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Abstract

A number of methods have been proposed to separate a colaal Siggo its
components: illumination spectral power distribution asdrface spectral re-
flectance. Most of these methods usually use a minimizaobmique from solely
a single color signal, which works in theoretical framewdnlt is not effective
for real data. The reason is it lacks the constraints necgssa make the it-
eration converge into correct separation. To resolve thisbtem, we proposed
a minimization technique that, unlike the existing methadges multiple color
signals. In our implementation, we introduce three différapproaches: first,
color signals obtained from two different surface reflecetit by an identical
illumination spectral power distribution; second, colagsal from an identical
surface reflectance lit by different illumination spectpaiwer distributions; and
third, color signals from identical surface reflectance kith different types of
reflection components (diffuse and specular reflectantby lidentical illumina-
tion spectral power distribution. Using multiple color sigls can improve the
robustness of the estimation, since we can obtain more i@onist in the input
data. And the experimental results on real spectral shovetfextiveness of our
method. In addition, practically we implement our methodeal with color sig-
nals of a scene taken using interference variable filter. pimgose is to obtain
surface spectral reflectance and illumination spectral powistribution under
some illumination light source.
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1 Introduction

Light reflected from an object, usually called color sigreathe product of two
components: illumination spectral power distribution andace spectral reflectance.
To separate a color signal into its components is an impbigane in computer
vision and color science since, by separating them we cairotbte actual surface
spectral reflectance without being affected by illuminatspectral power distri-
bution. Generally speaking, this kind of separation is pam color constancy
algorithm[8][5][7][6], which is commonly done in a threeloo channel (RGB)
operation instead of in spectral operation.

In three color channels (RGB), various color constancy oadhhave been
proposed. For instance, Finlayson et al. [5] showed thatnithation change
which causes the problem of color constancy can be turnedairdrucial con-
straint to solve the problem of color constancy itself. dsstraight-line ap-
proximation model of illumination in diagonal matrix compents space, they
proposed an intersection approach of two pixels with theesammface color but
lit by different illumination. Tan et al. [21] introduced aatihod focusing on high-
lighted regions that could be applied for both single andtrmallored surface.

While the aforementioned methods are applicable for sépgri three color
channel data, unfortunately, most of them cannot be appliexpectral (color
signal) separation, since spectral data cannot be codviaitie chromaticity val-
ues (on which most methods are based) without losing itstisgda@nformation
(metamerism problem). Hence, for color signals, a diffetechnique that is suit-
able for is required.

Tominaga et al. [25] have shown that, by using the dichraonatilectance
model, illuminatioin distribution can obtained using bdtighlighted (specular)
regions and diffuse regions of two different surface col@&g using this method
highly performanced results are obtained. Marchant eil8|.ihtroduced spectral



constancy under daylight, by assuming that illuminationldde approximated
with a blackbody radiator. This method can detect whetherfase has the same
surface spectral reflectance, yet it is not intended to s¢pdlumination spectral
power distribution and surface spectral reflectance.

Ho et al. [10] showed that, by considering illumination dpaicpower dis-
tribution and surface spectral reflectance to be the sum#eér basis func-
tions[2,7,10,11], the color signal separation can be dgmaihimizing the square
difference of a color signal and product of the sums of lindamination basis
functions and surface spectral reflectance basis functidtisle theoretically it
can separate a color signal into its components, a few prabéist. First, some
parts of the separated signal in certain cases, becomeveegetich infringes on
the physical reality of the spectral components since,alitye those components
are always positive. Second, in cases where the constaatssufficient, the
minimization algorithm could be trapped in the local minimuthereby produc-
ing incorrect separation.

Chang et al. [1] improved the method of Ho et al. by puttingiaoidal con-
straints on the illumination and surface reflection compdsieas well as using
a simulated annealing algorithm and a hit-and-run algorith increase the effi-
ciency and stability. Their method gives a more robust tesarhpared with that
of Ho et al.; however, their separation still suffers frone game drawbacks as
those of Ho et al's method. Their main problem is that a sigler signal has
such limited constraints that no current algorithm can évbe trap of the local
minimum.

