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Abstract

A number of methods have been proposed to separate a color signal into its

components: illumination spectral power distribution andsurface spectral re-

flectance. Most of these methods usually use a minimization technique from solely

a single color signal, which works in theoretical frameworkbut is not effective

for real data. The reason is it lacks the constraints necessary to make the it-

eration converge into correct separation. To resolve this problem, we proposed

a minimization technique that, unlike the existing methods, uses multiple color

signals. In our implementation, we introduce three different approaches: first,

color signals obtained from two different surface reflectance lit by an identical

illumination spectral power distribution; second, color signal from an identical

surface reflectance lit by different illumination spectralpower distributions; and

third, color signals from identical surface reflectance butwith different types of

reflection components (diffuse and specular reflectance) lit by identical illumina-

tion spectral power distribution. Using multiple color signals can improve the

robustness of the estimation, since we can obtain more constraints in the input

data. And the experimental results on real spectral show theeffectiveness of our

method. In addition, practically we implement our method todeal with color sig-

nals of a scene taken using interference variable filter. Thepurpose is to obtain

surface spectral reflectance and illumination spectral power distribution under

some illumination light source.
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1 Introduction

Light reflected from an object, usually called color signal is the product of two

components: illumination spectral power distribution andsurface spectral reflectance.

To separate a color signal into its components is an important issue in computer

vision and color science since, by separating them we can obtain the actual surface

spectral reflectance without being affected by illumination spectral power distri-

bution. Generally speaking, this kind of separation is partof a color constancy

algorithm[8][5][7][6], which is commonly done in a three color channel (RGB)

operation instead of in spectral operation.

In three color channels (RGB), various color constancy methods have been

proposed. For instance, Finlayson et al. [5] showed that illumination change

which causes the problem of color constancy can be turned into a crucial con-

straint to solve the problem of color constancy itself. Using a straight-line ap-

proximation model of illumination in diagonal matrix components space, they

proposed an intersection approach of two pixels with the same surface color but

lit by different illumination. Tan et al. [21] introduced a method focusing on high-

lighted regions that could be applied for both single and multi-colored surface.

While the aforementioned methods are applicable for separating in three color

channel data, unfortunately, most of them cannot be appliedto spectral (color

signal) separation, since spectral data cannot be converted into chromaticity val-

ues (on which most methods are based) without losing its spectral information

(metamerism problem). Hence, for color signals, a different technique that is suit-

able for is required.

Tominaga et al. [25] have shown that, by using the dichromatic reflectance

model, illuminatioin distribution can obtained using bothhighlighted (specular)

regions and diffuse regions of two different surface colors. By using this method

highly performanced results are obtained. Marchant et al. [13] introduced spectral
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constancy under daylight, by assuming that illumination could be approximated

with a blackbody radiator. This method can detect whether a surface has the same

surface spectral reflectance, yet it is not intended to separate illumination spectral

power distribution and surface spectral reflectance.

Ho et al. [10] showed that, by considering illumination spectral power dis-

tribution and surface spectral reflectance to be the sums of linear basis func-

tions[2,7,10,11], the color signal separation can be done by minimizing the square

difference of a color signal and product of the sums of linearillumination basis

functions and surface spectral reflectance basis functions. While theoretically it

can separate a color signal into its components, a few problems exist. First, some

parts of the separated signal in certain cases, become negative, which infringes on

the physical reality of the spectral components since, in reality, those components

are always positive. Second, in cases where the constraintsare insufficient, the

minimization algorithm could be trapped in the local minimum, thereby produc-

ing incorrect separation.

Chang et al. [1] improved the method of Ho et al. by putting additional con-

straints on the illumination and surface reflection components, as well as using

a simulated annealing algorithm and a hit-and-run algorithm to increase the effi-

ciency and stability. Their method gives a more robust result compared with that

of Ho et al.; however, their separation still suffers from the same drawbacks as

those of Ho et al’s method. Their main problem is that a singlecolor signal has

such limited constraints that no current algorithm can avoid the trap of the local

minimum.

