The initial mesh of the deformable surface has to be a sphere-circumscribed 

semi-regular mesh. In this thesis, we first generated a sphere-circumscribed regular 

mesh named the “geodesic dome,” and dualized it onto the semi-regular mesh. 

Generally, geodesic domes are sphere-circumscribed polyhedrons made of triangles. 

There are thousands of such polyhedrons, but for generating a more symmetrical mesh, 

it is desirable that: (1) the ratio of the lengths of three sides of the triangles is nearly 
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equal to 1, that is, each triangle of the polyhedron is nearly equal to a regular triangle 

(2) the triangles are as similar in shape as possible. In the sphere-circumscribed 

polyhedrons, it is well-known that there are three polyhedrons that completely fulfill 

the conditions, that is, there are three regular solids as shown in Fig. 2.6 made of only 

regular triangles: the regular tetrahedron, the regular octahedron, and the regular 

dodecahedron. 

 

Figure 2. 6: Regular tetrahedron, octahedron and dodecahedron 

Since, in these three polyhedrons, the regular dodecahedron is most similar to the 

sphere, dividing its facial triangles can generate a more sphere-similar geodesic dome. 

First, bisecting three edges of each triangle and generating two new lines connecting 

between the new point and the original points makes the polyhedron more 

sphere-similar. Therefore each original triangle is divided into four triangles. Because 

this new polyhedron is not circumscribed to the sphere, the newly generated points 

(the medians of three edges) have to project from the center of the sphere onto the 

surface of the sphere. As a result, this operation divides each triangle into one regular 

triangle and three isosceles triangles. By repeating this operation at all vertices of the 

polyhedron, a more sphere-similar geodesic dome can be generated. Figure 2.7 shows 

the aforementioned process. In the figure, a red triangle is a regular triangle. 
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Figure 2. 7: The processes of dividing the geodesic dome 

Iterating this operation can generate the geodesic dome with arbitrary density. After 

iterating n -times, the generated geodesic dome has n420×  triangles. In this thesis, 

we used the geodesic dome with 5=n  shown in Fig. 2.8 as the initial mesh for 

generating SAIs. This geodesic dome is a polyhedron that contains 20480 triangles. 

 

Figure 2. 8: Geodesic dome that contains 20480 triangles 

Next, calculating the dual mesh of the geodesic dome (notice that it is a regular mesh) 

can generate a semi-regular and sphere-similar mesh. In this case, the generated 
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semi-regular mesh has 20480 vertices; all the mesh nodes have exactly three neighbor 

nodes, and this mesh is made up of many hexagons and very few pentagons (See Fig. 

2.9). 

  

Figure 2. 9: Generated dual mesh and its macrograph 

 

2.2.3 Deformable Surface 

In this section, we describe how to deform the initial mesh that is the spherical 

semi-regular mesh described in the previous section to the 3-dimensional objective 

model. The term “model” means the object whose shape is approximated. This method 

assumes that the barycenter of the initial mesh is equal to the barycenter of the 

objective model and that the initial mesh is large enough to fully cover the model. 

Now, consider the two imaginary “forces;” they can be calculated by the relative 

positions between the model and each node of the mesh, and by the “smoothness” of the 

mesh itself. And these forces independently move each node. By iteratively solving the 

equation of motion about these forces, the mesh is deformed to the model. 

In this method, it is important that the mesh’s geometrical structure is retained during 

the deformation, that is, that the three neighbors of each node are fixed. Therefore, by 

using a deformable surface, each node of the initial mesh and each node of the 

deformed mesh have one-to-one correspondences. These correspondences make it 

possible that the attributes defined at each node of the deformed mesh are mapped 

onto the initial spherical mesh. 
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Moreover, by keeping a constraint named “local regularity” during deformation, the 

original shape can be reconstructed from the SAI that is an attribute-mapped sphere. 

These features are products of the force defined by the smoothness of the mesh itself, 

that is, the force is the “internal force” described in the following section. 

Local regularity is the expansion to 3-dimension of the constraint that all line 

segments have equal lengths. Specifically, at each node of the mesh, this constraint is 

that the foot perpendicular from the node to the neighbor triangle is equal to the 

barycenter of the neighbor triangle. That is, as shown in Fig. 2.10, let P  be the node 

of the mesh, and 1P , 2P , 3P  be the three neighbor nodes. And consider the tetrahedron 

P 1P 2P 3P . Local regularity is the constraint that the foot Q  of perpendicular from 

P  to triangle 1P 2P 3P  is equal to the barycenter G  of triangle 1P 2P 3P . 

 

Figure 2. 10: Definition of local regularity 

The algorithm of deformable surface can be written as follows: 

(1) Calculate the “forces” at each node of the mesh 

(2) Move each node by the equation of motion about the forces 

(3) If the sum of distances between each node and the model is smaller than the 

threshold, this algorithm is finished 
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(4) Otherwise, go back to Step (1). Step (1) and (2) are repeated until the sum of 

distances between each node and the model is smaller than the threshold. 

 

The equation of motion at the i th node iP  of the mesh can be written as Equation 

(2.2). 

IntExt
ii FF
dt
dPk

dt
Pd

βα +=+2

2

 (2.2) 

Here, ExtF  is the force named “external force” that is defined by the distance between 

the node and the model, and this force makes the node closer to the model and deforms 

the shape of the mesh. IntF  is the force named “internal force” that is defined by the 

internal structure of the mesh itself, and this force makes the mesh keep the structure 

of the semi-regular mesh, as well as local regularity. 

α , β  are the coefficients for adjusting the influences of two forces. If α  is too large, 

the shape of the mesh becomes more similar to the model but the mesh cannot keep the 

structure of a semi-regular mesh and local regularity. On the other hand, if β  is too 

large, the shape of the mesh becomes the shape that completely retains the structure 

and the constraint, that is, the shape becomes a sphere. There is a trade-off between 

accuracy of shape approximation and regularity of the mesh. In the following section, 

we concretely describe the external and internal forces. 

 

(1) External Force (Data Force) 

The external force is defined by the relative positions of the node and the model, and 

this force deforms the mesh to the shape of the model. This force considers the model to 

be a simple set of the 3-dimensional points, and does not use its connectivity. 

Consider the i th node iP  of the mesh. If the “closest” point ( )iclM  of iP  in the 

model is given, the external force ExtF  at iP  is defined as Equation (2.3), where iN  

is the normal vector of the neighbor triangle of the node iP . 

( )
( )( ) iiicli

icli

Ext NNMP
D

MP
GF ⋅
















=  (2.3) 
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Here, the term “closest” means that the Euclidean distance between the two points is 

closest. ( )xG  is 1 when the parameter x  is 1 or less, and decrease rapidly when x  

is over 1. D  is the threshold for judging the correspondence between the node and the 

closest point in the model. If the distance between the two points is larger than D , the 

correspondence may be incorrect; this value has to be adjusted according to the scale. 

The suitable choice of the ( )xG  and D  reduces the situation that the deforming falls 

into local minima. In this thesis, we used the function shown in Equation (2.4) as 

( )xG . 

( )
( )
( )
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Also, projecting the external force on the direction of iN  reduces the negative effect of 

the external force on the local regularity. 

Generally, if the model is the very dense model such as the one scanned with a 

high-performance laser scanner, it is difficult to search the closest point ( )iclM  in the 

model. Let N  be total number of the points in the model and let n  be number of the 

nodes of the mesh, the naive all-search algorithm costs ( )NO  at each node in 

computational time. 

But, in the deformable surface method, only the mesh is changed and the model is 

fixed during deformation. Therefore, by using k-d tree data structure for keeping the 

positions of the points, the computational cost of searching can be reduced. Accordingly, 

calculation of external force at each node costs ( )NO log  in computational time, the 

total computational cost at each stage of the iteration is ( )NnO log  

 

(2) Internal Force (Smoothness Force) 

The internal force is defined by the relative positions between the node and the three 

neighbor nodes; the force makes the mesh keep its local regularity. In Section 2.1, we 

describe how the circle, the point on which is mapped turning angles, can reconstruct 

the original shape. 

We have described that the SAI method is the expansion to 3-dimension of this method, 
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and that local regularity is the expansion of the constraint that all line segments have 

equal lengths. In the case of 2-dimension, it is because the node has to be bound on a 

specific line that the constraint is required. 

