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ABSTRACT

Recently, creation of realistic 3D contents through sensing the real world has become

fundamental for many applications. To enhance 3D geometric models obtained through

laser range scanners with their textures reconstructed from several photographic 2D im-

ages taken from various view points, it is necessary to determine the camera position and

orientation relative to the 3D models for each of the images.

In this thesis, a registration method is proposed, which automatically and simulta-

neously aligns multiple 2D images onto a 3D model. For each iteration process, cor-

respondences between 2D edge pixels and 3D edge points are automatically searched

and updated. Besides these 2D-3D edge correspondences, 2D-2D edge correspondences

on 3D surface model are also considered simultaneously for global optimization among

all the images. Errors are minimized by using conjugate gradient search, utilizing M-

estimator for robustness. From texture mapped objects, the usefulness of the proposed

simultaneous registration method is shown. Also, it is applied to the creation of digital

cultural assets.

論文要旨

近年、実世界を測定することによって自動的に 3次元コンテンツを生成する技術
の重要性が高まってきている。より現実感の高いモデルを作成するためには、レー
ザレンジファインダ計測によって得られた 3次元幾何形状モデルに、写真から得ら
れる物体表面のテクスチャを貼り付けることが有効であるが、そのためには写真を
撮影した位置・向きなどを対象物に対して正確に推定する必要がある。
本論文では、3次元幾何モデルと複数枚のテクスチャ画像間での位置合わせを自

動的に行う手法を提案する。画像上の 2次元エッジピクセルとモデル上の 3次元エッ
ジ点との対応関係を随時更新しながら、反復解法で求める。またそれら 2D-3D間で
の対応関係に加え、3次元表面上での 2D-2D間のエッジ対応関係も同時に考慮に入
れることで、複数方向からの画像全体の間で整合のとれた最適化を行うことができ
る。誤差最小化計算には共役勾配法を用い、またロバストに動作するように M-推
定法を使用する。テクスチャマッピングへ適用例から、本同時位置合わせ手法の有
効性を示す。また、文化財のデジタルアーカイブへの応用例も示す。
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Chapter 1

Introduction

1.1 Background

In recent years, widespread demand for 3D contents have been greatly increased in many

areas: computer graphics, entertainment, E-commerce, preservation of cultural assets,

ITS(Intelligent Transportation System), etc. However, most of them are created manually

by human experts using 3D modeling systems and this input process is normally very

time-consuming. To simplify the process, some research have been investigated to aid

designers through novel human interfaces, like SKETCH[34] and Teddy[11].

On the other hand, in many situations, to obtain 3D models by observation of real

world objects is much more convenient and reasonable. One obvious example is the faith-

ful modeling of cultural heritages. In this case, it is essential to create realistic 3D models

by measuring those objects through sensors. Recently, such measuring-techniques and al-

gorithms for processing acquired data have been rapidly developed by many researchers.

The term of “3D model” can be classified into three detailed categories: geometric

model, physical model and environmental model. Therefore, to acquire the complete 3D

model through observation, several processes are necessary and vast numbers of studies

have been made in wide fields.

A geometric model represents the shape of objects. It is usually composed of the

vertices and meshes structure (or sometimes by voxels). To build these data, several

steps are necessary. First, several range images are measured by laser range scanners

from various viewpoints and directions. For each pixel of a range image, the distance
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to the object at respective direction is stored. Therefore one range image contains shape

information from one direction. Next, registration calculation is applied, which aligns

multiple range images from various viewpoints to obtain the whole shape [2, 4, 24, 21].

Finally, they are merged to form a unique consensus surface of the object [17, 25].

A physical model represents colors and reflectance properties of surfaces and is an

essential factor for rendering. There are numbers of research for decades and various

reflection models have been studied [12]. However, the pursuit of the exact analysis

is significantly difficult because the radiance observed in the scene is caused by complex

interactions among surface intrinsic colors, surface reflection functions, viewing position,

illumination conditions, inter-reflection, etc. Recently, several novel methods have been

proposed to model realistic appearances of real objects utilizing 3D geometric models

[29, 22].

An environmental model includes illumination distributions and interactions between

surrounding objects (like shadows and inter-reflection), and plays an important role to

achieve the mixed reality. Although it is quite difficult to formulate such a model, several

approaches have been investigated lately. Global illumination is measured using a fisheye

lens or a mirror ball, so that virtual objects are seamlessly synthesized onto an image of

a real scene with correct shadings [27, 5, 6]. High dynamic range radiance maps which

are supposed to be necessary in illumination measurements, are recovered from multiple

photographs [19, 7]. Imari et al. [28] have directly estimated the illumination distribution

of a real scene from a radiance distribution inside shadows cast by an object in the scene.

Recently, much interest has been focused on a physical model since nowadays the

geometric models can be obtained accurately, and the need for realistic rendering of these

geometric objects has increased.

Although there are various algorithms to recover detailed physical properties, the

texture mapping method is a good compromise between the complexity and the quality

of appearance. It does not require a large number of photographs which are usually

necessary to obtain more complex physical models, and makes the measurement process

easier and more practical for the wide range of applications. Indeed, the restrictions at

the measurement time can become a big bottle neck in practice. Another advantage of

the texture mapping method is that it can be processed entirely by normal 3D graphics

hardwares.

However, for the texture mapping and the other methods which acquire the photo-
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metric attributes of 3D geometric models using 2D photographic images, it is necessary

to know camera positions and directions relative to the 3D geometric models. In other

words, camera parameters are required to map the coordinates between the 3D world and

the 2D images.