In this paper, our goal is to describe how to separate color signals into illumi-

nation spectral power distribution and surface spectral reflectance components by

giving more constraints in the input data, and separate a spectral images into illu-

mination spectral power distribution and reflectance spectral images. We propose

a minimization technique that, unlike the existing methods, uses multiple color

2



signals. These multiple color signals can improve the robustness of the estima-

tion because, by using them, we can obtain more constraints in the input data. In

our implementation of using multiple color signals, we introduce three different

approaches: first, color signals obtained from two different surface reflectance lit

by identical illumination spectral power distribution; second, color signal from

identical surface reflectance lit by different illumination spectral power distribu-

tions; and third, color signals from identical surface reflectance but different types

of reflection components (diffuse and specular pixels) lit by identical illumination

spectral power distribution. By using these three conditions of color signals, a

better solution can be obtained and the stability of the separation increases.

To obtain a spectral images, Schechner[18] shows by using a interference fil-

ter and performing mosaicing algorithm[20][14][27][15],we can obtain spectral

images. But by this approach we can’t obtain spectral distribution exactly because

of using gray world assumption. To obtain spectral distribution exactly, we have

to obtain a conversion function that including camera parameter, filter parameter

and distance for items. So we show how we obtain a conversion function correctly.

And then, we perform separation algorithm to these spectralimages.

The rest of the paper is organized as follows. In Section 2, wediscuss the

theoretical background of the proposed method. In Section 3, we explain our

method of dealing with multiple color signals. The method toobtain a color signal

is showed in Section 4. The implementation of our algorithm and the experimental

results are provided in Section 5 and Section 6. And finally, in Section 7 we

conclude our paper.
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2 Theoretical Background

2.1 Linear Basis Functions

A color signal spectrum is the product of illumination spectral power distribu-

tion (SPD) and surface spectral reflectance components. Mathematically, it is

expressed as: I(�) = E(�)S(�) (1)

whereI(�) is the color signal at a wavelength� ,E(�) is the illumination spectral

power distribution andS(�) is the surface spectral reflectance.

A number of researchers have asserted that the natural illumination can be

approximated into a limited number of linear basis functions. Judd at el. [11]

shows that illumination distribution of daylight and some indoor light sources can

be approximated into a certain number of linear basis functions. They expressed

the approximated illumination SPD as:E(�) ' mXi=1 eiEi(�) (2)

whereEi(�) is the linear basis functions of illumination distributionandei is the

coefficient.

Furthermore, Judd et al. showed that only three linear basisfunctions are suf-

ficient to express all natural illumination SPDs (m = 3). Slater et al. [19] argued

that more sophisticated approximation needs eight linear basis functions. Yet,

they also admitted that the first three basis functions dominantly cover all illumi-

nation SPDs. Ho et al. [10] and Chang et al. [1] used three basis functions in their

estimation process. Fig.1.a shows the Judd’s three illumination basis functions.

Similar to illumination SPDs, several researchers [2, 16] have shown that the

surface spectral reflectance can be expressed in a number of linear basis functions:
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S(�) ' nXj=1 sjSj(�) (3)

whereSj(�) is the reflectance linear basis functions andsj is the coefficient.

Cohen et al. [2] determined his linear basis functions by investigating Munsell

chips. Parkkinen et al. [16] examined various surface colors, concluding that eight

basis functions could completely cover all of the existing surface color database.

Moreover, they also showed that the first three basis functions cover 99% of the

database. Fig.1.b shows the Parkkinen’s four reflectance basis funtions. Ho et al.

[10] and Chang et al. [1] used three basis functions for surface spectral reflectance.

And it is natural if you increase a number of basis function, illumination SPD and

surface spectral reflectance can reveail more exactly.
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a. b.

Figure 1: a. Judd’s [11] three basis functions of illumination distribution. b.
Parkkinen’s [16] four first basis functions of surface spectral reflectance.
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2.2 Separation Method

By plugging Equation (2) and (3) into Equation (1), a color signal can be approx-

imated as: I(�) = E(�)S(�) (4)' mXi=1 eiEi(�) nXj=1 sjSj(�) (5)

The Illumination SPD and surface spectral reflectance can beresolved using

minimization technique;ERROR =X� " mXi=1 eiEi(�) nXj=1 sjSj(�)� I(�)#2 (6)

practically, the wavelength ranges over the visible spectrum from 400nm to 700nm

with interval 5nm. By minimize theERROR by changing a coeficientsei; sj, we

can reveal a color signal and obtain a surface spectral reflectance and illumination

SPD.