In an SAI, let P  be a node of the mesh, let 1P , 2P , 3P  be the three neighbors of P , 

and Q  be the foot of perpendicular from P  to the triangle 1P 2P 3P . The simplex 

angle mapped on P  can determine the distance between P  and the triangle 

1P 2P 3P . That is, if the simplex angle and the position of Q  are given, the 

3-dimensional position of P  can be calculated, because P  is bound on the 

perpendicular of 1P 2P 3P  that passes Q . 

Now, since Q  is a point on the triangle 1P 2P 3P , the position of Q  can be 

represented as follows. 

332211 PPPQ εεε ++=  

1321 =++ εεε  
(2.5) 

1ε , 2ε , 3ε  are called “metric parameters.” The position of P  can be determined by the 

positions of its three neighbors 1P , 2P , 3P , the simplex angle, and metric parameters. 

As the result, “local regularity” brings Q  close to the neighbor triangle’s barycenter 

321 3
1

3
1

3
1 PPPG ++= , that is, it brings metric parameters close to 

3
1

321 === εεε . 

Finally, the internal force IntF  at the node P  can be defined as Equation (2.6). 

)( QGFInt −=  (2.6) 

 

2.2.4 From Shape to Attribute: Forward Mapping 

In this section, we concretely describe the method to calculate the equations of motion. 

From the discussions in the previous sections, the equation of motion of the i th node 

iP  of the mesh can be written as Equation (2.7). 

IntExt
ii FF
dt
dPk

dt
Pd

βα +=+2

2

 (2.7) 

Since this equation is a continuous differential equation, it is difficult to solve it 

analytically. Therefore, we solved it numerically by using the Euler method that is one 

of the discretized numerical methods. The Eular method solves the equation by 
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iteratively calculating Equation (2.8), where ( )t
iP , )(

,
t
iExtF , and )(

,
t
iIntF  are the i th node, 

its external force, and its internal force at the i th iteration, respectively. 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )t
iInt

t
iExt

t
i

t
i

t
i

t
i FFPPkPP ,,

211 1 ++−−+= −−−  (2.8) 

By iteration of this calculation until the error function E  is smaller than the 

threshold, this method can generate a mesh that is fitted to the model. E  is the sum 

of all distances between each node iP  and its closest point ( )iclM , that is, can be 

written as Equation (2.9). 

( )∑=
i

icliMPE  (2.9) 

 

2.2.5 From Attribute to Shape: Inverse Mapping 

In this section, we describe how we reconstructed the original shape from an SAI. In 

forward mapping, the two forces affect each node of the mesh: external force and 

internal force. The internal force is similar to that one in forward mapping. Concretely, 

it can be written as )( QGFInt −= . 

But, in the inverse mapping, the external force is the force to keep the distance 

between the node P  and its neighbor triangle 1P 2P 3P  at the distance calculated by 

the simplex angle. As we have described in section 2.2.1, the simplex angle is 

proportional to the distance between the node P  and the triangle 1P 2P 3P . 

Here, the distance t  can be calculated by solving Equation (2.10) which is a 

transformation of the equation of simplex angle, where r  is the radius of the 

circumcircle of the triangle 1P 2P 3P , and l  is the distance between the center of the 

circumscribed sphere of the tetrahedron P 1P 2P 3P  and the foot of the perpendicular 

from P  to the neighbor triangle 1P 2P 3P . 

lr
t

lr
t

+
+

−
= arctanarctanφ  (2.10) 

Therefore, the distance t  can be written as Equation (2.11), where φ  is the simplex 

angle at the node P . 
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As the result, the internal force IntF  in the inverse mapping is defined using t  as 

follows. 

( )NPPtFExt 1−=  (2.12) 
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Chapter 3 Generation of SAIs with no insufficiency of 
approximation at depression  
 
In this chapter, we solve the problem of insufficiency of approximation of semi-regular 

mesh to 3-dimensional shape model when generating SAI. For generating SAIs with no 

insufficiency of approximation at depression, we operate several steps for the mesh to 

get two features, local regularity and an approximation of surface of 3-dimensional 

model. First, we get the boundary of 3-dimensional shape model. Next, we construct a 

set of several shape datum called “guiding intermediate shapes” from the boundary of 

3-dimensional shape model. The guiding intermediate shapes changes from sphere 

shape which is equal to initial mesh to the shape which is equal to the boundary of 

3-dimensional shape model. Finally, by converging the mesh to guiding intermediate 

shapes from sphere shape to the shape which is equal to the boundary of 3-dimensional 

shape model, we get the semi-regular mesh which has two features of local regularity 

and the approximation of surface of 3-dimensional model. Moreover, by mapping 

geometrical attributes onto a sphere, we generate SAI of 3-dimensional shape model. 

In this chapter, first, we describe a defect of former method when generating SAIs at 

depression. And, we describe the concept and abstract of proposed method against the 

problem. Next, as ready of constructing guiding intermediate shapes by our proposed 

method, we describe morphing closed curve with renewing energy function defined at 

nodes constructing closed curve step by step. And, we describe constructing guiding 

intermediate shapes and generating SAI using guiding intermediate shape. Finally, we 

conduct an experiment using artificial 3-dimensional shape model and show the 

advantage of our proposed method. 

 

3.1 Defect of former method generating SAI at depression 
With former method generating SAI at depression, we use one of the deformable 

surface methods that initial mesh which is sphere shape put around 3-dimensional 

shape model, calculate iteratively, deform the shape, and fitting onto the surface of 

3-dimensional model. And, we try to construct semi-regular mesh which has two 
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features of local regularity and the approximation of surface of 3-dimensional model. 

Then, we generate SAI mapping geometrical attributes "simplex angle" onto a sphere 

surface. 

When approximating 3-dimensional shape model onto mesh model at depression, we 

have a problem that mesh is not converged onto surface of 3-dimensional model 

because the mesh covers over the depression. As a result of this converging local 

minima, the mesh is satisfied with only local regularity, but is not satisfied with the 

approximation of surface of 3-dimensional model (See Fig. 3.1). Or, the mesh is 

satisfied with only the approximation of surface of 3-dimensional model, but is not 

satisfied with local regularity (See Fig. 3.2). 

  

Figure 3. 1: Mesh with local regularity, and bad approximation of model surface 

  

Figure 3. 2: Mesh with no local regularity, and good approximation of model surface 

We regard the cause of this converging local minima as that we try for semi-regular 

mesh to acquire two features which are local regularity and the approximation of 

surface of 3-dimensional model with single process. 

Then, we propose a new method against this converging local minima at depression. 
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Our new method is that mesh acquires two features of local regularity and the 

approximation of 3-dimensional shape model not with single process but with 

multi-process. With single process, the mesh can not obtain all information need for 

two features from 3-dimensional shape model. However, the mesh can obtain 

information need for one feature with one process. Then, the mesh can obtain all 

information need for all features with multi-process. Note that we perform two 

processes in this thesis, because the mesh need two features. 

With first process, we generate the deformation series of 3-dimensional shape model 

without considering local regularity. With the second process, we obtain the 

approximation of 3-dimensional shape model which is satisfied with local regularity 

using the series. Concretely speaking about these two processes, (1) we construct a set 

of model datum called "guiding intermediate shapes" which shape changes from the 

shape of initial mesh to the boundary of 3-dimensional shape model. Note that guiding 

intermediate shapes have the feature of the approximation of 3-dimensional shape 

model., and (2) we converge semi-regular mesh onto guiding intermediate shapes one 

by one. And, we obtain for semi-regular mesh two features that are local regularity and 

the approximation of surface of 3-dimensional model. We use these two processes for 

not happening to the mesh converging local minima. 

 

3.2 Overview of Generating “guiding intermediate shapes” 
In this section, we describe the overview of generating “guiding intermediate shapes”. 

To generate guiding intermediate shapes, we first cut a series of proper sections. 

Second, we morph each section to a circle. Finally, we unify the results of morphing of 

all sections, and generate a series of 3-dimensional shape models which are guiding 

intermediate shapes. 