In this paper, our goal is to describe how to separate coyprads into illumi-
nation spectral power distribution and surface spectfiatance components by
giving more constraints in the input data, and separate @rgpheémages into illu-
mination spectral power distribution and reflectance speirhages. We propose
a minimization technique that, unlike the existing methadgses multiple color
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signals. These multiple color signals can improve the rotass of the estima-
tion because, by using them, we can obtain more constrainkeiinput data. In
our implementation of using multiple color signals, we aatuce three different
approaches: first, color signals obtained from two diffesemface reflectance lit
by identical illumination spectral power distribution;cemd, color signal from
identical surface reflectance lit by different illuminatispectral power distribu-
tions; and third, color signals from identical surface re@i@ce but different types
of reflection components (diffuse and specular pixelspitdentical illumination
spectral power distribution. By using these three condgiof color signals, a
better solution can be obtained and the stability of the rsgtjom increases.

To obtain a spectral images, Schechner[18] shows by usingggarence fil-
ter and performing mosaicing algorithm[20][14][27][1%}e can obtain spectral
images. But by this approach we can’t obtain spectral tistion exactly because
of using gray world assumption. To obtain spectral distidouexactly, we have
to obtain a conversion function that including camera pa&tam filter parameter
and distance for items. So we show how we obtain a conversiatibn correctly.
And then, we perform separation algorithm to these spectades.

The rest of the paper is organized as follows. In Section 2diseuss the
theoretical background of the proposed method. In Sectjowe3explain our
method of dealing with multiple color signals. The methodlbain a color signal
is showed in Section 4. The implementation of our algoritimah e experimental
results are provided in Section 5 and Section 6. And finallySection 7 we
conclude our paper.



2 Theoretical Background

2.1 Linear Basis Functions

A color signal spectrum is the product of illumination spatpower distribu-
tion (SPD) and surface spectral reflectance componentshdvttically, it is
expressed as:

I(A) = E(A)S(A) (1)

wherel ()) is the color signal at a wavelength E()) is the illumination spectral
power distribution and'(\) is the surface spectral reflectance.

A number of researchers have asserted that the naturalintion can be
approximated into a limited number of linear basis functiodudd at el. [11]
shows that illumination distribution of daylight and someaor light sources can
be approximated into a certain number of linear basis fonsti They expressed
the approximated illumination SPD as:

m

E(\) ~ Z i E;(\) 2)

=1
whereFE; () is the linear basis functions of illumination distributiande; is the
coefficient.

Furthermore, Judd et al. showed that only three linear hasaions are suf-
ficient to express all natural illumination SPDs & 3). Slater et al. [19] argued
that more sophisticated approximation needs eight linaarsbfunctions. Yet,
they also admitted that the first three basis functions dantiy cover all illumi-
nation SPDs. Ho et al. [10] and Chang et al. [1] used threeslbasctions in their
estimation process. Fig.1.a shows the Judd’s three illati@n basis functions.

Similar to illumination SPDs, several researchers [2, H6jehshown that the
surface spectral reflectance can be expressed in a numioezafibasis functions:



S(A) = Z §;95(A) (3)

wheresS; () is the reflectance linear basis functions ands the coefficient.
Cohen et al. [2] determined his linear basis functions bgstigating Munsell
chips. Parkkinen et al. [16] examined various surface splmncluding that eight
basis functions could completely cover all of the existingace color database.
Moreover, they also showed that the first three basis funstemver 99% of the
database. Fig.1.b shows the Parkkinen'’s four reflectarsie umtions. Ho et al.
[10] and Chang et al. [1] used three basis functions for serépectral reflectance.
And it is natural if you increase a number of basis functibomination SPD and

surface spectral reflectance can reveail more exactly.
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Figure 1: a. Judd’s [11] three basis functions of illumipatidistribution. b.
Parkkinen’s [16] four first basis functions of surface spaateflectance.



2.2 Separation Method

By plugging Equation (2) and (3) into Equation (1), a col@rsil can be approx-
imated as:

1) =EMNSK) (4)

The Illumination SPD and surface spectral reflectance caesmved using
minimization technique;

m n 2

ERROR =YY e;E;(N)Y ;8\ = I()) (6)

A Li=t j=1
practically, the wavelength ranges over the visible sp@cfrom 400nm to 700nm
with interval 5Snm. By minimize thé&/ R RO R by changing a coeficients, s;, we
can reveal a color signal and obtain a surface spectral taflee and illumination
SPD.