One of the problems using Equation (6) is that, in certain cases, the separation

does not represent physical reality of illumination and surface spectral. Thus, to

obtain more realistic results, Chang et al. [1] introduced additional constraints for

illumination SPD and surface spectral reflectance. The constraints are expressed

as: I(�) � mXi=1 eiEi(�) � maxlimit (7)0 � nXj=1 sjSj(�) � 1 (8)

Constraint in Equation (7) means that the illumination SPD is always bigger

than the input color signal. The upper limitation has no physical mean but it is

7



important for computation. Equation (8) means surface spectral reflectance has

values between zero and one.

Chang et al. [1] applied the constraints into the minimization algorithm of

Equation (6) using hit-and-run algorithm and simulated annealing algorithm.

8



3 Proposed method: Multiple Color Signals

3.1 Different Surface Reflectance Identical Illumination

3.1.1 Minimization of the approximation and measured value

To our knowledge, the existing methods consider the use of information from

solely one single point. However, in the real world, each scene has an abundance

of available points. Thus, instead of using a single color signal, we can derive

benefit from this abundance of color signal types. Our first algorithm considers

two types of color signals obtained from two different surface spectral reflectances

illuminated by identical illumination SPD. In this case, the decomposition can be

achieved by minimizing a sum of Equation (6) at each point under the constraint

that the spectrum distribution of the illumination is common over the points, while

their reflectance spectrums are different from each other. This constraint can be

expressed as: pointsXp=1 X�  mXi=1 eiEi(�) nXj=1 sp;jSj(�)� Ip(�)!2
(9)

We use the constraint described in Equation (7) and the following equation:0 � nXj=1 sp;jSj(�) � 1 (10)

The more spectrals are used, the more constraints can be obtained. Hence, this

more constrained separation theoretically can produce a more accurate result. For

efficient and stable decomposition, it is important to choose points with chromat-

ically distributions as different as possible.

9



3.1.2 Minimization of the Difference of the Estimated LightSource of Multi
Points

When we consider a lot of point’s color signals that illuminaiton is the same, the

illumination distribution of each point can expressed as follows, using reflectance

bsasis functions; E(�) = I(�)S(�) (11)' I1(�)Pmi=1 s1;iSi(�) (12)' I2(�)Pmi=1 s2;iSi(�) (13)

It is as follows when this formula is transformed.I1(�)Pmi=1 s1;iSi(�) ' I2(�)Pmi=1 s2;iSi(�) (14)I1(�)Pmi=1 s1;iSi(�) � I2(�)Pmi=1 s2;iSi(�) ' 0 (15)

So by minimizing the following equation, we can obtain the separated illuminaiton

distribution and surface reflectance.X� ( I1(�)Pmi=1 s1;iSi(�) � I2(�)Pmi=1 s2;iSi(�))2 (16)

10



Figure 2: Example of different surface, identical illumination
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3.2 Identical Surface Reflectance Different Illumination

3.2.1 Minimization of the approximation and measured value

Another constraint can be obtained by considering multi spectrum distributions at

the same surface spectral reflectance illuminated by different illumination SPD.

We can resolve the separation problem by minimizing the sum of Equation (6) of

each point under different illumination distributions:pointsXp=1 X�  mXi=1 ep;iEi(�) nXj=1 sjSj(�)� Ip(�)!2
(17)

and using the constraint described in Equation (8) and the following equation:I(�) � mXi=1 ep;iEi(�) � maxlimit (18)

The problem of this approach is similar to that of subsection3.1, but the con-

straints are different. In this approach, illumination constraints play a dominant

role, which theoretically gives more constraints as compared with the approach in

subsection 3.1.

12



3.2.2 Minimization of the Difference of Estimated Reflectance of Multi Points

When we consider two color signals of identical point that illuminaiton is dif-

ferect, the surface reflectance can expressed as follows using illumination basis

functions. S(�) = I(�)E(�) (19)' I1(�)Pmi=1 e1;iEi(�) (20)' I2(�)Pmi=1 e2;iEi(�) (21)

It is as follows when this formula is transformed.I1(�)Pmi=1 e1;iEi(�) ' I2(�)Pmi=1 e2;iEi(�) (22)I1(�) mXi=1 e2;iEi(�) ' I2(�) mXi=1 e1;iEi(�) (23)I1(�) mXi=1 e2;iEi(�)� I2(�) mXi=1 e1;iEi(�) ' 0 (24)