 

3.3 Morphing closed curve by gradual renewing of energy function 
In this thesis, for constructing guiding intermediate shapes, we morph closed curve 

which is expressed the list of line segments. Energy function for converging closed 

curve is defined at a node defined at the end of a line segment. 
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In this section, for example of morphing something converging by energy function, we 

consider closed curve defined energy function at each node of line segments. We morph 

closed curve from initial shape of closed curve to circular shape (sphere shape is 

expressed by regular polygon.) gradually by converging energy function to maximum 

or minimum. The detail definition of energy function is described at Section 3.3.3. 

 

3.3.1 Morphing by converging calculation with repeating same number of times 

We morph closed curve by converging calculation with repeating same number of times. 

Figure 3.3 shows the graph of energy function at converging calculation. The sum of 

repeating number of times is about 57000. The converging circumstances (See Fig. 3.4) 

every 5700 repeating number of times does not move constantly, and the result of 

morphing closed curve is not good. Unless we morph closed curve moving constantly, 

the distance of closed curve moving is long. The guiding intermediate shapes 

describing detail as follows are a set of models, and need to change the shape gradually. 

Because of this reason, this result is not satisfied with our proposed method generating 

SAIs at depression. Then, the moving distance of closed curve must be constant. 

 

Figure 3. 3: Graph of repeating number of times and energy with repeating same 

number of times 
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Figure 3. 4: Morphing by converging calculation with repeating same number of times 

 

3.3.2 Morphing by converging calculation with renewing energy function 

The method of morphing, by converging calculation with repeating same number of 

times, can not be realized morphing with closed curve constant moving. Then, we 

realize morphing with closed curve changing the shape constantly, by converging 

calculation with renewing energy function defined at each node of line segments. 

We morph closed curve by converging calculation with renewing energy function. 

Energy function is sum of two kinds of energy functions. One is the energy function 

called the “angle energy function” which is defined from angle between a node and both 

neighbor nodes. Another is the energy function called the “distance energy function 

“ which is defined from distance between two neighbor nodes. In this thesis, we assume 

that each distance between two neighbor nodes is constant. Because of this assumption, 

we don't renew distance energy function. In this section, we pick up angle energy 

function. 

 

(1) Renewing angle energy function 

The angle energy function is defined error between present angle and the angle at time 

of converging between a node and its neighbor nodes. Moreover, the angle energy 

function has function of closing present angle to the angle at time of converging. The 
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larger is the error, the larger is the angle energy function. The smaller is the error, the 

smaller is the angle energy function. Then, the angle at the time of converging is 

renewed by linear transform from the initial angle to the angle at the circle shape (the 

angle is equal to an interior angle of regular polygon). By this renewing the angle at 

the time of converging, we renew the angle energy function. 

 

(2) Results of morphing 

Figure 3.5 is a graph of repeat number of times and energy at converging calculation 

with renewing energy function. The beginning of repeat calculation shows energy 

decreasing and it shows converging by first energy function. Next, at the same time of 

renewing energy function, energy increases. Then, new converging is performed by 

new energy function. And so on, by repeating of renewing energy function and 

converging, we realize morphing with constant moving distance of closed curve (See 

Fig. 3.6). 

 

Figure 3. 5: Graph of repeat number of times and energy with renewing angle energy 

function 
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Figure 3. 6: Morphing by converging calculation with renewing energy function 

 

3.4 Generation of SAIs using guiding intermediate shapes 
In this section, we describe the detail about guiding intermediate shapes, and how to 

converge the mesh using guiding intermediate shapes. And, we describe how to 

construct guiding intermediate shapes. 

 

3.4.1 The guiding intermediate shapes 

The guiding intermediate shapes consist of a set of points. And, the guiding 

intermediate shapes guide mesh which initial shape is sphere (See Fig. 3.7) onto 

3-dimensional shape model (See Fig. 3.8). The guiding intermediate shapes are a 

sequence of several shapes changing from sphere shape to the shape of the 

approximation of 3-dimensional shape model (See Fig. 3.9). 
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Figure 3. 7: The mesh which initial shape is sphere 

 

Figure 3. 8: 3-dimensional shape model 

 

Figure 3. 9: The guiding intermediate shapes 
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3.4.2 Converging the mesh using guiding intermediate shapes 

We converge the mesh whose initial shape is sphere onto a guiding intermediate shape 

whose shape is near by the shape of initial mesh (See Fig. 3.10). We repeat converging 

the mesh several times renewing the guiding intermediate shape step by step, using 

the original SAI method. Finally, we converge the mesh onto a set of points which 

consist of 3-dimensional shape model. 

 

Figure 3. 10: Circumstances of converging the mesh using guiding intermediate shapes 

 

3.4.3 How to construct the guiding intermediate shapes 

In this section, we describe how to construct the guiding intermediate shapes. Various 

methods how to construct the guiding intermediate shapes are considered. Then, we 

consider the method to construct 3-dimensional guiding intermediate shapes by 

merging several 2-dimensional datum which express sections of 3-dimensional shape 

model. 

First, we do sampling sections of 3-dimensional shape model. And, we gradually morph 

the sections to the sections of the initial mesh which is the shape of circle by gradually 

renewing energy function that we describe its details in Section 3.3. Finally, we merge 

each result of morphed sections, and the results of merging sections are the guiding 

intermediate shapes. We describe the method and detail of constructing the guiding 

intermediate shapes as follows. 
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(1) Sampling outline of 3-dimensional shape model 

We do sampling the outline of 3-dimensional shape model. In this chapter, because of 

artificially generating 3-dimensional shape model, it is easy sampling the outline of 

3-dimensional shape model. However, in the case of obtaining 3-dimensional shape 

model by measuring a real sample, we take advantage of the fact that we describe 

following. Because the data which is obtained by measuring a real sample is expressed 

a set of triangle patches, a set of triangle patches’ boundaries which cross over the 

section expresses the outline of 3-dimensional shape model. 

 

(2) Morphing the outline of 3-dimensional shape model 

We morph the outline of 3-dimensional shape model to the shape of initial mesh which 

is circle. And, the results of this morphing the outlines are merged at all sections. We 

reverse this results. Then, they are the guiding intermediate shapes. About how to 

change the outline to circle shape gradually, we take advantage of repeat calculation by 

gradually renewing energy function whose detail is described in Section 3.3. 

Moreover, this energy function consist of two kind of energy functions, one is the angle 

energy function defined with the angle between a node and both neighbor nodes, 

another is the distance energy function defined with the distance between two 

neighbor nodes. 

 

(2.1) The angle energy function 

We define two vectors between a node and both neighbor nodes (See Fig. 3.11). Let the 

angle between two vectors be ( )πθπθ ≤<−]rad[ . Then, the angle when energy is 

minimum at converging a node is ( )πθπθ ≤<−rad][0 . The error between present 

angle and the angle when energy is minimum is expressed the error ratio as Equation 

(3.1). 

( )11
2 angle

0
angle <<−

−
= raterate

π
θθ

 (3.1) 

Using the error ratio, the angle energy function is defined as follows (See Fig. 3.12). 
2rateangleangleE =  (3.2) 
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The angle energy function angleE  takes minimum value at 0θθ =  (See Fig. 3.11). 

At each morphing process, the angle energy function is renewed every repeat 

calculation of converging the mesh. How to renew the angle energy function is 

changing the angle 0θ  when the energy is minimum at every morphing process. 

We use the linear transform between the angle startθ  at initial condition of the outline 

and the angle ( )( )polygonregular  of angleinterior goal −= πθ  of regular polygon whose 

shape is near by the shape of circle. And, we renew the angle 0θ  as follows. 

We assume generating N  morphing images. At generating n th morphing image, the 

angle energy function is defined by 
N
nt =  as Equation (3.3). Like normal repeat 

calculation, we repeat converging calculation until the sum of all energy functions 

which are the angle energy function and the distance energy function is less than a 

threshold. After converging calculation, the angle energy function is renewed by 

N
nt 1+

=  for generating 1+n th morphing image. 

( )10)1( goalstart0 ≤≤+−=

=

ttt
N
nt

θθθ
 (3.3) 

 

Figure 3. 11: The angle energy affecting between a node and both two neighbor nodes 
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Figure 3. 12: Graph of the angle energy function 

 

(2.2) The distance energy function 

We consider the distance d  between two neighbor nodes (See Fig. 3.13). Moreover, we 

define the distance 0d  when the energy is minimum at converging calculation. The 

error is expressed by the error ratio between present distance d  and the distance 0d  

which is the distance when the energy is minimum as Equation (3.4). 