1.2 Obtaining Camera Parameters

In most researches concerning the physical models, camera parameters have been usu-

ally assumed to be known. They can be estimated using camera calibration, which is a

well-studied problem [10, 32, 36, 9]. In addition, there exist some 3D scanners which

can obtain both a range image and a photometric image at the same time, which means

the precise camera parameters relative to the 3D geometry are always known for each

measurement. However, there are several drawbacks in the use of camera calibration and

these 3D scanners, and we cannot always assume camera parameters to be known. First,

although camera calibration methods are practical for the experiments taken place in the

laboratories, it is inconvenient and often quite difficult to use them in the outdoor envi-

ronments, especially in large-scale environment. Second, in the case of 3D-2D integrated

sensors, 2D capturing systems attached to such sensors are often inferior than normal

digital cameras. The image captured by them has worse quality and lower resolution,

and they cannot allow sufficient configurations of capturing system like shutter speed,

aperture, etc. Mounting a separate high-quality digital camera on a 3D scanner and fixing

their relationship completely can solve this problem. Relative camera parameters against

the 3D scanner can be calculated by camera calibration beforehand and such a system

can emulate 3D-2D integrated scanners. Indeed, it can become a practical solution in

many cases. Even so, there are several situations where it is favorable or necessary to

take photographs separately from 3D geometry. Generally, the required sampling den-

sity for 2D photometric images is often different from 3D geometry, so extra capture of

3D data may burden the capacity and the processing time. Furthermore, the measuring

situation in practice often causes various constraints and may make it impossible to use

such large-scale devices: e.g., the measurements of the unfavorably located objects like

cultural heritages, the measurements under controlled lighting conditions, etc.

Under the condition of uncalibrated cameras, 2D-3D registration is necessary to esti-

mate camera parameters. There have been numerous 2D-3D registration researches and
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their aims are not necessarily restricted to the texture mapping, e.g., for object recogni-

tion, robot navigation, medical image processing, and etc.

2D-3D registration algorithms require some kinds of information about correspon-

dences between 2D features and 3D features. The simplest correspondence information

is specified by a set of point pairs between the 2D image and the 3D geometric model.

From these correspondences the camera parameters for the 2D image can be directly cal-

culated using standard camera calibration algorithms [10, 32, 36]. However, the problem

is to find these points and pairs. Without using markers, it is difficult and not robust to

detect these points and pairs automatically through image processing techniques. There-

fore, specifying a set of corresponding pairs manually, i.e., the pixels on the 2D image and

the corresponding points in the 3D geometries, is a commonly used approach [23, 1, 20].

Since the accuracy of the obtaind camera parameters heavily depends on the accuracy

of point-pairs specified by the user, Neugebauer et al. [20] have refined the registration

results by considering the outline of the object and the intensities of images. Instead of

using a set of point pairs, a set of corresponding lines is also used to derive the camera

parameters of each image [31]. They extract planar regions from the range image and a

3D line is obtained by the intersection of these regions. It is manually matched to a 2D

line extracted from the image.

Debevec et al. [8] have used simple predefined models like a box and a wedge, to

recover both camera parameters and 3D geometries from only photographic images. By

manually specifying locations of parametric primitives for each photograph, both primi-

tive parameters and camera parameters can be obtained at the same time.

Although the methods which need 2D-3D correspondence information specified man-

ually by the user are robust and practical in some cases, they require tedious labor and

they would fail when the number of input photographs increases. For this reason, au-

tomatic algorithms to create these correspondence information are investigated. Instead

of directly searching corresponding features like points and lines, which are not usually

robust and practical process, the methods which use more structured features such as

contours and edges and take the error minimization framework are proposed.

Lavallée et al. [15] have proposed a registration method which use the outline of a

3D object from volumetric medical data. The pose of a 3D smooth surface is estimated

by minimizing the distance between a 3D object surface and the projection of camera-

contours in 2D X-ray projections.

In the field of robot vision, the pose information of the object is estimated by the
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edgel correspondences [33]. The edgel is the element of the edge and their correspon-

dences are automatically searched and updated through iterative calculations. Based on

this algorithm, the registration methods for texture mapping have been studied [14, 13]

and this thesis also utilizes this technique.

Lensch et al. [16] have used the silhouette information. The silhouette of a 3D object

generated by the 3D geometric model and the silhouette extracted from the 2D image are

compared and their distance is minimized by using downhill simplex method. It can uti-

lize the acceleration of graphics hardwares for a calculation speed and register the image

without user intervention through multi-resolutional approach. However, extracting the

exact silhouette from 2D image is very difficult in real outdoor environments.

A few works mentioned above [16, 20, 13] have also considered the global regis-

tration problem. Besides registering each 2D image respectively, they also consider a

multi-view global optimization. This is because even if one 2D image is thoroughly

registered to the 3D object in the error metric of that viewpoint, it does not necessarily

mean it is globally optimal. Due to various errors such as the inaccuracy of 3D geome-

try, the resolution of pixels, lens distortions, etc., it is impossible to make exactly correct

registration. Therefore, the errors always exist and they need to be distributed globally.

Otherwise, when textures are mapped using multiple photographs, undesirable artifacts

may be caused around the boundary where textures from different views intersect.

In [20] and [16], the points on the 3D surface which are visible from multiple im-

ages are used for the optimization of 2D-2D registration. For such points, the former

method calculates a 3D euclidean distance to the nearest edge on each visible image and

minimizes these differences. The latter uses the difference of colors projected from each

visible image. For the color component, hue and saturation channels are used to reduce

the influence of specular.

Kurazume et al. [13] have used the technique of epipolar geometry, instead of mini-

mizing the differences of image attributes on the 3D surface points. It extracts the point

correspondences between adjacent images using KLT method [30] and calculates the

relative camera transformation and the epipolar lines of corresponding point pairs [35].

For the global registration, the sum of distance between the point and its corresponding

epipolar line on each image is considered. However, finding corresponding points be-

tween two images is a very difficult task, so directly depending on these results makes the

registration process not robust. Further, when epipolar lines are almost parallel, which is
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often the case in adjacent photographs taken closely, this method does not work along the

direction of these lines.

1.3 Thesis Overview

In this thesis, a novel registration method is proposed, which automatically and simulta-

neously aligns multiple 2D images onto a 3D model. Throughout iterative calculations,

the correspondence information between 2D edge pixels and 3D edge points are automat-

ically searched and updated. Therefore, there is no need to specify corresponding points

or lines manually. In addition, the global optimization among all the images are also ex-

ecuted by the simultaneous registration of 2D-2D edge correspondences on 3D surfaces.

Outliers are eliminated using M-estimates and the errors are minimized by conjugate

gradient search. Registration results are shown with the texture mapped objects and the

usefulness of the proposed simultaneous registration method is shown. In addition, the

application for the creation of digital cultural assets is also presented.