So by minimizing the following equation, we can obtain the separated illuminaiton

distribution and surface reflectance.X� (I1(�) mXi=1 e2;iEi(�)� I2(�) mXi=1 e1;iEi(�))2 (25)
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Figure 3: Example of identical surface, different illumination
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3.2.3 Multi pair under different illumination

Then, consider a case, using multi pairs of identical point’s color signal under

different illumination. In this case, illumination spectral power distribution and

surface spectral reflectance reveail as follows:pointsXp=1 X� 0� mXi=1 e1;iEi(�) nXj=1 sp;jSj(�)� Ip;1(�)!2 + mXi=1 e2;iEi(�) nXj=1 sp;jSj(�)� Ip;2(�)!21A
(26)

here, (p,1) and (p,2) is the pair of same items under different light source.

If we use this folmula, it has a strong constraint.

15



3.3 Specular and Diffuse Points

3.3.1 Minimization of the approximation and measured value

In the real world, there are many objects with dielectric inhomogeneous material.

This kind of material exhibits specular and diffuse reflections as described in the

dichromatic reflection model. By using this material as target objects, we consider

that we can gain benefit from the color signals of specular anddiffuse points

illuminated by the same illumination SPD. In this subsection, we will explain

the algorithm and show the relationship between diffuse andspecular points.

In the dichromatic reflectance model, the observed spectrumdistribution at a

specular point can be expressed as follows:I(�) ' ms(i; e; g)E(�)Ss(�) +mb(i; e; g)E(�)Sb(�) (27)

wherems; mb are constant scalars,Ss(�) is the specular spectral reflectance func-

tion, andSb(�) is the diffuse spectral reflectance function.Sb can be approximated

using: Sb(�) ' nXj=1 sjSj(�) (28)

the geometric factors (ms andmd) can also be rewritten as:ms(i; e; g) = Cs (29)mb(i; e; g) = Cb (30)

We can assume that the specular spectrum reflectance function is identical to the

spectrum distribution of the incident light for most dielectric inhomogenous ob-

jects. Lee et al. [12] named this assumption the neutral interface reflection (NIR)

assumption. Using this NIR assumption, we can setSs(�) as a constant.

In this paper, Parkkinen et al. [16] showed the first basis function,S1 can be

approximated to be a constant (Fig.1.b, line 1), and independent of�:Ss(�) ' kS1(�) ' Constant (31)

16



wherek is a constant scalar. thenI(�) ' CsE(�)Ss(�) + CbE(�)Sb(�) (32)' CsE(�)kS1(�) + CbE(�) nXj=1 sjSj(�) (33)= E(�) nXj=1 s1;jSj(�) (34)

A diffuse point on the same surface spectral reflectance has the following spectrum

distribution: I 0(�) ' C 0bE(�)Sb(�) (35)' C 0bE(�) nXj=1 sjSj(�) (36)= E(�) nXj=1 s2;jSj(�) (37)

From Equation (34) and Equation (37) the relation between specular and diffuse

point are expressed as:s1;2 : s1;j = s2;2 : s2;j(j = 3 � n) (38)

Using this constraint, we can set up a more robust separationalgorithm than those

in the previous subsection 3.1.

In order to use the hit-and-run algorithm, we rewrite Equation (35) and Equa-

tion (32) into the following equation:pointsXp=1 X�  �p mXi=1 eiEi(�) nXj=1 sp;jSj(�)� I(�)!2
(39)s1;j = s2;j(j = 2 � n) (40)

where�p is a new variable. Therefore, it can generate a new state efficiently using

the hit-and-run algorithm.

17



3.3.2 Minimization of Linear Combination of Specular and Diffuse Data
and Approximated Illumination Distribution

As another way to obtain illumination distribution, from Equation (34) and Equa-

tion (37), illumination distribution can be expressed as follows:C 0bI(�)� CbI 0(�) = C 0bCsE(�)Ss(�) (41)

Then, by dividing Equation (41) byC 0b, we can obtain the following variables:q1 = CbC 0b (42)q2 = CsSs(�) (43)

consequently, I(�)� q1I 0(�) = q2E(�) ' q2 mXi=1 eiEi(�)= mXi=1 e00iEi(�) (44)

We resolve (45) by minimizing the following equations;X� (I(�)� q1I 0(�)� mXi=1 e00iEi(�)) (45)

We also use constraint described in Equation (7) and the following equation:0 � q1 � I(�)I 0(�) (46)

By minimizing this equation changing a value of coefficientq1; e00i , we can obtain

accurate illumination SPD. This theoretical analysis confirms the results of a num-

ber of researchers in color constancy, that is, specularitygive a significant clue to

18



estimate illumination color. Furthmore, (45) can expressed as linear equation as

follows; 0�E1(�) : : : Em(�) I 0(�)1A0BBB� e1
...emq1
1CCCA = I(�) (47)

By this method, stability and calculation speed is increased.