One of the problems using Equation (6) is that, in certaiesahe separation
does not represent physical reality of illumination andae spectral. Thus, to
obtain more realistic results, Chang et al. [1] introducedional constraints for
illumination SPD and surface spectral reflectance. Thetcaings are expressed
as:

m

I\ < ZeiEi()\) < maxlimit (7)
0< zn:Sjsj()\) <1 (8)

Constraint in Equation (7) means that the illumination SBRlways bigger
than the input color signal. The upper limitation has no pdaismean but it is

7



important for computation. Equation (8) means surface tsplexeflectance has
values between zero and one.

Chang et al. [1] applied the constraints into the minim@aatalgorithm of
Equation (6) using hit-and-run algorithm and simulatedeating algorithm.



3 Proposed method: Multiple Color Signals

3.1 Different Surface Reflectance Identical lllumination

3.1.1 Minimization of the approximation and measured value

To our knowledge, the existing methods consider the use fofrmation from
solely one single point. However, in the real world, eachnedeas an abundance
of available points. Thus, instead of using a single colgnail, we can derive
benefit from this abundance of color signal types. Our firgbathm considers
two types of color signals obtained from two different sugapectral reflectances
illuminated by identical illumination SPD. In this caseettiecomposition can be
achieved by minimizing a sum of Equation (6) at each pointeurnide constraint
that the spectrum distribution of the illumination is conmayer the points, while
their reflectance spectrums are different from each othkis donstraint can be

expressed as:

points

> ( BN Y 555 (N) - fpm) ©)

1=

We use the constraint described in Equation (7) and theviollp equation:
0< ) 5580 <1 (10)
7=1

The more spectrals are used, the more constraints can beexbtélence, this
more constrained separation theoretically can producera aazurate result. For
efficient and stable decomposition, it is important to clegpsints with chromat-

ically distributions as different as possible.



3.1.2 Minimization of the Difference of the Estimated LightSource of Multi
Points

When we consider a lot of point’s color signals that illumioa is the same, the
illumination distribution of each point can expressed d®¥es, using reflectance
bsasis functions;

EO) = 50 (1)
=SSO (2
Ty )
It is as follows when this formula is transformed.
S ST S, 0 4
T I 0V R a5

Doy s1aSi(A) DT 82,:8i(A)
So by minimizing the following equation, we can obtain theasated illuminaiton

distribution and surface reflectance.

[1()\) [2()\) )
EA: S s S, 50,50 (16)

10
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3.2 ldentical Surface Reflectance Different lllumination

3.2.1 Minimization of the approximation and measured value

Another constraint can be obtained by considering multtspen distributions at
the same surface spectral reflectance illuminated by diftetiumination SPD.
We can resolve the separation problem by minimizing the suilEgoation (6) of
each point under different illumination distributions:

> (Z epaibi(A) Y 5,9 () — Ip(A)) (17)

i=1 j=1

and using the constraint described in Equation (8) and tiherdimg equation:
I(A) <) epiEi(N) < maxlimit (18)
i=1

The problem of this approach is similar to that of subsec8idn but the con-
straints are different. In this approach, illumination staints play a dominant
role, which theoretically gives more constraints as comgavith the approach in
subsection 3.1.

12



3.2.2 Minimization of the Difference of Estimated Reflectane of Multi Points

When we consider two color signals of identical point thatniinaiton is dif-
ferect, the surface reflectance can expressed as followg Ukimination basis

functions.
_ 1
SN =E0) (19)
~ Li(N)
 YieniBi(\) (20)
b (22)

Y eiBi(N)
It is as follows when this formula is transformed.

L) LW

YoimreniEi(A) T Y0 eaiEi(N) (22)
Il()\) zm: 6271'Ei()\) ~ IQ()\) zm: 6171'EZ'()\) (23)
L)Y enBi(A) = L(A) Y eriEi(A) ~ 0 (24)

=1 i=1
So by minimizing the following equation, we can obtain theasated illuminaiton
distribution and surface reflectance.