The remainder of this thesis is organized as follows. In Chapter 2, mathematical

notations and camera parameters which are used in this thesis, are explained. In Chapter

3, a registration algorithm concerning the single 2D image and the 3D geometric model

is presented. In Chapter 4, multiple 2D images are simultaneously registered to the 3D

model through the global optimization. In Chapter 5, experiments are shown and results

are examined. Finally, in Chapter 6, the summary and future work are mentioned.
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Chapter 2

Preliminaries

2.1 Mathematical Notation

• Vectors are expressed in boldface type:x is a vector,x is a scalar.

• Unit vectors have the hat symbol:x̂ is a unit vector.

• Matrices are expressed by the capitalized and boldface character:M is a matrix,

and especially,I is the identity matrix andR is a rotation matrix.

• x will be used to denote the 3D coordinate of the 3D geometric models.

• y will be used to denote the 2D coordinate of the 2D photometric images.

• U will be used to denote the 2D coordinate which is projected from the 3D world

(note, this is the only vector that will be capitalized).

• Vectors should be assumed to be three dimensional except for the above.

2.2 Camera Parameter

The 3D geometric objects are located in the world coordinate system and the camera is

also located in the same world, viewing the objects. Seen from the camera, the coordi-

nates of objects are expressed in the camera coordinate system. They are illustrated in

Figure 2.1 The camera is located atC and this point is named “focal point”.Zc represents

the viewing direction.
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Z

world coordinate system
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f
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Figure 2.1: The world coordinate system and the camera coordinate system

The transformation between world and camera coordinates can be described with

the set of rotation and translation,〈R, t〉. Since they represent the camera position and

orientation, they are called “camera extrinsic parameters”. Let a 3D point in the world

coordinate bexw = (xw, yw, zw). Then, the coordinate of the point in the camera coordinate

system,xc = (xc, yc, zc), is expressed as follows:


xc

1

 =


R t
0T 1




xw

1

 (2.1)

The photographic image can be obtained by projecting the camera-centered view onto

the image plane (in Figure 2.1). The pointc at which the viewing direction and the image

plane intersect, is named the “principal point”, and the distance between that pointc and
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the optical pointC is called the “focal length”. Let the projected 2D point on the image

plane beU, then the projection equation can be written as follows:

u = P


R t
0T 1




xw

1

 (2.2)

= P


xc

1

 (2.3)

where u =



u

v

w

 , U =


u
w
v
w

 (2.4)

P is a 3× 4 projection matrix and contains various parameters. They are called “camera

intrinsic parameters”, and details are shown below.

P =



ku −kucotθ u0

0 kv/ sinθ v0

0 0 1





f 0 0 0

0 f 0 0

0 0 1 0

 (2.5)

They consist of the focal length, principal point, aspect ratio, and skew.

As we have seen, there are two kinds of camera parameters: the intrinsic parame-

ters and the extrinsic parameters. However, estimating both the extrinsic parameters and

the intrinsic parameters simultaneously makes the registration process unstable and not

robust. Therefore, only the extrinsic parameters, i.e., the camera rotation and transla-

tion 〈R, t〉 are optimized in this thesis. To robustly refine the focal length along with the

registration process remains one of the future work.

Aside from the 2D-3D registration process, the camera intrinsic parameters need to be

estimated using the camera calibration method. Among intrinsic parameters, important

components are the focal lengthf , and the principal point (u0, v0). Although the precise

parameters are only acquired through camera calibration, we can obtain their approximate

estimates in a easy way. First, the skew and the aspect ratio can be ignored in the modern

digital cameras. And often, the principal point are also presumed to be (0,0). Further,

the approximate focal length can be obtained by EXIF (Exchangeable Image File) and

DCF (Design rule for Camera File system) data which are recorded in JPEG/TIFF files

captured by digital cameras.
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In practice, besides the camera intrinsic and extrinsic parameters, lens distortions

also affect the obtained photographic image. They primarily consists of the radial distor-

tions and the tangential distortions, which are especially outstanding when the wide-angle

lenses or the small handy cameras are used. Lens distortions can be estimated by various

camera calibration methods and they should be removed before any image processing.

2.3 Quaternion Representation

In the following Chapters, the set of camera parameters to be estimated is expressed as

the vectorp. It consists of the camera extrinsic parameters, that is, the camera position

and the camera orientation. In general, it is convenient to represent them as the set of the

camera rotation matrix and the camera translation vector,〈R, t〉.
However, representing a rotation as the matrix form,R, causes a great difficulty in

the computation of the optimal rotation. While a rotation in 3D space has only three

degrees of freedom, a rotation matrix has nine degrees. This restricts the values ofR in a

non-linear way as follows:

RRT = I (2.6)

|R| = 1 (2.7)

R must always satisfy these constraints to represent a rotation and this makes difficult to

take advantage of the linear matrix form of rotation.

The generally accepted alternative for the representation of rotation is the use of

quaternion. A quaternion is a 4-vector, consisting of a 3-vector (u, v,w)T and a scalar

s, that is,q = (u, v,w, s)T and it can represent an arbitrary rotation in the 3D space. It has

several useful characteristics.

• The constraint of rotation is easily maintained by standard vector normalization.

• The inverse rotation is obtained by simply negating first 3 components of the

quaternion vector.

• It can avoid the gimbal lock problem. Roughly speaking, the continuous change of

the elements always lead to the smooth change of rotation, and vice versa.

• The intermediate rotation between two quaternions can be calculated linearly.
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• With the quaternion representation, the rotation between two sets of corresponding

3D points can be solved in closed form.

In addition, another important advantage of the quaternion representation is utilized in

Section 3.7

Thus, the following vector is used to express the camera parameters:

p = (qT tT)T (2.8)

wherep is a 7-vector,q is a quaternion representing a camera rotation, andt is a 3-vector

representing a camera translation. If necessary, the form of rotation matrix is also used

and the rotation matrix corresponding toq is denoted byR(q).
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Chapter 3

2D-3D Registration Algorithm

In this chapter, the registration method which optimizes the camera position and orien-

tation of a 2D texture image with respect to the 3D geometric models, is described. It

is accomplished through the iterative algorithms. In each stage, corresponding 2D-3D

point pairs are automatically searched and the estimated camera parameters are updated.