19



Figure 4: Example of a specular color signal and diffuse color signal
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4 Systems

4.1 Equipments

Spectrometer To obtain a spectral color signal, it is easy to use spectrome-

ter(Fig. 5). Spectrometer can exactly measure a point’s spectral distribution. But

one of the problem is that because it measure a point’s color signal, it is difficult

to obtain spectral images.

Line Spectral Scaner To obtain multi spectral images, a unique system is needed

because of a number of camera color sensor is so little. As oneof the system, the

way to use spectral line scaner(Fig.6) is exist. Line spectral scaner is attached a

monochronic camera. By using the line scaner, we can obtain aline spectral im-

age by image. So if we exactly know the moving motion of the camera and move

slowly making a width between lines be small enough, multi spectral images are

obtained.

Interference Filter As the another way to easily obtain a multi spectral images,

Yoav [18] showed by using a interfelence filter(Fig.7) and monochronic camera,

we can obtain spectral images. It is so good because we only need the interfer-

ence filter and monochronic camera. Interference filter is a prism filter that the

wavelength of penetration light crosses filter is change across the filter in visible

light from 700nm to 400nm(Fig.8). Then, we shows process of obtaining spectral

images. First, attached interference filter to an 8-bit monochrome camera, and

then we take a scene moving the camera continuously by pan rotation or perspec-

tively(4.3), and mosaic[20][14][27][15] these images using smoothing algorithm

and edge detection algorithm. Then convert(4.4) the obtained data of luminos-

ity value of each points to a spectral data. And then we can easily get the multi

spectral images.

21



Figure 5: Spectrometer

Figure 6: Line spectral scaner
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Figure 7: Interference filter and monochronic camera(SONY XC55)

Figure 8: The range of penetration light of interference filter
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4.2 Difference of Interference Filter and Spectral Line Scaner

To take a spectral, we need to use interference filter or spectral line scaner. These

has merits and demerits. So here, we show these merits and demerits.� Interference filter

– Advantage� Can control a density of spectral color signal.� Camera motion can obtained from continuously taked images.

– Disadvantage� Multi images are needed to get a point’s spectral power distribu-

tion.� Mosaicing is needed.� Azimuth difference arises except when a camera pan rotate.� Can’t take a specular spectral easily, especially when a camera

translate parallely it is difficult to obtain a specular spectral be-

cause a point of specular is move depend on the camera’s posi-

tion.� Prismic filter

– Advantage� Can take a line spectral distribution only using one image.� Easily take a specular spectral.� No azimuth difference.

– Disadvantage
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� Only can control a width between lines. To take a density spectral

image, it is necessary to move so slow or increase a photography

speed(fps)� It is necessary to know a camera’s motion from some data, be-

cause these image has no infomation

For our experiments, it’s necessary to take a scene spectrum. And if we use a spec-

tral line scaner, it’s needed to move so slowly and to know a camera motion, and it

is so difficult. So we use interference filtler although thereare some disadvantage.
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4.3 Perspective and Rotational

When we use interference filter, it is neccesarry to take an object at a lot of suf-

ficient position (x) of images. So we need to move a monocroniccamera that

filter attached, and continuously took images. Then, as the camera motion to take

images continuously, we use two types of motions. One of the motion is parallel

translation, turning a camera perpendicularly to a photography plane, and photo-

ing a camera, while fixing distance with a plane(Fig.9). And another motion is

pan rotation, rotating a camera at the camera’s camera center, and taking a scene

continuously(Fig.10)

These two motion has advantage and disadvantage, so we showsthese advantage

and disadvantage.� Parallel Translation

– Advantage� Data can be much obtained continuously.(Camera can move long

distance.)

– Disadvantage� Can’t obtain a specular spectral data.� Azimuth difference arises.� Pan Rotation

– Advantage� Can obtain a specular data (When mosaic image exactly).� No azimuth difference.