> (1N ZeQ,iEi()\) — I (A) Zel,iEi(A))Q (25)

A

13
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3.2.3 Multi pair under different illumination

Then, consider a case, using multi pairs of identical psinBlor signal under
different illumination. In this case, illumination speaitpower distribution and
surface spectral reflectance reveail as follows:

Z Z (Z elﬂ'Ei()\) Z Sp,ij()‘) — Ip71()\)> + (Z 6271'Ei()\) Z Sp,ij()\) —

i=1 j=1 i=1 j=1

(26)
here, (p,1) and (p,2) is the pair of same items under diftdigint source.
If we use this folmula, it has a strong constraint.

15



3.3 Specular and Diffuse Points

3.3.1 Minimization of the approximation and measured value

In the real world, there are many objects with dielectricomogeneous material.
This kind of material exhibits specular and diffuse reflect as described in the
dichromatic reflection model. By using this material ase¢aapjects, we consider
that we can gain benefit from the color signals of specular diffidse points
illuminated by the same illumination SPD. In this subsettiowe will explain
the algorithm and show the relationship between diffusesgadular points.

In the dichromatic reflectance model, the observed spedtiigtribution at a
specular point can be expressed as follows:

I()‘) = ms(ia €, g)E()\)SS()\) + mb(ia €, g)E()‘)Sb()‘) (27)

wherem,, m,, are constant scalarS, () is the specular spectral reflectance func-
tion, andS, () is the diffuse spectral reflectance functicfy.can be approximated

using: i
Sp(A) = Y 5555(N) (28)
=1
the geometric factorsi{, andm,) can ]also be rewritten as:
ms (i, e, g) = Cs (29)
my(i, e, g) = Cj (30)

We can assume that the specular spectrum reflectance famsidentical to the
spectrum distribution of the incident light for most digléc inhomogenous ob-
jects. Lee et al. [12] named this assumption the neutratfade reflection (NIR)
assumption. Using this NIR assumption, we can$ék) as a constant.

In this paper, Parkkinen et al. [16] showed the first basistion, S; can be
approximated to be a constant (Fig.1.b, line 1), and inde@etnof \:

Ss(A) ~ kS1(\) =~ Constant (31)

16



wherek is a constant scalar. then

I(\) =~ CyE(N)Ss(N) + CLE(N)Sy(N) (32)
~ C,E(NES1(A) + GE(N) ) 558;()) (33)
j=1
=E(A))_s1,;5()) (34)
j=1
A diffuse point on the same surface spectral reflectancenegsitiowing spectrum
distribution:
I'(\) ~ GRE(N)Sy(\) (35)
~ CGRE(V) Y 5;:55(0) (36)
7=1
=E(N))  52,8()) (37)
j=1

From Equation (34) and Equation (37) the relation betweetdar and diffuse
point are expressed as:

S1,2 ¢ Sl,j = S22 : Sg’j(j =3~ n) (38)

Using this constraint, we can set up a more robust separatjonithm than those
in the previous subsection 3.1.

In order to use the hit-and-run algorithm, we rewrite Equati35) and Equa-
tion (32) into the following equation:

> > (%ZeiEz‘(A)Zsp,ij(A) -1 (A)) (39)
p=1 A i=1 j=1

s1j = 825(J =2 ~n) (40)

whereq, is a new variable. Therefore, it can generate a new statéeettiz using
the hit-and-run algorithm.

17



3.3.2 Minimization of Linear Combination of Specular and Diffuse Data
and Approximated lllumination Distribution

As another way to obtain illumination distribution, from &&ion (34) and Equa-
tion (37), illumination distribution can be expressed dbfus:

CII(\) = CuI'(\) = CLCE(N)Ss(N) (41)

Then, by dividing Equation (41) b/;, we can obtain the following variables:

Cy
= — 42
aq Cé (42)
G2 = CsSs()‘) (43)
consequently,
IA) —al'(A) = E(N) = g Z eiEi(M)
i=1
=Y el Ei()) (44)
i=1
We resolve (45) by minimizing the following equations;
DI —al'(\) =Y el Ei(N) (45)
A i=1
We also use constraint described in Equation (7) and thevollg equation:
I(})
<q < 4
0_(11_],()\) (46)

By minimizing this equation changing a value of coefficignte; , we can obtain
accurate illumination SPD. This theoretical analysis gamgithe results of a num-
ber of researchers in color constancy, that is, speculgntya significant clue to

18



estimate illumination color. Furthmore, (45) can exprdsse linear equation as

follows;
(El()\) oo En(N) I’(A)) - | =1()) 47

By this method, stability and calculation speed is incrdase

19
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4 Systems

4.1 Equipments

Spectrometer To obtain a spectral color signal, it is easy to use spectrome
ter(Fig. 5). Spectrometer can exactly measure a pointstegalistribution. But
one of the problem is that because it measure a point’s cgoak it is difficult

to obtain spectral images.