In addition, the robust estimation framework is used to eliminate the unfavorable effects

of outliers.

3.1 Outline of 2D-3D Registration

Nowadays, we can capture the precise 3D geometric models through sensing the real

world objects. In addition, 2D photographic images of those objects can be easily ob-

tained with digital cameras. The 2D-3D registration shown in this chapter is the problem

to estimate the camera positions and orientations from which the photograph is taken,

and to make the correspondence between 3D geometries and 2D photometric attributes

(colors, etc.). The camera parameters consist of the camera rotation and translation and

are written asp = (qT , tT)T .

To align the 2D image with the 3D model, the edge features of the 2D image and the

edge features of the 3D model are considered. The outline of the registration algorithm

is shown in Figure 3.1. The “edgel” refers to the edge element (cf. pixel as the picture

element). First, 2D edgels and 3D edgels are extracted from the 2D image and the 3D

geometric model. Next, their correspondences are automatically searched and then, cam-

era parameters are adjusted to minimize their distances. After that, the new 3D edgels
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2D Edge Detection

Texture Image 3D Geometric Model

3D Edge Detection

Correspondence Search

2D Edgels 3D Edgels

Distance Minimization

3D    2D Projection

Update Camera Parameters

Figure 3.1: Outline of the 2D-3D registration algorithm

are detected using the newly estimated camera parameters and the above processes are

repeated iteratively.

Note that in this 2D-3D registration algorithm the 3D geometric model is not neces-

sarily restricted to the one object. We can assume many objects as long as they provide the

3D edgels, so this method is applicable to the outdoor environment, too. However, in the

presence of multiple objects, especially when they are located at the different distances,

the small change of camera parameters is likely to cause the large separate movements

of objects. Therefore, the algorithm is supposed to be not so robust compared to the en-

vironment of the indoor experiments, and the importance of initial position specification

grows.
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3.2 2D Edgels

The detection of 2D edgels from the 2D photographic image is the very important stage

in the registration algorithm. To achieve the stable and robust registration, well-structured

edges are crucial. If the edges are too scattered and dense, the mismatch rate of 2D-3D

correspondences will expand. Simple edge detection methods such as the Sobel operator

is likely to cause such noisy edges. In out experiment, we use the Canny edge detector

[3]. The example of texture image and the result of 2D edge detection are shown in Figure

3.2. Each edge pixel drawn as the black pixels in Figure 3.2(b) constructs the 2D edgel.

Note that 2D edgels do not change throughout the whole registration process and they are

detected only once.

(a) (b)

Figure 3.2: Result of the 2D edge detection: (a) original 2D photographic image, (b) edge

image of (a). Each black pixel on (b) constructs the 2D edgel.

3.3 3D Edgels

Since the appearance of the 3D geometric models changes as the estimated camera view-

point changes, the 3D edgels have to be detected at every iteration. The desirable charac-

teristics of the 3D edgels are

• They should have the similar edge structures as the 2D edgels (similarity).
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• They should contain sufficient details to register the image precisely, while they

should not have too much minor junks (density).

• They should be robustly detected from various kinds of 3D models, e.g., the models

might be noisy (robustness).

Considering these conditions, the three types of 3D edgels are proposed in this thesis:

occluding edgels, reflectance edgels, and rendered edgels (in Figure 3.3).

1. Occluding Edgels:

Occluding edgels are detected around the surfaces whose normal are almost per-

pendicular to the viewing direction (in Figure 3.3(b)). They are supposed to cause

the distance gap and can be seen as the edge. To reduce the effects of noise, surface

normals are calculated by the PCA (Principal Component Analysis) method around

the neighboring vertices. Although the occluding edgels can be detected robustly,

they are likely not to have much information to align details.

2. Reflectance Edgels:

Usually, in the process of measuring 3D geometric objects by using the laser range

finder, the data concerning the reflectance ratio of the laser are also obtained. Since

the reflectance values have already corresponded to the 3D geometries, it is reason-

able to use these values for the registration. The change of reflectance ratio results

from the difference of the surface material, which also causes the change of surface

colors. Therefore, the edges of the reflectance values are supposed to have the sim-

ilar structures as the edges of 2D photometric image and used as the 3D edgels (in

Figure 3.3(c)).

3. Rendered Edgels:

Although occluding edgels do not have much information, reflectance edgels have

sufficient details and their combination works well. However, we cannot assume

the 3D geometric data always contain the reflectance values. For example, if we

use different kinds of laser range finders at the same time, the consistent reflectance

values cannot be obtained. Such situation easily occurs in practice because we

would need various kinds of sensors such as the accurate one for neighborhood

measurement and the wide-angle one which covers the wide range of distance.

Therefore, an alternative method to detect detailed 3D edgels becomes necessary.

One possibility is to detect edgels using geometric features such as the curvature
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(a) (b)

(c) (d)

Figure 3.3: Example of the three types of 3D edgels: (a) original 3D geometric model, (b)

detected occluding edgels, (c) reflectance values of the laser range sensor and the edgels

they form, (d) edgels obtained by the rendering result.
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of the surface. However, these methods are very sensitive to noise and many un-

desirable junk edgels would be detected. To overcome this problem, the rendered

edgels are proposed here. Instead of detecting the features directly from the 3D

geometric model, edges are detected from the rendering result. In the rendering

process, the 3D surface is assumed to be Lambertian (no specular highlights) and

the smooth shading is executed, so that the unnecessary edges should disappear.

After the rendering result is obtained, the edgels are detected by the Canny edge

filter. As a result, the edge structures are supposed to be similar to the one which

results from the 2D edge detection, and also they have enough density of edgels.

These three types of 3D edgels are used properly and in combination.

3.4 2D-3D Correspondence

After detecting both 2D edgels and 3D edgels, their correspondences are searched. In

advance, the visibility of 3D edgels has to be checked, because only part of the 3D edgels

can be observed from the camera viewpoint of the 2D image. This visibility checking

stage utilizes the z-buffer resulting from the rendering process. Each 3D edgel is trans-

formed to the camera-centered coordinate and if it is located within some threshold range

from the z-value, it is marked as visible.