– Disadvantage

26



� Only a spectral image from a camera’s position(Camera can’t

move, only can do a 360 degree rotation.)

To use a specular and diffuse color signal using interference filter, it is necessary to

use pan rotation. And it is necessary to mosaic continuous images exactly, because

specular point is required at the exact position, and if the position is shift a little,

specular spectral has greatly large noises. So if we need a continuous images, like

a town spectral images, or use datas that have little azimuthdifference, it is better

to use pallarell translation. And if we need a specular data or use datas that have

largel azimuth difference, it is better to use pan translation. So it is necessary to

use them properly.
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Figure 9: Parallel translation

Figure 10: Pan rotation
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4.4 Conversion of Input Data

When we take a scene with a camera which interference filter attached, the mo-

saiced data is expressed as follow.I(x; y) = E(�; x0; y0)S(�; x0; y0)F (�)C(�)D(x0; y0) (48)

hereE is illumination distribution at the position(x0; y0), S is surface reflectance,F is transmissivity of interference filter,C is a variation of camera sensor’s re-

action andD is a distance function from a camera to the items position. Soreal

spectral distribution is expressed as follows.Realspetral(�; y) = E(�; x0; y0)S(�; x0; y0) (49)= I(x; y)F (�)C(�)D(x0; y0) (50)

1.Pan Rotation

When we took a scene rotating a camera at it’s camera center,

the distance from a camera center to an object is the same, no matter

which direction camera has turned.D(x0; y0) = Constant (51)

So to get a spectral distritution, we need to getHpan(�). It reveals as

follows. Hpan(�) = 1F (�)C(�) (52)Realspetral(�; y) = I(�; y)Hpan(�) (53)
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2.Parallel translation

When we took a scene moving a camera parallel translation right-

angled in the photography direction, the distance from a camera is

different depends on a camera posistion. And the distance isrelate on

a image’s position(x). It expressed as follows;Distane(x0; y0) = (Denteros � )2 (54)

Then, becuase ofos � depend on� it reveail as follows:Distane(x0; y0) = (Denter�(�))2 (55)

here,Denter is the distance when item is taken at a center of image

and� is the direction of the item. So to get a spectral power distritu-

tion from mosaicing data, we need to getHparallel(�). It reveals as

follows. Hparallel(�) = 1F (�)C(�)(Denter�(�))2 (56)Realspetral(�; y) = I(�; y)Hparallel(�) (57)

The function rectified from a mosaicing data to real spectraldistribution is dif-

ferent between pan rotation and parallel translation. So itis necessary to make a

different conversion function each.
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Figure 11: Distance from camera of parallel translation

Figure 12: Distance from camera of pan rotation
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4.5 Conversion data obtaining

Compensation data is expressed with the quotient of the datadirectly obtained

using spectrum meter, and the data which obtained from mosaiced data which

obtained using a camera with a interference filter.H(�) = Esp(�)Evf(�) (58)

here,H(�) is a compensation data,Esp(�) is a data which obtained using spec-

trometer andEvf(�) is a data which obtained mosaicing images which obtained

using interfelence filter.

Then, when we get the compensation data, it is not sufficient using only one data

because of noise and so on. So we use a lot of data for obtainingcompensation

data. In our experiments we use eighteen color of Macbeth Color Checker. We

took these color under blue illumination with spectrometerand a camera with

interference filter. And we mosaic camera captured images and compare with

spectrometers image.

The compensation data is obtained by minimization algorithm. It expressed as

following folmula; 18Xp=1X� (Espp(�)�H(�) � Evfp(�))2 (59)

then, consider as follow; �(�) = 18Xp=1 (Evfp(�))2 (60)�(�) = �2 18Xp=1 Espp(�)Evfp(�) (61)(�) = 18Xp=1 (Espp(�))2 (62)
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From (60)(61)(62), we can reveal (59) as follows;�(�)H(�)2 + �(�)H(�) + (�) (63)= �(�)(H(�) + �(�)2�(�))2 + (�)� �(�)24�(�) (64)

So a compansation data that minimize (64) is express as follows;H(�) = � �(�)2�(�) (65)

We do these processing for pan rotation data and parallel translation data each.
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5 Implementation

Our implementation is based on the simulated annealing algorithm with a hit-and-

run algorithm [1]. Using the simulated annealing algorithmenables us to avoid

local minima in solving a non-linear optimization problem.While using hit-and-

run algorithm, we can obtain a good performance in searchingthe interior point

as a new state.