( )+∞<<−
−

= dist
0

0
dist 1 rate

d
dd

rate  (3.4) 

Using this error ratio, we define the distance energy function as Equation (3.5). We 

consider Equation (3.5) as a spring model (See Fig. 3.14). 
2ratedistdistE =  (3.5) 

At morphing the outline, we renew the distance energy function every repeat 

calculation of converging. How to renew the distance energy function is that we renew 

the distance 0d  when the energy is minimum as follows. 

We renew the distance 0d  using the linear transformation between the distance startd  

at initial outline condition and the distance goald  at final outline condition as 

Equation (3.6). 

About the angle energy function, we assume that we generate N  morphing images. 

When we generate n th morphing image, we define the distance energy function by 

N
nt = . Like normal repeat calculation, until the sum of all energy functions which are 
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the angle energy function and the distance energy function is less than a threshold, we 

repeat converging calculation. When the converging calculation is finished, the 

distance energy function is renewed as 
N
nt 1+

=  for generating 1+n th morphing 

image. 

( )10)1( goalstart0 ≤≤+−=

=

ttddtd
N
nt  (3.6) 

 

Figure 3. 13: The distance energy affecting between two neighbor nodes 

 

Figure 3. 14: Graph of the distance energy function 

 

(2.3) The energy defined at each node 
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At each node, one angle energy function and two distance energy functions are defined. 

We define the sum of all energy functions as the energy at each node as Equation (3.7). 

Note that β  is the ratio between the angle energy function and the distance energy 

function. (In this thesis, let it be 1=β .) 

dist2dist1anglenode EEEE ββ ++=  (3.7) 

The sum of all energy functions at all nodes is defined as follow equation. 

∑= nodeall EE  (3.8) 

Moreover, the threshold thresholdE  which a threshold used for stopping repeat 

calculation is defined as follow equation using the error (%)error  about the angle 

energy function and the distance energy function. 
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dist2
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EE

EEEE

E

E
1

ββ

error

error
%error

 (3.9) 

 

(3) The affine transformation for merging morphed closed curves for making guiding 

intermediate shapes 

The morphed closed curve is decided by repeating calculation of gradually renewing 

each energy function. This morphing process can only determine shape of closed curve 

and that is not functional to determine its proper location and orientation at all. Then, 

the center of gravity of the closed curve is located at random. And, it is probable that 

the closed curve itself rotates. Moreover, there is no consideration about the scaling of 

the closed curve, because of morphing the outline at constant distance between two 

neighbor nodes. 

We need to determine its location and orientation properly. 

In this section, we describe the detail of the affine transformation: translation, rotation, 

scaling which are done to a set of the closed curves changing the shape from the 

boundary of 3-dimensional shape model's section to the shape of circle. 
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(3.1) Location 

The proper location of the closed curve is decided in obedience to a set of the closed 

curves obtained by morphing. The closed curve expresses the section boundary of 

3-dimensional shape model. However, the center of gravity of the closed curve is 

expresses the center of gravity of the section of sphere which is initial semi-regular 

mesh shape. Here, the proper location of the center of gravity of a set of the closed 

curves is decided by the linear transforming between the center of gravity of the 

section of 3-dimensional shape model boundary. 

To modify the location of the closed curve, first, we obtain the location of the center of 

gravity of the closed curve which we modify the location. Next, we properly determine 

where the center of gravity of the closed curve is. Finally, we transform the closed 

curve by moving the distance between the present location and the proper location. 

 

(3.2) Rotation 

In this section, first, we define the orientation of a closed curve angle. orientation is the 

difference between in some coordinate system (e.g. object-oriented coordinate system) 

and in the world coordinate system. Next, we describe how to obtain the proper angle 

of each closed curve from initial closed curve. Finally, we describe how to rotate the 

closed curve. 

First, we define the angle of the closed curve. Figure 3.15 shows that the closed curve 

is expressed by list of n  line segments. Here, we assume the length of each line 

constant. Now, the points of each line segment end are called nodes, and they are 

defined at the node number 1,,1,0 −nL . 

Here, we locate the regular polygon whose node number is n  around the closed curve. 

Each center of gravity (the closed curve and the regular polygon) is the same position. 

Moreover, each node of the regular polygon is defined the node number 1,,1,0 −nL . 

We define the center of gravity of the closed curve and the regular polygon as the origin. 

And, we define the line from the origin to any direction as the axis line. The direction of 

the axis line is constant at morphing all closed curves. 

Next, we rotate the regular polygon around the origin. We define vectors from each 
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node of the regular polygon to the node with the same number on the morphed curve. 

We rotate the regular polygon when the sum of the vectors' lengths becomes minimum. 

We determine the orientation of the closed curve from the angle 0θ  between the axis 

line of regular polygon and the line of the closed curve when the sum of the vectors' 

lengths is minimum (See Fig. 3.16). 

 

Figure 3. 15: The vectors from the node of the regular polygon to the node of the closed 

curve 

 

Figure 3. 16: Graph of the angle of the closed curve and the sum of vectors' lengths 
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Next, we describe how to obtain the proper angle of the closed curve from the initial 

closed curve. The orientation of the closed curve is uniquely determined at each 

morphing. Then the proper angle of the closed curve is the same of the initial closed 

curve's angle before morphing. 

Finally, about a set of the closed curve obtained by morphing, we obtain the angle of 

each closed curve of which rotation we modify. Then we rotate each closed curve in 

proportion to the error between the present angle and the proper angle. Then, we can 

modify the angle of a set of the closed curves. 

 

(3.3) Scaling 

The scaling of the guiding intermediate shapes changes from the same scale of the 

initial mesh to the same scale of the section of 3-dimensional shape model boundary. 

Then, it is necessary to modify the scaling of all closed curves. The scaling of the closed 

curve changes from the same scale of the initial mesh to the same scale of the section of 

3-dimensional shape model boundary. Here, we take advantage of the fact that the 

distance between two neighbor nodes is constant so as to scale the closed curve. 

Here, we define a proper distance between two neighbor nodes. The proper distance is 

linear transformation between the distance at closed curve's approximation of the 

section of 3-dimensional shape model boundary and the distance at closed curve's 

approximation of the section of the initial mesh boundary which is the shape of circle. 

To modify the scaling of the closed curve, we obtain the present distance between two 

neighbor nodes of the closed curve which we modify the distance of. And we obtain the 

proper distance between the neighbor nodes of the closed curve. Then, we scale the 

closed curve at the error ratio between the present distance and the proper distance. 

 

3.4.4 Merging the closed curves 

Finally, we merge the closed curves morphed from several outline extracted from 

3-dimensional shape model. We reverse the merging results, and the results are the 

guiding intermediate shapes. 
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3.5 Experiment 
We have an experiment of converging mesh using our proposed method. In this section, 

we describe this experiment in detail. 

 

3.5.1 Detail of the experiment and about the data 

We converge the closed surface by our proposed method and former method. And we 

compare these two method in view of accuracy. We compare the degree of converging 

the proper surface. And, we consider the caution about the comparison of the results of 

these two methods. Moreover, we compare calculation time and consider about both 

two methods. 

We use initial mesh which divide the dodecahedron five times (See Fig. 3.17). The 

number of faces of the mesh is 480,20420 5 =× . And, we use artificial 3-dimensional 

shape model (See Fig. 3.18). We generate ten guiding intermediate shapes from the 

sphere shape to the boundary of 3-dimensional shape model (See Fig. 3.19). 

 

Figure 3. 17: Initial mesh 
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Figure 3. 18: The artificial 3-dimensional shape model 
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Figure 3. 19: 10 guiding intermediate shapes 

3.5.2 Result of the experiment 

We converge the mesh by our proposed method using the guiding intermediate shapes 

(See Fig. 3.20) and the former method (See Fig. 3.21, 3.22). We define an 

approximation error of a node as the distance between the node and the closest point 

on the proper surface. The error is visible mapping onto the mesh at the rate of 

converging local minima scaling 10 times (See Fig. 3.23). 