Then, each visible 3D edgel is projected to the 2D image coordinate using the cur-

rently estimated camera parameters. The nearest 2D edgel is searched according to the

2D Euclidean distance and the pairs of 2D-3D edgels are established.

3.5 Error Metric of Corresponding 2D-3D Pairs

Given a set ofN corresponding points〈xi , yi〉, wherei = 0, ...,N − 1 andxi is a 3D edgel

andyi is a 2D edgel, the registration problem is to compute the camera parametersp, i.e.,

the camera rotation and translation〈R, t〉, which aligns the projections of 3D edgelsxi

with 2D edgelsyi . The projection ofxi is written as

ui = P


R t
0T 1




xi

1

 (3.1)
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ui =



ui

vi

wi

 , Ui =


ui
wi
vi
wi

 (3.2)

whereP is a 3× 4 projection matrix, andUi is the coordinate of the projected point on

the 2D image.

To facilitate further analysis, several assumptions are made in the following equa-

tions: the focal length is unity, the principal point lies exactly at (0, 0) on the image, the

aspect ratio is unity and the skew is zero. These assumptions can be done without loss of

generality. Thus, the projection equation 3.1 is simplified to

ui = R xi + t (3.3)

ui =



ui

vi

wi

 , Ui =


ui
wi
vi
wi

 (3.4)

One way of defining the error metric of corresponding 2D-3D point pairs is the

squared distance on the 2D image.

zi = ‖Ui − yi‖2 (3.5)

However, it does not take the distance to the 3D pointxi into account, and it only accounts

for the direction of the 3D point. Consequently, it would favor parts of the 3D edgels that

are closer to the camera.

Instead of using a 2D error metric, a similar 3D error metric can be considered. It

can be expressed as the distance between a 3D edge point and a line connecting the focal

point to a 2D edge point. Figure 3.4 shows an example of such a point and a line. Letv̂i

be the unit vector of that line, i.e., the viewing direction to a 2D edge pointyi from the

focal point. Now we can determine the closest point on that line to the 3D edge pointui

(xi is transformed intou for the camera-centered coordinates).

y′i = (ui · v̂i) v̂i (3.6)

Subsequently, the errorzi is expressed as follows.

zi = ‖ui − y′i ‖2 (3.7)

This error computation is now in 3D rather than 2D.
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Figure 3.4: The error metric of corresponding 2D-3D edgels in 3D space. The 3D eu-

clidean distance between the 3D edgelu and the line stretching to the 2D edgely is used

for the error metric.

3.6 Robust Estimation

In the registration process, the camera position and orientation are updated toward the

direction which reduces the sum of corresponding 2D-3D errors.

E(p) =
∑

i

zi(p) (3.8)

=
∑

i

‖ui − y′i ‖2 (3.9)

wherep is the camera extrinsic parameters that we want to estimate, andE(p) is the

evaluation function. This form of the equation 3.9 represents the least squares estimation

of parametersp.

However, it is not practical to use the above formulation directly since the least

squares method is very sensitive to the outliers and the estimated parameters tend to
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be strongly biased by them. This is because the least squares method is the maximum-

likelihood estimator which assumes that the errors are distributed according to the normal

distribution function. In the problems of computer vision, there exist much more outliers

which can have fractionally large departures than expected in the normal distribution.

Furthermore, much worse situation is expected in this case. Since the corresponding

point pairs are automatically searched, a large part of them is supposed to be incorrectly

matched, especially in the initial stage of registration.

Outlier thresholding is the simplest and commonly used technique to remove outliers.

It regards the data values outside some range as outliers and simply eliminates those data

points. The range is often determined by estimating the standard deviationσ of the errors

in data and the valuekσ is used for thresholding, wherek is typically greater than or equal

to 3. Although it is computationally easy and cheap, there are significant problems. One

problem is that the hard threshold is used to eliminate the outliers. This means, regard-

less of where the threshold is chosen, some of the valid data are rejected as the outliers

and some of the outliers are classified as valid. In addition, the hard threshold makes the

objective function discontinuous and causes the difficulties for the numerical optimiza-

tion. The other problem is that in our case the initial correspondences are supposed to

be highly incorrect. Therefore, both valid data and incorrect data may exist in the same

range and distinguishing them may be meaningless.

To deal with outliers, various sorts of robust statistical estimators have been stud-

ied. The two representative classes of robust estimation are the least-median-of-squares

(LMedS) method and the M-estimation.

The former class, LMedS method estimates the parameters by solving the following

non-linear minimization problem.

E(p) = med
i

zi(p) (3.10)

p = arg min
p

E(p) (3.11)

The concept of LMedS is to select the median value of the errors for each observation

and use that value as the error value at the current parameters. The logic behind this

is that the median is almost guaranteed not to be an outlier as long as half of the data

is valid. Essentially, this requires an exhaustive search of possible valuesp, by testing

least-squares estimates ofp for all possible combinations of matches between 2D-3D
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edgels. Although this median based technique can be very robust, its computation cost is

extremely high.

The M-estimation is another representative method for robust estimation and it is

used in this thesis. The “M” refers to maximum-likelihood estimation and the arbitrary

error model can be used. Assuming that each errorzi is independently random and it is

observed according to the probability densityP,

P =
∏

i

eρ(zi ) (3.12)

the maximum-likelihood parameters can be obtained by minimizing the following objec-

tive function,

E =
∑

i

ρ(zi) (3.13)

whereρ(z) = − logP(z).

For example, assuming that the errorszi follow the normal distribution, they are writ-

ten as follows.

P ∝
∏

i

e−z2
i , ρ(z) = z2

i (3.14)

E =
∑

i

z2
i (3.15)

Notice that this is equivalent to the least-squares formulation.

Using the framework of M-estimation, our evaluation function (Equation 3.8) can be

modified to

E(p) =
∑

i

ρ(zi(p)) (3.16)

By taking the derivative ofE with respect top and setting it to 0, the parametersp that

minimizeE can be obtained.