The simulated annealing algorithm is expressed as follows.

1. Gave an initial state for variable~u = (ei; sj; �) these are feasible.

2. Generate a new state~u00 using hit-and-run algorithms.

3. IF�F = F (~u)� F ( ~u00) < 0 or e��F=Te(t) > RANDOM [0; 1℄
THEN ~u = ~u00 and go to 2.

ELSE go to 2.

Do these approach some times or untilF (~u) becomes so small. And some times

maket = t + 1. Obtained~u is a value which makeF (~u) mostly small. Here,F
is evaluation function andTe(t) is called cooling function and we useTe(T ) =Const=(1 + t)2.
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Hit and run alogrithm is used to make good performance to search interior

point as a new state. It is useful if the space is convex. The process is as follows.

1. Given an interior point~u
2. Generate a vector~u0 with equal probability.(randomly

3. Do next calculation.k1;� = maxlim�Pmi=1 eiEi(�)Pmi=1 e0iEi(�) ; k2;� = �Pmi=1 eiEi(�)Pmi=1 e0iEi(�)k3;� = 1�Pnj=1 sjSj(�)Pnj=1 s0jSj(�) ; k4;� = �Pnj=1 sjSj(�)Pnj=1 s0jSj(�)r+ = min1�k�4;�Kk;�r� = max1�k�4;�Kk;�
4. ~u00 = ~u+ [r� +RANDOM [0; 1℄(r+ � r�)℄~u0

The ~u00 is the output data. And use the~u00 in simmulated annealing as a new state.
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6 Experimental Results

To confirm the performance of separation algorithm, we perform an experiment

using some samples. We measured a color signal pectrum usingthe Spectrascan

PR650.By using Spectrascan PR650, we can measured a color signal from 380nm

to 780nm by 4nm at the maximum, and we use a color signal from 400nm to

700nm by 5nm. We use Macbeth Color Checker as our target object. For the basis

functions, we used Judd’s [11] three illumination basis functions and Parkkinen’s

[16] reflectance basis functions.

Fig.13 shows the real illumination distribution of outdoors, and estimated il-

lumination distribution with a separation algorithm underthree reflectance basis

functions, using one, two and three points of the Macbeth Color Checker’s red,

green and blue colors, respectively. Fig.14 shows the real illumination distribu-

tion of incandescent light at 2800K and the estimated illumination distribution

with the separation algorithm, under three reflectance basis functions, using one,

two and three points of the Macbeth Color Checker’s red, green and blue colors,

respectively. As shown in Fig.14, if we use incandescent light, relatively good

separation results are obtained utilizing the multi color signals algorithms with

the red and blue, or the red and green and blue point’s spectrals.

Fig.15 shows the real illumination distribution of outdoors, and the estimated

illumination distribution using three, four, six, and eight reflectance basis func-

tions, using eighteen point’s spectral of the Macbeth ColorChecker.

Fig.16 shows the real illumination distribution of outdoorand incandescent

light at 2800K and the estimated illumination distributionwith the separation al-

gorithm using blue and green surfaces under these illuminations. In this experi-

ment, we use eight reflectance basis functions. As shown in Fig.16, if we use a

blue point lit by incandesent light at 2800K and outdoor illumination, we obtain a

good result.
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Fig.17 shows the real illumination distribution of outdoorand incandescent

light at 2800K and the estimated illumination distributionwith the separration

algorithm (25) using red and blue surface each under these illuminations. As

shown in Fig.17, if we use a red point lit by incandescent light at 2800K and

outdoor illumination, we have a especially good result.

Fig.18 shows the real illumination distribution of outdoorand incandescent

light at 2800K and the estimated illumination distributions using the diffuse and

specular separation algorithm, using red, green, and blue points’ diffuse and spec-

ular spectrals, using Equation (39) and (40). Fig.19 shows the real illumination

distribution of outdoor and incandescent light at 2800K andthe estimated illu-

mination distributions using diffuse and specular separation algorithm, using red,

green, and blue points’ diffuse and specular spectrals, using Equation (45) and

(46). As can be observed in Fig.19, utilizing diffuse and specular points using

Equation (45) and (46) produces excellent results.