Line Spectral Scaner To obtain multi spectral images, a unique systemis needed
because of a number of camera color sensor is so little. A®biie system, the
way to use spectral line scaner(Fig.6) is exist. Line spéstaner is attached a
monochronic camera. By using the line scaner, we can obtiie &pectral im-

age by image. So if we exactly know the moving motion of the @amand move
slowly making a width between lines be small enough, mukicéfal images are
obtained.

Interference Filter As the another way to easily obtain a multi spectral images,
Yoav [18] showed by using a interfelence filter(Fig.7) andnmchronic camera,
we can obtain spectral images. It is so good because we oaly the interfer-
ence filter and monochronic camera. Interference filter isisnpfilter that the
wavelength of penetration light crosses filter is changeszcthe filter in visible
light from 700nm to 400nm(Fig.8). Then, we shows procesdtdining spectral
images. First, attached interference filter to an 8-bit nebnome camera, and
then we take a scene moving the camera continuously by patambr perspec-
tively(4.3), and mosaic[20][14][27][15] these imagesngssmoothing algorithm
and edge detection algorithm. Then convert(4.4) the obthdata of luminos-
ity value of each points to a spectral data. And then we caityegest the multi
spectral images.

21



Figure 5. Spectrometer

Figure 6: Line spectral scaner
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Figure 7: Interference filter and monochronic camera(SONC5X)
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Figure 8: The range of penetration light of interferenceffilt
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4.2 Difference of Interference Filter and Spectral Line Scaer

To take a spectral, we need to use interference filter or sgdicte scaner. These
has merits and demerits. So here, we show these merits aratitiem

e Interference filter

— Advantage

«x Can control a density of spectral color signal.

+x Camera motion can obtained from continuously taked images.

— Disadvantage
+x Multi images are needed to get a point’s spectral poweridistr
tion.
* Mosaicing is needed.
x Azimuth difference arises except when a camera pan rotate.

x Can’t take a specular spectral easily, especially when secam
translate parallely it is difficult to obtain a specular Spaicbe-
cause a point of specular is move depend on the camera’s posi-

tion.
e Prismic filter

— Advantage
x Can take a line spectral distribution only using one image.
x Easily take a specular spectral.

*+ No azimuth difference.

— Disadvantage

24



x Only can control a width between lines. To take a densitytspkec
image, it is necessary to move so slow or increase a photograp
speed(fps)

x It is necessary to know a camera’s motion from some data, be-
cause these image has no infomation

For our experiments, it's necessary to take a scene specémdif we use a spec-
tral line scaner, it's needed to move so slowly and to knownaeza motion, and it
is so difficult. So we use interference filtler although there@ some disadvantage.

25



4.3 Perspective and Rotational

When we use interference filter, it is neccesarry to take gacoht a lot of suf-
ficient position (x) of images. So we need to move a monocroaioera that
filter attached, and continuously took images. Then, asdheca motion to take
images continuously, we use two types of motions. One of tbieam is parallel
translation, turning a camera perpendicularly to a phaiplgy plane, and photo-
ing a camera, while fixing distance with a plane(Fig.9). Amdtaer motion is
pan rotation, rotating a camera at the camera’s camerarcantktaking a scene
continuously(Fig.10)

These two motion has advantage and disadvantage, so we gtesgsadvantage
and disadvantage.

e Parallel Translation

— Advantage

x Data can be much obtained continuously.(Camera can moge lon
distance.)

— Disadvantage

x Can't obtain a specular spectral data.

* Azimuth difference arises.
e Pan Rotation

— Advantage

«x Can obtain a specular data (When mosaic image exactly).

+ No azimuth difference.