∂E
∂p

=
∑

i

∂ρ

∂zi
· ∂zi

∂p
= 0 (3.17)

By substituting

w(z) =
1
z
∂ρ

∂z
(3.18)

we get
∂E
∂p

=
∑

i

w(zi) zi
∂zi

∂p
= 0 (3.19)
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Function Name ρ(z) w(z)

Gaussian ρ(z) = z2 w(z) = 1

Lorentzian ρ(z) = log
(
1 + 1

2z2
)

w(z) = 1
1+ 1

2z2

Thresholding ρ(z) =


z |z| ≤ θ
0 |z| > θ w(z) =


1 |z| ≤ θ
0 |z| > θ

Table 3.1: Comparison of weight functions.θ in the row “Thresholding” is the threshold

value.

If we temporarily forget thatw is a function ofz, this can be interpreted as weighted-least

squares minimization, which has the formρ(z) = w z2. In other words, the termw(z)

represents the weight of contribution of errors of magnitudezwith respect to a weighted-

least squares estimate.

There are many possible choices ofρ(z) to reduce the sensitivity to outliers on the

estimation. The famous functions are: Lorentz’s, Tukey’s, Andrew’s, Huber’s and the

sigmoid function. Among them, the Lorentzian function is used in the current implemen-

tation.

In the weighted-least squares sense, the behavior of M-estimation function can be

intuitively understood by analyzing the weight functionw(z). The Figure 3.5(a) shows

the graph of weight functions. While the normal distribution (Gaussian function) has

the constant weight value for all ranges of data, the Lorentzian function discounts ob-

servations with large errors, which makes this function more robust against outliers. For

comparison, the simple thresholding method is also drawn, with the threshold value 3σ.

Figure 3.5(b) compares the error probability distribution functions. Both the Gaussian

and the Lorentzian function look similar around the center, however, the Gaussian func-

tion hardly allow large errors, in particular the errors larger than 3σ. For this reason, the

least-squares estimate which assumes the Gaussian distribution does not work correctly

in the presence of such outliers.
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Figure 3.5: Plots of weight and probability distribution functions. (a) shows the weight

functions. While the Lorentzian function discounts observations with large errors, the

Gaussian function always weighs constantly. The thresholding method is also drawn for

comparison, with the threshold value 3σ. (b) compares the error probability distribution.

They look similar around the center, however, the Gaussian function hardly allow the

errors which are larger than 3σ.

3.7 Iterative Refinement of Camera Parameters

Now, we review the registration problem in detail. Given a set ofN corresponding point

pairs〈xi , yi〉, wherei = 0, ...,N − 1 andxi is a 3D edgel point andyi is a 2D edgel point,

the objective function to be minimized can be written as follows:

E(p) =
1
N

N∑

i

ρ(zi(p)) (3.20)

where zi(p) = ‖ui − y′i ‖2 (3.21)

ρ(z) is the M-estimate function, the Lorentzian function in this case, and the parameters

p is a 7-vector which denotes the camera rotation and translation (qT tT)T . Both ui and

y′i are the function ofp and they are shown in Equation 3.3 and 3.6. The normalization

factor 1/N is introduced to take the average distance of corresponding point pairs, since

the number of them change through the iterative process by the automatic generation and

visibility check of 3D edgels.
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The difficulty in minimizing E(p) is that the 2D edgelyi corresponding to the 3D

edgelxi is also the function ofp, that is, the movement ofp may cause the change of

their correspondences. Although ignoring this fact can lead to inefficiency and possibility

of incorrect results, it seems impossible to take these effects into account in the above

mathematical formulation.

To overcome this problem, iterative minimization processes are used. In each iterative

process, the current correspondences are searched using the current camera parameters.

Within each minimization calculation, they are regarded as fixed and the better camera

parameters are estimated under such constraints. It starts with a crude set of correspon-

dences and gradually converge to the correct correspondences and at the same time finds

the true camera parameters. An improvement inE(p) should correspond to an improve-

ment inp, and that leads to an improvement in the correspondences as well.

Each minimization calculation is accomplished by the conjugate gradient search.

Other non-linear optimization methods, such as the Levenberg-Marquardt method, can

also be used.

To use these non-linear optimization methods, the gradient of the objective function

E with respect to the camera parametersp must be computed:

∂E
∂p

=
1
N

N∑

i

w(zi)zi
∂zi

∂p
(3.22)

In particular,
∂zi

∂p
=
∂ui

∂p
∂zi

∂ui
(3.23)

The former component,∂ui
∂p , is the Jacobi matrix of the camera coordinates with respect

to the camera parameters. The latter component,∂zi
∂ui

, tells us how we must moveui , the

camera-centered coordinates ofxi , to reducezi .

First, the former component,∂ui
∂p , is inspected in detail.

ui(p) = R(q)xi + t (3.24)

The difficult point is the differentiation ofR(q)x with respect to the rotation quaternionq.

To simplify the computation, we pre-rotate the model points so that the current quaternion
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is qI = (0, 0,0,1)T , i.e., the unit quaternion. It has the propertyR(qI ) = I and considering

the gradient around it depends on the fact that this becomes the very simple form:

∂Rx
∂q

∣∣∣∣∣
qI

x = 2C(x)T (3.25)

whereC(x) is the 3× 3 skew-symmetric matrix of the vectorx. The skew-symmetric

matrix is defined as follows.

x × a = C(x) a =



0 −z y

z 0 −x

−y x 0

 a (3.26)

wherex = (x, y, z)T . In other words, the cross product of the vectorx is equivalent to the

multiplication of its skew-symmetric matrixC(x). Notice that, by the skew-symmetry of

C(x), CT = −C. Therefore,
∂ui

∂p
a =


a

2C(xi)Ta

 (3.27)

can be obtained.

Next, the differentiation ofzi by ui is derived. From Equation 3.21,

∂zi

∂ui
=

(
I − ∂y′i

∂ui

) {
2(ui − y′i )

}
(3.28)

where

∂y′i
∂ui

=
∂(ui · v̂)v̂
∂ui

(3.29)

=
∂(v̂Tui)v̂
∂ui

(3.30)

= v̂v̂T (3.31)

Sincey′i is on the line stretched from the 3D pointui and that line is perpendicular to the

viewing directionv̂,

(ui − y′i ) · v̂ = 0 (3.32)

Consequently, we get

∂zi

∂ui
= I

{
2(ui − y′i )

}
(3.33)

= 2(ui − y′i ) (3.34)
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Finally, from Equation 3.23, 3.27 and 3.34, the derivative ofzi with respect to the

camera parametersp can be obtained.