  

Figure 3. 20: The result of converging using guiding intermediate shapes and its 

macrograph 
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Figure 3. 21: The result of bad boundary approximation by former method and its 

macrograph 

  

Figure 3. 22: The result of unsatisfying local regularity by former method and its 

macrograph 

 

Figure 3. 23: The comparison of the converging result, left: using the guiding 

intermediate shapes, center: the former method (bad boundary approximation), right: 

the former method (unsatisfying local regularity) 
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Here, by the method using guiding intermediate shape, the mesh has good 

approximation of artificial 3-dimensional shape model boundary. However, by the 

former method, the mesh has bad approximation of the boundary. 

The length between two neighbor nodes of the mesh by both methods is Table 3.1. Both 

of them, there is equal order of variance and nearly equal value of mean. Then, we 

regard the conditions of converging the mesh by both methods as the same. 

Moreover, by the former method (unsatisfied local regularity), the mesh is converged 

onto depression at the center of the artificial 3-dimensional shape model (See Fig. 3.22). 

However, the length of the mesh by the former method (unsatisfied local regularity) is 

not the same order with the one by our proposed method using guiding intermediate 

shapes (See Table 3.1). Moreover, Figure 3.22 shows that by this method the mesh 

unsatisfied the feature of local regularity. 

Table 3. 1: The comparison about the length between two neighbor nodes of the mesh 

 

 

3.5.3 Discussion 

At repeat calculation of converging the mesh, two kinds of force affect the mesh. One is 

the force that the mesh converge onto the surface, the other is the force that each 

length between two neighbor nodes of the mesh keeps constant. Here, we assume the 

mesh converging situation according to the section of 3-dimensional shape model. At 

converging the mesh by the former method, there are two kinds of areas (See Fig. 3.24). 

One is the area converging surface early. Another is the area converging surface late. 
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First, the length between two neighbor nodes at the area converged onto the surface 

early time changes shorter and shorter. At the same time, the length at the area 

converged onto the surface late time changes shorter and shorter. Then, the mesh is 

insufficient at the area converged late time. However, the mesh at blue color area is 

already converged and the energy is balanced. Then, the mesh at the converging area 

hardly moves. As a result of this, (1) in the case of the force that the mesh is converged 

onto the surface is stronger than the force keeping the length of the mesh, the length at 

only the area converged onto the surface late time changes longer and longer. The 

mesh has good approximation of 3-dimensional shape model boundary. But, The mesh 

does not satisfy local regularity (See Fig. 3.25). Or, (2) in the case of the force that the 

mesh is converged onto the surface is weaker than the force keeping the length of the 

mesh, The length at the area converged onto the surface late time does not change. The 

mesh satisfies local regularity. But, the mesh has bad approximation of 3-dimensional 

shape model boundary (See Fig. 3.26). As a result of this, it is difficult that the mesh 

has two features of local regularity and good approximation of 3-dimensional shape 

model boundary at the same time. 

 

Figure 3. 24: The section of converging the mesh onto 3-dimensional shape model 

boundary by the former method 
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Figure 3. 25: In the case of unsatisfying local regularity 

 

Figure 3. 26: In the case of bad approximation of 3-dimensional shape model boundary 

On the other hand, by our proposed method using guiding intermediate shapes, the 

mesh is converged onto the surface of 3-dimensional shape model keeping balance. In 

this reason, it is capable of the balanced converging the mesh (See Fig. 3.27). 



- ５１ - 

 

Figure 3. 27: Converging the mesh by the method using guiding intermediate shapes 

 

3.5.4 The comparison of converging runtime and the consideration 

Table 3.2 shows the comparison of converging runtime by the proposed method and the 

former method. The numbers of iteration are the same 5500 times by both methods. 

The proposed method is faster than the former method. 

Table 3. 2: The comparison of run-time 
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The reason why our proposed method is faster than the former method is because of 

the difference between the number of points constructing 3-dimensional shape model 

and the number of points constructing the guiding intermediate shapes (See Table 3.3). 

We calculate the energy defined with the mesh when we converge the mesh onto the 

surface of 3-dimensional shape model. In this energy calculation, we perform nearest 

neighbor nodes searching. In nearest neighbor nodes searching, the less points are 

there, the less time we spend. 

Table 3. 3: The comparison of the number of points constructing each model 
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Chapter 4 Analysis using SAIs 
 
In this chapter, we perform 3D-object-shape analysis taking advantage of the 

similarity between their SAIs. We try to illustrate the result using a dendrogram. 

First, we calculate the distance between each pair of 3-dimensional shape models. Note 

that we regard the distance as similarity between each pair of 3-dimensional shape 

models. Next, we construct the dendrogram by hierarchical cluster analysis with the 

distance between each pair of SAIs. 

In this chapter, first, we describe how to calculate the distance between two 

3-dimensional shape model. Next, we describe about hierarchical cluster analysis. 

Moreover, we describe about fast calculation of the distance between two 

3-dimensional shape models. Finally, we perform an experiment of analysis. 

 

4.1 The distance between two models defined by SAIs 
In this section, we describe how to calculate the distance between two 3-dimensional 

shape models taking advantage of their SAIs. In each SAI, we first calculate the line 

which goes through both the origin and the feature node. Then we rotate the two SAIs 

which we would like to compare so as to align the two lines (See Fig. 4.1). Next, one 

SAI rotates around the axis little by little, and we calculate the difference from another 

SAI. After one SAI turn one revolution, we define the minimum difference between two 

SAIs as the distance between two 3-dimensional shape models. 

In this section, first, we describe how to define the difference between two SAIs and 

calculate the difference. Next, we define the distance between two 3-dimensional shape 

models using the difference between two SAIs. 

Note that the difference between the two SAIs depends on the configuration of their 

coordinate systems but the distance between the two models can be uniquely decided 

using the differences. 
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Figure 4. 1: Two SAIs of which the axes overlap each other 

 

4.1.1 Calculation of the difference between two SAIs 

Using two SAIs of two 3-dimensional shape models, we calculate the difference 

between two SAIs. We obtain the latitude and longitude at a node on one SAI surface. 

On another SAI surface, we define the node which is nearest by the latitude and 

longitude as the nearest neighbor node (See Fig. 4.2). Next, we calculate the absolute 

value of the difference between the simplex angle of the node on one SAI surface and 

the simplex angle of the nearest neighbor node on another SAI surface. And, we weight 

the absolute value by the function ( )θWeight  which is defined the latitude θ  of the 

node on one SAI sphere surface when we assume the characteristic node as the North 

Pole. 
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Figure 4. 2: A node on one SAI sphere surface and the nearest neighbor node on 

another SAI sphere surface 

This function ( )θWeight  strengthens the absolute value between a node and its 

nearest neighbor node which are around the characteristic node. And, the value is 

( ) 1Weight0 ≤≤ θ . We assume a characteristic node on one SAI surface as the North 

Pole (See Fig. 4.3). We define the absolute value between the latitude of the North Pole 

and the latitude of a node as ( )°≤°≤°° 1800 θθ . Then, this function ( )θWeight  is 

the function decided by θ . When θ  is small, in other words, when a node is near by 

the characteristic node, the value of the function ( )θWeight  is almost 1. When θ  is 

large, in other words, when a node is far from the characteristic node, the value of the 

function ( )θWeight  is almost 0. However, if we don't weight, we define the function 

( )θWeight  as constant value ( ) 1Weight =θ . 
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Figure 4. 3: Definition of θ  

About the function ( )θWeight , we consider various variations, which is linear or 

non-linear, and continuity or discontinuity. Here, taking advantage of 'Lambert's 

cosine law'[8], we define the function ( )θWeight  as Equation (4.1). And, the graph of 

the function ( )θWeight  is as Figure 4.4. 

( ) ( ) ( )°≤≤°+= 1800
2
1cos

2
1Weight θθθ  (4.1) 

 

Figure 4. 4: Graph of the function ( )θWeight  

Finally, about each nodes on one SAI, we calculate the weighted absolute value of the 

difference between two simplex angles. We define the sum of the weighted absolute 
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values as the difference between two SAIs. 