— Disadvantage
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x Only a spectral image from a camera’s position(Camera can'’t
move, only can do a 360 degree rotation.)

To use a specular and diffuse color signal using interfexditter, it is necessary to
use pan rotation. And itis necessary to mosaic continuoag@sexactly, because
specular point is required at the exact position, and if th&tfon is shift a little,
specular spectral has greatly large noises. So if we needtenaous images, like
a town spectral images, or use datas that have little azidifidtence, it is better
to use pallarell translation. And if we need a specular datzse datas that have
largel azimuth difference, it is better to use pan transhatiSo it is necessary to
use them properly.
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4.4 Conversion of Input Data

When we take a scene with a camera which interference filtactatd, the mo-
saiced data is expressed as follow.

I(z,y) = E(\ 2"y ) S\, 2,y ) F(\)C(N) D (', o) (48)

hereF is illumination distribution at the positiotx’, '), S is surface reflectance,
F is transmissivity of interference filte€; is a variation of camera sensor’s re-
action andD is a distance function from a camera to the items positionregb
spectral distribution is expressed as follows.

Realspectral(N\,y) = E\ 2, y")S(\, 2", y) (49)

_ I(z,y)
= FNCND (@) (50)

1.Pan Rotation

When we took a scene rotating a camera at it's camera center,
the distance from a camera center to an object is the sameatterm
which direction camera has turned.

D(x',y") = Constant (51)

So to get a spectral distritution, we need to fet,,()). It reveals as

follows.
1
Hpaﬂ()‘) F(}\)C(}\) (52)
Realspectral(\, y) = ;I()\’(y)?) (53)
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2.Parallel translation

When we took a scene moving a camera parallel translatibirrig
angled in the photography direction, the distance from aerans
different depends on a camera posistion. And the distarretite on

a image’s position(x). It expressed as follows;

Deen
Dt ! /: center \ 2 54
istance(a’,y') = () (54)

Then, becuase @bs § depend on\ it reveail as follows:
Distance(z',y') = (Deenterc(N))? (55)

here,D....., is the distance when item is taken at a center of image
andd is the direction of the item. So to get a spectral power distri

tion from mosaicing data, we need to géf..quc(y). It reveals as

follows.
1
H aratle = 56
parallel(X) F()\)C()‘)(Dcentera()‘))Q ( )
I(\y)
Realspectral(\,y) = ———— >7
P ( y) Hparallel()‘) ( )

The function rectified from a mosaicing data to real spedisiribution is dif-
ferent between pan rotation and parallel translation. 8onecessary to make a

different conversion function each.
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Figure 11: Distance from camera of parallel translation

Item Item

pl
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Figure 12: Distance from camera of pan rotation
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4.5 Conversion data obtaining

Compensation data is expressed with the quotient of the diegatly obtained
using spectrum meter, and the data which obtained from medalata which
obtained using a camera with a interference filter.
Esp(A)
Evf())

here,H()\) is a compensation dat&;sp(\) is a data which obtained using spec-

HO\) = (58)

trometer andE'v f () is a data which obtained mosaicing images which obtained
using interfelence filter.

Then, when we get the compensation data, it is not sufficiginguonly one data
because of noise and so on. So we use a lot of data for obtainmgensation
data. In our experiments we use eighteen color of MacbetbrGethecker. We
took these color under blue illumination with spectrometed a camera with
interference filter. And we mosaic camera captured imagdscampare with
spectrometers image.

The compensation data is obtained by minimization algoritit expressed as
following folmula;

18

Y (Esp(N) = HQ\) * Evf,y(V))? (59)

p=1

then, consider as follow;

a(N) =Y (Buf,(A)’ (60)
= —QZEspp VEvf,(\) (61)
YA =D (Bspy(N)? (62)



From (60)(61)(62), we can reveal (59) as follows;

a(NH(A)* + BV HA) +7(\)

= a(HO) + g + () -

So a compansation data that minimize (64) is express asviillo

_ B
2a())

HO\) =

(63)
(64)

(65)

We do these processing for pan rotation data and paralielation data each.
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5 Implementation

Our implementation is based on the simulated annealingighgowith a hit-and-
run algorithm [1]. Using the simulated annealing algoritenables us to avoid
local minima in solving a non-linear optimization problekvhile using hit-and-
run algorithm, we can obtain a good performance in seardhagnterior point

as a new state.
The simulated annealing algorithm is expressed as follows.
1. Gave an initial state for variable= (e;, s;, @) these are feasible.