Table.1 shows the error value of each algorithm, by using multi point alogrithm,

especially using algorithm of Section3.2.2, we have a greatperformance.

Then, to take a spectral images instead of point spectral distribution, we use a in-

terference filter. We use, SONY XC-55, monocronic camera, and attach a interfer-

ence filter. Then we make the camera pan rotation and paralleltranslation. Fig.20

shows a conversion function when a camera take a pararell transformation. This

data is obtained by using an algorithm (64). First, we take a Macbeth Chart con-

tinuously under blue illumination, moving a camera parallely, and mosaic these

images. And compare these data and measured real distribution obtained by using

a spectrometer. By using this compensation function, we canobtain a real spectral

distribution from a mosaiced images.

Fig.21 shows a scene separation result using algorithm (26). Take a scene

moving a camera parallel translation under incandescent light at 2800K and out-

door illumination. Upper image is a spectral image under each light source, center
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graph is separation results of illumination and lower imageis estimated surface re-

flectance. It has some good result in separation, but there are some badness.

Fig.22 shows a scene separation result using specular and diffuse point. Upper

left shows an RGB image that is changed from spectral distribution. Each pixels

has a spectral data like a upper right. Spectral signal was obtained using interfer-

ence filter systems moving a monocronic camera pan rotated under incandesent

lightsource. Upper right shows obtained specular and diffuse spectral distribution.

The image position of the data is square blue center of upper left image. Lower

right shows a real illumination spectral distribution and the result of separation

algorithm of (47). It shows a good performans. And lower leftis a reflectance

images. That is make surface spectral reflectance visualize. For this experiment it

is most important to make a great mosaicing because if specular position is miss

matched, the specular data become to include a bad noise. It is difficult to remove.

But if we get a exact specular data, we can have a so good separation results.
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Figure 13: Measured real illumination distribution of outdoors and the result of
separation algorithm using left: one point and right: multipoints.

Figure 14: Measured real illumination distribution of incandescent light at 2800K
and the result of separation algorithm using left: one pointand right: multi points.
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Figure 15: Measured real illumination distribution of outdoors and result of sep-
aration algorithm with three, four, six and eight reflectance basis functions using
all eighteen colors of the Macbeth Color Checker.
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Figure 16: Measured real illumination distribution of outdoor and incandescent
light at 2800K and the result of the separation algorithm using identical sur-
face(left:blue, right:green) reflectance under these illuminations.
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Figure 17: Measured real illumination distribution of outdoor and incandescent
light at 2800K and the result of the separation algorithm(25) using identical sur-
face(left:blue, right:red) reflectance under these illuminations.
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Figure 18: Measured real illumination distribution of left: halogen lamp
right:outdoors, and the result of separation algorithm, Equation (39) and (40),
using red, green, and blue diffuse-specular points.
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Figure 19: Measured real illumination distribution of left: halogen lamp and
right:outdoor, and the result of separation algorithm, Equation (45) and (46), using
red, green, and blue diffuse-specular points.
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light source one point S.3.1 S.3.2 S.3.3.1 S.3.3.2
blue 34.55 11.39 28.10 13.01 0.76
red 11.22 0.79 26.16 3.18 0.54

Table 1: The error value of one point algorithm and our algorithm(Section num-
ber), using all combination of eighteen color of Macbeth Color Checker
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Figure 20: Conversion function of pararell transformationusing an algorithm (64).
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Figure 21: Scene separation result using algorithm (26). Take a scene moving a
camera parallel translation under incandescent light at 2800K and outdoor illumi-
nation, using red, green, blue point of Macbeth Color Checker.
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Figure 22: Scene separation result using specular and diffuse point. Take a scene
moving a monocronic camera pan rotated under outdoor illumination.
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7 Conclusion

In this paper, we have evaluated a spectrum separation method under three dif-

ferent conditions, including 1) points with different color spectrum distributions

illuminated by the same light source, 2) the same point underdifferent illumi-

nation sources of different spectrum color distributions,3) diffuse and specular

points under the same illumination source. Using multi point spectrum distri-

butions reliability in the separation of observed scene spectrum distribution into

illumination and reflectance spectrum distribution increases. And we have a good

result in separating a spectral which obtained using interference filter into illumi-

nation spectral distribution and surface spectral reflectance.
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