( ) ( ) ( )∑
∀

′′−×=
Node

eNodelSimplexAngNodeleSimplexAngError θWeight  (4.2) 

 

4.1.2 Calculation of the distance between two 3-dimensional shape models 

We calculate the distance between two 3-dimensional shape models, using the 

difference between their SAIs. About each SAI of two 3-dimensional shape models, two 

SAIs rotate around the center of SAIs to overlap each characteristic node on SAI 

sphere surface each other. Next, we define the line from a characteristic node on SAI 

surface to the center of SAI as the axis. One SAI rotates around the axis little by little, 

and we calculate the difference between one SAI and another SAI. While turning one 

revolution, we continue calculating the difference. Finally, when the difference is 

minimum at a rotation angle, we define the minimum difference as the distance 

between two 3-dimensional shape models. 

 

4.2 Hierarchical cluster analysis 
We perform hierarchical cluster analysis to analyze 3-dimensional shape models using 

the distances between each pair of 3-dimensional shape models. 

In this section, they describe what hierarchical cluster analysis is and details of each 

method of hierarchical cluster analysis. 

 

4.2.1 What hierarchical cluster analysis is 

It is assumed that there are n  objects nOOO ,,, 21 L . The similarity is ( )ndij ,,2,1 L  

between iO  and jO . ijd  is symmetrical ( jiij dd = ).  

The smaller the value is, the more similar iO  and jO  are. In this case, the index is 

called dissimilarity. In this section, they assume ijd  as dissimilarity. 

Hierarchical cluster analysis is the method of analysis to generate the dendrogram 

from each dissimilarity ijd  between a pair of objects. The dendrogram is cut off at a 

section, and they can obtain n  clusters. The small cluster near by each leaf of 

dendrogram is included in the large cluster near by the root of dendrogram. 
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Each step of hierarchical cluster analysis is as follows.  

(1) There are n  clusters included one object. 

(2) They refer to the dissimilarity ijd , and generate one cluster united two clusters 

which are the most similar. 

(3) If there is only one cluster, then hierarchical cluster analysis is finished. Else, they 

go next step (4). 

(4) They calculate the dissimilarity ijd  between new cluster generated at (2) and 

other clusters. And, they go back to (2). 

Here, they can calculate dissimilarity ijd  without reference to the original data that 

they calculate ijd  from. This is called combinatorial method which is easy to calculate 

dissimilarity and is used generally. 

  

4.2.2 Various methods of hierarchical cluster analysis 

There are various calculation of dissimilarity which is calculated at step (4). Here, they 

describe each variation of hierarchical cluster analysis. 

 

(1) Nearest neighbor method 

They unite cluster p  and cluster q , and they generate new cluster t . The number of 

objects organized each cluster is ( )qptqp nnnnn +=,, . 
They express the dissimilarity trd  between cluster t  and other cluster r  using 

dissimilarity prd , qrd  between cluster p , q , and r . They define this dissimilarity 
as follows. 

( )qrprtr ddd ,min=  (4.3) 

When they apply this definition, dissimilarity between two clusters is defined by 

dissimilarity between two objects which are included each cluster and are most similar 

than all the other pairs of objects. Then, this method is called nearest neighbor method 

or single linkage method. 

 

(2) Furthest neighbor method 

When they unite cluster p  and cluster q , and generate new cluster t . They define 
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dissimilarity trd  between cluster t  and other cluster r  as follows. 

( )qrprtr ddd ,max=  (4.4) 

In contrast to the nearest neighbor method, they define dissimilarity between two 

clusters as dissimilarity between two objects which are included each cluster and are 

most dissimilar than all the other pairs of objects. Then, this method is called furthest 

neighbor method or complete linkage method. 

 

(3) Group average method 

In nearest neighbor method and furthest neighbor method, they define dissimilarity of 

new cluster united with a pair of clusters. But, these method are extreme, because the 

dissimilarity is calculated using maximum or minimum dissimilarity of all pair of 

objects included each cluster. Then, they define dissimilarity using the average of 

dissimilarity included cluster t  and cluster r . 

They express the relationship between before and after fusion as follows. 

qp

qrqprp
tr nn

dndn
d

+

+
=  (4.5) 

 

(4) Centroid method 

In centroid method, the dissimilarity between a pair of clusters is defined with the 

dissimilarity among the center of cluster. Here, let each object be m -dimensional 

observation value ( )mxx ,,1 L . 

The center of gravity of cluster p , q  is 
( ) ( )( )pmp

xx ,,1 L , 
( ) ( )( )qmq

xx ,,1 L . The center of 

gravity t  of cluster 
( ) ( )( )tmt

xx ,,1 L  is expressed as follows. 

( )
( ) ( )

qp

q
jq

p
jpt

j
nn
xnxn

x
+

+
=  (4.6) 

Moreover, squared Euclidean distance 2
trE  between the centers of gravity of cluster 

t  and r  is expressed as follows. 
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They define 2
ijij Ed =  as dissimilarity. Then, they renew dissimilarity as follow 

equation. 

( ) pq
qp

qp
qr

qp

q
pr

qp

p
tr d

nn
nn

d
nn

n
d

nn
n

d 2+
−

+
+

+
=  (4.8) 

As described above, This method is meaning only when the dissimilarity is calculated 

based on squared-Euclidean-distance manner. 

 

(5) Median method 

Median method is the method that centroid method is simplified. In centroid method, 

they weight dissimilarities using the size of cluster pn , qn . However, at median 

method, they constantly weight not using the size of cluster. The equation is expressed 

as follow equation.  

pqqrprtr dddd
4
1

2
1

2
1

−+=  (4.9) 

These corresponds for the representative point of unified cluster to be measured 

dissimilarity between a pair of clusters by squared Euclidean distance between 

representative points. 

 

(6) Ward method 

They consider i th objects included cluster p  as observation value ( )p
jix  about the 

variable in Ward method [14]. They express sum of squares in cluster p  as next 

equation. 

( ) ( )( )∑∑
= =

−=
m

j

n

i

p
j

p
jip

p

xxS
1

2

1
 (4.10) 

They unite cluster p , q , and generate new cluster t . 

Here, they define increase of sum of squares in cluster as pqS∆ . This equation is as 
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follows. 

( ) ( )( )∑
=

−
+

=∆
m

j

p
j

p
j

qp

qp
pq xx

nn
nn

S
1

2
 (4.11) 

In Ward method, it is desirable that sum of squares in cluster is smaller and smaller. 

At each step, they unite cluster p , q  that increase of sum of squares in cluster pqS∆  

by uniting clusters is smallest. Because of this, they use pqS∆  as dissimilarity pqd  

between cluster p , q .  

They unite cluster t  which is united two cluster p  and q , and other cluster r . The 

increase of sum of squares pqS∆  is expressed as follows. 

( ) ( )( )
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The equation to renew dissimilarity is next equation. 
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When each cluster includes one object, they use dissimilarity among the origin objects 

with 
2
1

 of squared Euclidean distance. 

 

(7) Flexible method 

In each method described above, they renew dissimilarity. Using parameter pα , qα , 

β , γ , they can express a common equation as follows. 

qrprpqqrqprptr dddddd −+++= γβαα  (4.14) 

Lance and Williams (1967) [9] advocated the method using above equation. They called 

a set of methods based on this equation as combinatorial method. Moreover, they 

proposed flexible method that meets the demand of the condition of the range which is 

0:1::1 =<==++ γβααβαα qpqp  about pα , qα , β , γ . Considering the above 
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condition, parameter β  is only free. They use 0
4
1

≤≤− β , especially use 
4
1

−=β . 

 

(8) summary of hierarchical cluster analysis 

About each method, they show the parameter at combinatorial method and feature at 

Table 4.1. Here, monotonicity of the dendrogram is shown monotonic increasing of 

dissimilarity when they hierarchically unite clusters. In this case, the branch of the 

dendrogram doesn't grow up reversely. And, space-contracting/dilating/conserving is 

the case of being near by other cluster/the case of being far from other cluster/the case 

of being constant from other cluster, when they unite two clusters and generate one 

new cluster. For example, in nearest neighbor method, space-contracting is happened. 

And, more uniting clusters, nearer by the distance from other clusters. Then, it is 

known that it is easy to generate the long chain cluster. 
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Table 4. 1: The correspondence the parameter at combinatorial method and each 

hierarchical cluster analysis method. 