2. Generate a new staié using hit-and-run algorithms.

3. IFAF = F(@) — F(u") < 0 ore"2F/T-() > RANDOM]I0,1]
THEN @ = " and go to 2.
ELSE goto 2.

Do these approach some times or uftili) becomes so small. And some times
maket = t + 1. Obtainedy is a value which maké’(#) mostly small. Here[F’

is evaluation function and,(¢) is called cooling function and we uge(7) =
Const/(1 + t)%
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Hit and run alogrithm is used to make good performance tockeaterior
point as a new state. It is useful if the space is convex. Thegss is as follows.

1. Given an interior poiné
2. Generate a vectaf with equal probability.(randomly

3. Do next calculation.

k _ mazlim—3"7", e;E; () k =2 e Ei(N)
LA — e B (V) P V2N T TS TR (V)
- 1-377_ 1 8555(N) _ T 2i=18i5i(N
3 TS () A T T TS 00
+

T = mini<g<a )z K )

T = mazi<k<a \ iz
i

4. u" =i+ [r + RANDOMI[0,1](r* — r)]u’

Thew' is the output data. And use thé in simmulated annealing as a new state.
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6 Experimental Results

To confirm the performance of separation algorithm, we perfan experiment
using some samples. We measured a color signal pectrum thhgr§pectrascan
PR650.By using Spectrascan PR650, we can measured a gvlalsom 380nm
to 780nm by 4nm at the maximum, and we use a color signal froBmaOto
700nm by 5nm. We use Macbeth Color Checker as our targettobjecthe basis
functions, we used Judd’s [11] three illumination basisctions and Parkkinen’s
[16] reflectance basis functions.

Fig.13 shows the real illumination distribution of outdsoand estimated il-
lumination distribution with a separation algorithm underee reflectance basis
functions, using one, two and three points of the MacbettolC8Ghecker’s red,
green and blue colors, respectively. Fig.14 shows the Heatination distribu-
tion of incandescent light at 2800K and the estimated ilhation distribution
with the separation algorithm, under three reflectanceslfasctions, using one,
two and three points of the Macbeth Color Checker’s red,rgesel blue colors,
respectively. As shown in Fig.14, if we use incandescerttigelatively good
separation results are obtained utilizing the multi coignals algorithms with
the red and blue, or the red and green and blue point’s spgectra

Fig.15 shows the real illumination distribution of outdspand the estimated
illumination distribution using three, four, six, and eigkflectance basis func-
tions, using eighteen point’s spectral of the Macbeth CGloecker.

Fig.16 shows the real illumination distribution of outdaard incandescent
light at 2800K and the estimated illumination distributiwith the separation al-
gorithm using blue and green surfaces under these illuromat In this experi-
ment, we use eight reflectance basis functions. As showngri & if we use a
blue point lit by incandesent light at 2800K and outdoomiination, we obtain a
good result.
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Fig.17 shows the real illumination distribution of outdaard incandescent
light at 2800K and the estimated illumination distributiaith the separration
algorithm (25) using red and blue surface each under theseainlations. As
shown in Fig.17, if we use a red point lit by incandescenttligh2800K and
outdoor illumination, we have a especially good result.

Fig.18 shows the real illumination distribution of outdaord incandescent
light at 2800K and the estimated illumination distribusamsing the diffuse and
specular separation algorithm, using red, green, and ldimg diffuse and spec-
ular spectrals, using Equation (39) and (40). Fig.19 shidws¢al illumination
distribution of outdoor and incandescent light at 2800K #mal estimated illu-
mination distributions using diffuse and specular sejpamalgorithm, using red,
green, and blue points’ diffuse and specular spectralsagusguation (45) and
(46). As can be observed in Fig.19, utilizing diffuse andcsp@ points using
Equation (45) and (46) produces excellent results.

Table.1 shows the error value of each algorithm, by usindimaint alogrithm,
especially using algorithm of Section3.2.2, we have a greebrmance.