∂zi

∂p
=

∂ui

∂p
∂zi

∂ui
(3.35)

=

{
∂(R(q)xi + t)

∂p

} {
2(ui − y′i )

}
(3.36)

=


2(ui − y′i )

4C(xi)T(ui − y′i )

 (3.37)

=


2(ui − y′i )

−4xi × (ui − y′i )

 (3.38)

Now, we can compute the gradient ofE and the minimization calculation can be executed

by the conjugate gradient search.
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Chapter 4

Simultaneous Registration
Algorithm

In the previous chapter, the registration method which aligns one 2D image and estimates

the single viewpoint against the 3D geometric models, is described. In this chapter, mul-

tiple 2D images are taken into account and multiple viewpoints are simultaneously esti-

mated.

4.1 Illustration of Simultaneous Registration

Since one photographic image taken from one viewing point is a partial view of the model,

multiple images must be measured to cover the entire 3D geometric models. To obtain

the whole texture-mapped model, the apparent approach is to sequentially align each 2D

image with the 3D geometric model using the 2D-3D registration technique mentioned

in the previous Chapter.

However, it may cause undesirable artifacts around the boundary where texture im-

ages from different views intersect, since there would be a gap between two adjacent

texture images. Figure 4.1 shows the example. After registering two images separately,

aligned 2D edgels are projected onto the 3D surface. We can observe lots of gaps between

the edge projected from one texture image and the one projected from another texture im-

age. These gaps lead to the discontinuity at the boundary switching from one texture

image to another and result in the visual artifacts.

These gaps result from the fact that even if each 2D image is thoroughly registered to
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(a) (b)

Figure 4.1: Example of the gap between two adjacent texture images. Adjacent 2D image

edges which are already aligned by the single-viewpoint 2D-3D registration, are projected

onto the 3D surface. (b) is a zoomed view of (a).

the 3D object in the error metric of respective viewpoint, it does not necessarily mean it is

globally optimal. Due to various errors such as the inaccuracy of 3D geometry, the reso-

lution of pixels, irremovable lens distortions, etc., it is impossible to seek exactly correct

registration. Accordingly, we have to assume errors always exist and they need to be dis-

tributed globally. Otherwise, if they are minimized only in terms of the single-viewpoint

registration, each adjacent image is aligned toward the different kind of objective func-

tion and it results in the gaps between adjacent images. Therefore, the multi-view global

optimization is necessary which registers multiple images simultaneously.

The simultaneous registration method has the other good point, too. In Section 3.3,

the topic of density and similarity of edge features was mentioned. The occluding edgels

have less features than other kinds of edgels and the reflectance and rendered edgels

might have different edge structures compared to the photometric edges. In the global

registration, the gaps seen in Figure 4.1 are optimized, i.e., the 2D edgels from adjacent

images are taken into account. These features have the highly similar structures in the
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photographs taken from neighboring viewpoints, and also, they contain sufficient details.

Consequently, the global registration process utilizing these features is supposed to lead

to more accurate and detailed registration results.

4.2 Interactive Error Term

To minimize gaps shown in the previous section, the interactive term is introduced into

the objective functionE(p):

E(t)(p(t)) = E(t)
single(p(t)) + E(t)

interactive(p(t)) (4.1)

Since there are multiple 2D photographic images and multiple camera parameters to es-

timate in the simultaneous registration problem, the upper script (t) is used to denote that

the value is related tot-th 2D image. The above formula represents that the evaluation

function with respect tot-th image,E(t)(p(t)), comprises two parts, i.e., the term regarding

the single-viewpoint registration and the term considering the interaction among neigh-

boring images.

The former term is the same as the one shown in Equation 3.20 and can be expressed

as follows.

E(t)
single(p(t)) =

1
N(t)

∑

i

ρ(z(t)
i (p(t))) (4.2)

It is slightly rewritten to distinguish multiple viewpoints, that is, the script (t) are added.

z(t)
i (p(t)) is the distance betweeni-th visible 3D edgel in the 3D geometric model and the

corresponding 2D edgel on thet-th image at the camera parameterp(t). The normalization

factor 1/N(t) is presented to obtain the average distance of corresponding points, since

the number of them change through the iterative process by the automatic detection and

visibility check of 3D edgels.

In addition to the term concerning the single-viewpoint registration, the interactive

term which aligns the edgels among neighboring images is introduced in the simultaneous

registration. It minimizes the distances of newly generated 3D edgels on the 3D surface.

These processes are explained below and illustrated in Figure 4.2.

1. After each image is registered to the 3D geometric model, its 2D edgels are pro-

jected onto the surface of the 3D geometric model.

2. Subsequently, they form the new sets of 3D edgels.
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t-th image

neighboring image neighboring image

projection projection

3D geometric model

projection

Figure 4.2: Projecting 2D edgels from neighboring images onto the 3D surface. These

projected 2D edgels compose the new 3D edgels and they are aligned on the 3D surface.

* We now consider the objective function concerning thet-th image.

3. The sets generated from neighboring images are chosen.

4. Among them, the edgels which are not visible fromt-th viewpoint are removed.

5. Visible neighboring edgels are registered with the edgels projected fromt-th image,

that is,t-th viewpoint is modified to make them agree on the 3D surface.

Note that at the projection stage, only the edgels projected onto the smooth gradual sur-

face are used, i.e., edgels projected onto the discontinuous surface or onto the steep slope

are eliminated.