 
 

4.3 Fast calculation of the distance between two 3-dimensional shape 

models 
When we calculate the distance between two 3-dimensional shape models, we calculate 

the difference between their SAIs. There are n  nodes including one SAI. The order of 

the calculation of the difference is ( )2nO  as described in Section 4.3.1. However, when 

n  is large, we spend a long time of calculation. Then, we will solve this problem not 

using strict solution but using approximation solution. Concretely, from a node on one 

SAI, we obtain the neighbor node on another SAI using approximation solution with 

reference table whose the order of calculation is ( )1O . 

In this section, first, we describe the problem about the cost of calculation of the 

difference between two SAIs. Next, we describe how to search nearest neighbor node 

using approximation solution with reference table. Finally, we verify the effect and the 
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accuracy of fast calculation by comparing approximation solution with strict solution. 

 

4.3.1 The cost of calculation of the difference between two SAIs 

At calculation of the distance between two 3-dimensional shape models, we consider 

the order of calculation of the difference between their SAIs. The order of calculation of 

nearest neighbor node search by strict solution is ( )nO , when there are n  nodes. And, 

the order of calculation of the absolute value of the difference between two simplex 

angles is ( )nO . Then, the order of calculation of the difference between two SAIs is 

( )2nO . Here, the number of nodes included in an SAI using the experiment in this 

thesis is 20480. Then, we spend very long time for the calculation. However, taking 

advantage of reference table, we search nearest neighbor node in ( )1O . Moreover, we 

calculate the difference between two SAIs in ( )nO . This is fast calculation. 

 

4.3.2 Reference table 

We obtain simplex angle of nearest neighbor node by approximation solution using 

reference table. Beforehand, we construct reference table by mapping simplex angle of 

another SAI on a plane. About how to map simplex angle, we take advantage of 

2-dimensional expression like a world map. Up to this time, there are a lot of 

variations of 2-dimensional expression of a world map [10][11][12]. In this thesis, we 

use the "Mercator projection", in 1569, because this is one of the simplest method and 

assumes the earth not ellipsoid by rotation but sphere. 

The reference table is expressed on a 2-dimensional plane. One axis corresponds to 

latitude, and the other axis corresponds to the longitude (See Fig. 4.5). It is possible to 

easily access the target node using the reference table, if one knows its position in the 

latitude-longitude coordinate. 
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Figure 4. 5: Simplex angle reference table 

Next, we describe how to generate reference table. We prepare a initial table whose 

cells are empty. About a cell for which we would like to substitute the value of simplex 

angle, we obtain latitude and longitude on SAI sphere surface. And, we obtain the node 

which is nearest by the cell. Then, we substitute the value of simplex angle of the node 

for the cell. And so on, we substitute simplex angles for other cells, and obtain 

reference table. 

Other approximation solution of nearest neighbor node search is using k-d tree. There 

are n  nodes in SAI. And, the order of calculation by k-d tree is ( )nO log . Because we 

expect the faster solution, we select approximation solution of reference table which is 

in the order ( )1O . 

 

4.3.3 Verification of accuracy and the effect of reducing the computation time 

In this experiment, first, we examine the difference between two SAIs by strict 

solution and by approximation solution. And, we calculate the error between the 

differences by strict solution and by approximation solution, and verify accuracy. 

Second, we examine the effect of reducing the computation time by approximation 

solution compared with strict solution. And, we measure runtime of the calculation of 

the difference between two SAIs by both strict solution and approximation solution. 
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For this purpose, first, we prepare a several SAIs constructed by n  nodes. Next, we 

select two SAIs from all SAIs at random. And, we calculate the difference between two 

SAIs by strict solution and approximation solution using reference table. Moreover, we 

measure the error occurring from the calculation by approximation solution. And, we 

measure each runtime by strict solution or approximation solution. The result of this 

experiment is Table 4.2. 

Table 4. 2: Error and the rate of reducing runtime by approximation solution compared 

with strict solution 

 

The error of approximation solution compared with strict solution is less than %3.0 . 

We regard approximation solution using reference table as accuracy enough. Also, 

runtime of approximation solution compared with strict solution is reduced about 

%01.0 . Because strict solution is ( )nO  and approximation solution is ( )1O , the rate 

of reducing runtime is about ( )%005.02048011 ≅=n  in theory. In practice, the 

effect of reducing runtime is as half as the effect of reducing computation time in 

theory, because the calculation time measured by performing actual calculation 

justifies the consideration. But, we confirm the effect of reducing computation time by 

approximation solution using reference table. 

About approximation solution using reference table, before calculation of the difference 

between two SAIs, we need to generate reference table beforehand. Here, because the 

number of nodes in SAI is 20480=n , we generate reference table that latitude and 

longitude is 64800180360 =× . It spends about four seconds to generate one reference 

table. Moreover, once we generate a reference table of an SAI, we can use the reference 

table to calculate the difference from other SAIs. We can use the reference table. That 
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is we, need only to generate the reference table once. 

 

4.4 Experiment 
In this section, we estimate phylogenetic relationships of fowls by analysis using SAIs. 

We prepare a number of fowl skull datum as 3-dimensional shape models. Next, we 

generate SAIs from these 3-dimensional shape models using our proposed method in 

this thesis. Using the SAIs, we calculate the distances between all pair of 

3-dimensional shape models. We regard these distances as dissimilarity, perform 

hierarchical cluster analysis, and generate the dendrogram of relationships of fowl 

skulls. Finally, from the generated dendrogram, we estimate phylogenetic 

relationships of fowls. 

In this section, first, we describe how to obtain models of fowl skulls. Finally, we 

analyze using SAIs and illustrate the result of this analysis. 

 

4.4.1 Researches about estimation of phylogenetic relationships of fowls 

Japan is inhabited by the unique native fowls called Nihon-Kei inhabits. Among these, 

17 breeds, such as the Syamo (Syamo means a fighting fowl in Japanese.) and 

Gifu-Jidori (Jidori means a domestic fowl in Japanese.), have been designated 

protected breeds in Japan. Although these fowls originated in Southeast Asia and 

China, they were imported to our country during the Yayoi period, which took place 

hundreds of years B.C. The breeds were subsequently improved for various purposes of 

use, including satisfying the Japanese fondness for meat and cockfights. As a result, 

many characteristic breeds were produced. 

Hereditarily, these Japanese native fowls are important breeds. Recognizing their 

importance made some amateur lovers preserve these fowls. Later on, the necessity for 

their preservation by public means has been recognized. Therefore, various 

investigations and research on their origin and on their phylogenetic relationships 

have been performed. 

Recently, analysis of relationships by blood according to ancient documents along with 

analysis of forms, blood types, or DNA have been performed by Oana et al. [15], 
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Hayashi et al. [16], Nishida et al. [17], Okada et al. [18], Hashiguchi et al. [19], Tanabe 

et al. [20], and Takahashi [21]. The research can be classified into three categories: (1) 

analyzing relationships by blood directly according to ancient documents etc., (2) 

analyzing fowls' genes using their blood, e.g., DNA, etc., and (3) analyzing fowls' 

shapes using the morphological analysis methods. 

Among morphological analysis methods, i.e., analyzing interspecies differences in their 

body forms, osteometric methods are common. These methods analyze the difference in 

a shape by choosing characteristic parts among skeletal specimens. Concretely 

speaking, they measure distances for the specifics points precisely and compare the 

corresponding distances in different breeds by the multivariate analysis such as the 

principal component analysis (PCA). 

In these methods, only distances of the specific points of the specimens can be obtained, 

but it is difficult to analyze form of the specimens totally and to distinguish individual 

differences such as the size of each individual, and the interspecies morphological 

differences. Then, we applied our proposed method for the morphological analysis. 

 

4.4.2 Generating of 3-dimensional shape models 

In this section, we describe how we measured the real objects such as the skeletal 

specimens of fowls' skulls with a laser scanner and generated their precise 

3-dimensional shape models. 

First, we describe the technique of obtaining a 3-dimensional picture, called a range 

image, from which depth information was mapped onto each pixel. Next, we describe 

the method of alignment of the range images from different positions into a single 

coordinate system. Finally, we describe the method for generating a single 

3-dimensional model by merging range images which have already been aligned. 