Then, to take a spectral images instead of point spectraitdison, we use a in-
terference filter. We use, SONY XC-55, monocronic camerd gdtach a interfer-
ence filter. Then we make the camera pan rotation and patraielation. Fig.20
shows a conversion function when a camera take a paranediftnanation. This
data is obtained by using an algorithm (64). First, we takeaglhd¢th Chart con-
tinuously under blue illumination, moving a camera paitglland mosaic these
images. And compare these data and measured real disintolttained by using
a spectrometer. By using this compensation function, web#ain a real spectral
distribution from a mosaiced images.

Fig.21 shows a scene separation result using algorithm (Zéke a scene
moving a camera parallel translation under incandesogint &t 2800K and out-
door illumination. Upper image is a spectral image undehdigbt source, center
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graph is separation results of illumination and lower imagesstimated surface re-
flectance. It has some good result in separation, but thergosine badness.

Fig.22 shows a scene separation result using specular finskedpboint. Upper
left shows an RGB image that is changed from spectral digiab. Each pixels
has a spectral data like a upper right. Spectral signal wisr@al using interfer-
ence filter systems moving a monocronic camera pan rotatéeruncandesent
lightsource. Upper right shows obtained specular andskf&pectral distribution.
The image position of the data is square blue center of ugfieinhage. Lower
right shows a real illumination spectral distribution ahe tresult of separation
algorithm of (47). It shows a good performans. And lower Isfa reflectance
images. That is make surface spectral reflectance visuslarehis experiment it
is most important to make a great mosaicing because if spepaskition is miss
matched, the specular data become to include a bad noisalifficult to remove.
But if we get a exact specular data, we can have a so good Sepaesults.
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Figure 13: Measured real illumination distribution of ootas and the result of
separation algorithm using left: one point and right: mpdtints.
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Figure 14: Measured real illumination distribution of incescent light at 2800K
and the result of separation algorithm using left: one panat right: multi points.
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Figure 15: Measured real illumination distribution of ootas and result of sep-
aration algorithm with three, four, six and eight refleceabasis functions using
all eighteen colors of the Macbeth Color Checker.
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Figure 16: Measured real illumination distribution of ootd and incandescent
light at 2800K and the result of the separation algorithmmgisdentical sur-
face(left:blue, right:green) reflectance under thesailhations.
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Figure 17: Measured real illumination distribution of ootd and incandescent
light at 2800K and the result of the separation algorithm{Z5ng identical sur-
face(left:blue, right:red) reflectance under these ilhations.
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Figure 18: Measured real illumination distribution of lefthalogen lamp
right:outdoors, and the result of separation algorithmydgpn (39) and (40),
using red, green, and blue diffuse-specular points.
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Figure 19: Measured real illumination distribution of lefhalogen lamp and
right:outdoor, and the result of separation algorithm, &uopn (45) and (46), using
red, green, and blue diffuse-specular points.
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light source| one point| S.3.1| S.3.2| S.3.3.1| S.3.3.2
blue 3455 | 11.39| 28.10| 13.01 | 0.76
red 11.22 | 0.79 | 26.16| 3.18 0.54

Table 1: The error value of one point algorithm and our alpon(Section hum-
ber), using all combination of eighteen color of Macbethd&@hecker
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Figure 20: Conversion function of pararell transformatising an algorithm (64).
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Figure 21: Scene separation result using algorithm (26ke Bascene moving a
camera parallel translation under incandescent light @@R&nd outdoor illumi-
nation, using red, green, blue point of Macbeth Color Checke
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Figure 22: Scene separation result using specular anddiffaint. Take a scene
moving a monocronic camera pan rotated under outdoor ifiation.
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7 Conclusion

In this paper, we have evaluated a spectrum separation thetier three dif-
ferent conditions, including 1) points with different colgpectrum distributions
illuminated by the same light source, 2) the same point uddérent illumi-
nation sources of different spectrum color distributioBsdiffuse and specular
points under the same illumination source. Using multi pspectrum distri-
butions reliability in the separation of observed scenespm distribution into
illumination and reflectance spectrum distribution inse=a And we have a good
result in separating a spectral which obtained using iaterfce filter into illumi-
nation spectral distribution and surface spectral reflfexta
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