 

(1) Measurement 

A laser scanner is a device for obtaining a range image by irradiating a real object with 

a laser beam. This measurement gives us the accurate length from viewpoint to the 

surface of the real object. The lengths are mapped onto each pixel of the range image as 
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depth information. In this thesis, we used a laser scanner called VIVID910, a product 

of KONICA MINOLTA, Inc. 

Since the position of a laser scanner must be fixed when measuring a real object, the 

shape of the object's back and the portion that is in shade cannot be acquired in one 

measurement. Thus, it is necessary either to rotate the object or to change scanner's 

position for measuring from sufficient multiple positions to enable us to measure the 

entire object surfaces. 

In this thesis, we measured the specimens of skulls of fowls. These samples included 

the following breeds of native Japanese fowl: five Gifu-Jidoris, five Satsuma-Doris 

(Dori or Tori means a fowl in Japanese.), five Syamos, five Ko-Syamos (Ko- means 

small in Japanese.), five Hinaidoris, five Shokokus, two Koeyoshis, five Tomarus, and 

five Totenkos. Also included were four European White Leghorns, five Red 

Jungle-fowls, one Grey Jungle-fowl, and one Ceylon Jungle-fowl. The breeds are the 

most standard and popular egg-breeds and we used them as benchmarks in the 

analysis of the phylogenetic relations. 

We measured the skulls of 53 individual fowls belonging to 13 different species. 

Considering complexity of a shape of each individual fowl, measurements from 11 

different viewpoints are enough to model the fowl. 

 

(2) Alignment 

The range images described in the previous section cannot be merged into a single 

3-dimensional shape model because they are placed in different camera coordinate 

systems that depend on the position of the laser scanner at the time of measurement. 

Until now, the method of alignment of such range images into a single world coordinate 

system involved the use of a software operation proposed by Besl and McKay [22] and 

Nishino et al. [23]. In our research, using this method, we aligned 11 range images per 

each individual into a single world coordinate system. 

 

(3) Merging 

The range images aligned into a single coordinate system in the previous section are a 



- ７０ - 

simple set of coordinates of 3-dimensional points without connectivity, face information, 

etc. In those range images, since the points that were measured from different 

viewpoints were measured repeatedly, the point density changes with places. 

Therefore, it is difficult to analyze the geometrical shape of the range images. 

To solve this problem, we considered merging range images already aligned and 

representing the geometrical shape of the real object as a mesh model with face 

information. Until now, Wheeler et al. [24] proposed a method of merging range images 

and generating a mesh model using the Signed Distance Field. In our research, by 

using this method, we generated the mesh model of each individual. 

Figure 4.6 shows an example of merging. This is a merged mesh model of a Gifu-Jidori. 

Such data obtained by merging are satisfied with all requests for "3-dimensional shape 

model," i.e., can be applied to our proposed method. 

 

Figure 4. 6: Merged mesh model of a Gifu-Jidori 

 

4.4.3 Analysis using SAIs and the result 

We generated SAIs from 3-dimensional shape models of fowl skull datum. And, we 

calculated the distances between all pair of 3-dimensional shape models. Regarding 

the distance as dissimilarity, we generated the dendrogram of relationships of fowl 

skulls by performing hierarchical cluster analysis. 

We prepared 53 samples (13 species) of fowl skull datum. We generated SAIs with 



- ７１ - 

20480420 5 =×  nodes. Then, when we calculate the distance between 3-dimensional 

shape models, we need a characteristic node every SAI. Here, we used the specific 

region named "stop." The "stop" is regarded as an important region for classifying the 

skull shape of not only fowls but also of many animal species. We performed flexible 

method ( 41−=β ) of hierarchical cluster analysis. Then, we generated the 

dendrogram of relationships of the breeds (See Fig. 4.7). The horizontal axis is 

expressed the distance between clusters. 
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Figure 4. 7: The dendrogram of the relationships of the breeds 

 

4.4.4 Discussion 

From the dendrogram (See Fig. 4.7), we can see generated clusters of {shamo #1, 

shamo #3, shamo #4}, {koshamo #2, koshamo #4}, {gihu #2, gihu #3, gihu #5}, {hinai #1, 

hinai #2, hinai #4, hinai #5, hinai #3}. 
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Other samples are not classified into one cluster, if they belong the same species. We 

consider that this unclassified is occurred in the cause of partial lack of fowl skull 

datum. Figure 4.8 shows one example of the complete specimens of the fowl skull. 

However some specimens, as shown in Fig. 4.9, lack some portions (in this case, the 

portion of the jaw lacks). Considering the case to generate the SAIs from the complete 

specimen and the specimen which is obtained by removing some portion from the same 

specimen. Two SAIs obtained from them should be quite different in spite that they are 

from the same origin. 

However, partial SAIs far from the area corresponding to the lacking portion should be 

similar to each other. That is why we use the weighted distance between two SAIs as 

the dissimilarity of the 3-dimensional shape models. Fortunately, the "stop" area of 

fowls skills hardly ever lack. 

  

Figure 4. 8: Fowl skull with no lack and convergence circumstances of the mesh 

  

Figure 4. 9: Fowl skull with partial lack and convergence circumstances of the mesh 



- ７４ - 

Chapter 5 Conclusion and Future Work 
 

In this thesis, we improved the spherical-attribute-image (SAI) method for complicated 

objects with depressions and partial fractures. For achieving that, we proposed two 

novel methods: one is to take advantage of a data set called “guiding intermediate 

shapes” in order to robustly obtain the semi-regular mesh which sufficiently 

approximates the original 3-dimensional shape model with depressions. The other is to 

define the distance between two 3-dimensional shape models using appropriately 

weighted differences between all pairs of nodes on their SAIs in order to reduce the 

influence of partial fractures. In actuality, we verified the effectiveness of our proposed 

methods. 

First, we described the concept and the algorithm of the original SAI method. When 

SAIs are generated from 3-dimensional shape models, it is necessary to obtain the 

semi-regular mesh which has the two features: the approximation of 3-dimensional 

shape model's surface and local regularity. However, it is sometimes impossible for this 

method to obtain such a mesh. We guessed that this impossibility is caused by 

realizing the two quite conflicting features simultaneously, not the two-step manner. 

Then, we divided this obtaining process into two steps. Concretely we first obtain a 

series of guiding intermediate shapes which gradually deform from the initial 

spherical mesh model to the target model; in this time we do not consider the 

local-regularity at all. Then we fit the initial mesh model onto a series of models in 

order considering the local regularity. As a result, we made it possible to obtain the 

mesh satisfied with both features. 

Next, we compared our proposed method for generating SAIs with the original SAI 

method with respect to their accuracy and computational time using a virtual 3D 

model. We actually illustrated the effectiveness of our proposed method using some 

statistical measures, e.g. variation. Moreover, our method could use coarse point cloud 

as the guiding intermediate shapes, since the shapes only need to roughly guide the 

deformed mesh. As the result, we confirmed that our method achieved high-speed 

generation of SAIs through the comparison. 



- ７５ - 

Next, we redefined the distance between two 3-dimensional shape models using their 

SAIs. We appropriately weighted the difference between two simplex angles, which are 

geometrical attributes mapped on the SAIs, in accordance with their positions on the 

SAIs in order to reduce the influence of the partial fractures. And we proposed a fast 

calculation of the distance using “Reference Table;” the order of the calculation is O(n), 

where n is the number of nodes of SAIs. 

After that, we performed the osteometrical analysis of fowls using our proposed 

methods and hierarchical cluster analysis; the samples consisted of the skulls of 53 

fowls (13 kinds of species) and some of them lacked a jaw part. We actually illustrated 

the result using a dendrogram. 

Considering the case of existing partial fractures again, one definitely reduces the 

influence of them at the analysis. It is generally considered that there are the two 

methods for realizing that as follows: (1) limitation of the areas which are used for the 

analysis and (2) use of distances which is a sum of appropriately weighted differences 

between all pairs of nodes on their SAIs, that is, our proposed method. Note that, the 

original SAI method may accept the former method. Although the question “which is 

better?” is still an open problem, our proposed method may have an advantage to 

cleverly, i.e., without no pre-processing, reduce the influence.
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