The error metric of corresponding edgel pairs on the 3D surface is illustrated in Figure

4.3; u is the novel 3D edgel projected from the neighboring image,y is its correspond-

30



3D surface

t-th image plane

focal point

y

u

v̂

z

y'

y''

z'

Figure 4.3: Error metric of corresponding edgel pairs on the 3D surface

ing 2D edgel on thet-th image, and̂v is the viewing direction. These formulations are

constructed to imitate the normal 2D-3D registration. In the 2D-3D error metric, the dis-

tancez between the 3D edgelu and the line connecting from the focal point to the 2D

edgely is considered and minimized. On the other hand, in the simultaneous registration,

the distance between projected edgels along the 3D surface is minimized. Lety′′ be the

projected point of the 2D edgel on thet-th image. Here, we can assume that the distance

of corresponding edgel pairs along the 3D surface is approximated by the Euclidean dis-

tance betweenu andy′′. This is because the projected edgels exist on the smooth surface

and their neighborhood can be approximated by the tangential plane. Consequently, the

error metric for the interactive term can be written as follows:

z′i =
zi

sinθi
(4.3)
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whereθ is the angle between the viewing direction and the tangential plane.

Assuming thatθ is fixed in one iteration step,z′i and its gradient∂z′i /∂p are almost the

same as the 2D-3D registration case. Therefore, this mutual registration algorithm can

take advantage of the similar framework to the single-viewpoint registration between 3D

edgels and 2D edgels.

Now, the formula of the interactive term is shown below.

E(t)
interactive(p(t)) =

1
N′(t)

∑

s∈U(t)

∑

i

ρ(z′(t,s)i (p(t))) (4.4)

U(t) denotes the set of neighboring images oft-th image. Among them,s-th image is cho-

sen andz′(t,s)i (p(t)) is the distance ofi-th edgel pair which comprises the edgels projected

from t-th image and the edgels projected froms-th image.

Thus, the objective function regarding thet-th camera parameterp(t) is constructed

to meet both the 3D edgels from 3D geometric model and the edgels projected from

neighboring images.

4.3 Iterative and Simultaneous Refinement

In the global registration problem, we have to estimateN sets of camera parameters

p(i) (0 ≤ i ≤ N − 1). First of all, separate single-viewpoint registrations need to be

accomplished to approximately align all images. After that, simultaneous refinement

process starts and it is also achieved by the iterative calculations.

The outline of the simultaneous refinement algorithm is described in Figure 4.4. Since

it takes advantage of the similar framework as the single-viewpoint registration, there are

not so many differences. However, some points are described in detail below.

1. For each iterative step, 2D texture edgels are projected onto the 3D surface using

their current camera parameters and they form the new temporal 3D edgels. At this

projection stage, uncertain edgels which are projected to a steep surface or around

occluding boundaries should be removed.

2. Thet-th objective function consists of the single-viewpoint term and the interactive

term. The latter considers the differences of projected edgels on the 3D surface. It

minimizes the distance between the edgels projected fromt-th image and the edgels

projected from neighboring images on the 3D surface.
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3. By minimizing thet-th objective function, the update oft-th camera parameters is

estimated. Minimization is executed by the conjugate gradient search.

4. The estimated update oft-th camera parameters is “not” applied at this point. In-

stead, it is recorded in the update list.

5. After all objective functions are minimized and all camera updates are estimated,

they are finally applied to the sets of camera parameters.

6. The above loops are repeated until the objective functions converge.

Note that the camera parameters are not transformed immediately. Considering that the

changes of camera parameters caused by each step will not so large, this latency of prop-

agation will not cause a problem. The strategy of updating every camera parameters at

once is not taken because the order of processing texture images matters in that case, and

further, it requires duplicated calculations of projecting 2D edgels.
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¶ ³

// separate single-viewpoint registration stage

foreach t in AllTextureImages {

do {

Model3DEdgel[t] = GetVisibleEdgel(GeometricModel, Camera[t]);

PointPairs = [];

foreach i in PointsOf(Model3DEdgel[t])

PointPairs += CorrespondenceSearch(i, Texture2DEdgel[t]);

UpdateList[t] = EstimateCameraUpdate(PointPairs);

TransformSingle(Camera[t], UpdateList[t]);

} until converge

}

// simultaneous registration stage

do {

foreach t in AllTextureImages {

Model3DEdgel[t] = GetVisibleEdgel(GeometricModel, Camera[t]);

Projected3DEdgel[t] = Project2DEdgel(GeometricModel, Camera[t],

Texture2DEdgel[t]);

}

foreach t in AllTextureImages {

PointPairs = [];

PointPairs2 = [];

// single-viewpoint term

foreach i in PointsOf(Model3DEdgel[t])

PointPairs += CorrespondenceSearch(i, Texture2DEdgel[t]);

// interactive term

foreach s in NeighboringImages

foreach i in PointsOf(Projected3DEdgel[s])

PointPairs2 += CorrespondenceSearch(i, Texture2DEdgel[t]);

UpdateList[t] = EstimateCameraUpdate(PointPairs, PointPairs2);

}

// update all camera parameters at this point

TransformAll(Camera, UpdateList);

} until converge

µ ´
Figure 4.4: Outline of simultaneous registration algorithm
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Chapter 5

Experiments and Results

5.1 Implementation Details

• Rough and detailed registration:

In the experiment, the single-viewpoint registration was divided into two separate

stages: the rough registration stage and the detailed registration stage. At first, only

the occluding edgels are used so that the rough position can be easily aligned with-

out the interference of small edge structures. After that, the reflectance edgels (if

available) or the rendered edgels are also considered to align the detailed structures.

Each 2D image is registered separately as described above. Finally, the all images

are simultaneously registered by the global optimization.

• σ of the Lorentzian function:

In the M-estimation framework, the argument of the Lorentzian function must be

the normalized value with respect to the proper standard deviationσ. Otherwise,

reduction of outliers might be too weak or too strong. Therefore,σ is always

updated by analyzing the distribution of corresponding 2D-3D errors. Every time

the 2D-3D correspondences are updated, their lower quartile error is chosen asσ.

Since lower quartile is the 1/4th smallest value, properσ will be chosen as long as

the quarter of the correspondences are correct.

• Selection of the neighboring images:

In the simultaneous registration, 2D edgels are projected onto the 3D surface and

they are registered among the neighboring images. In the experiment, only two
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(a) (b)

Figure 5.1: Plastic bear object: (a) photographic image, (b) 3D geometric model.

adjacent images, i.e., the left and the right neighbors, are used as the neighborhood

since the texture images are captured on the circular position surrounding the tar-

get object. However, in practice, the neighborhood within some range should be

automatically chosen.

• Selection of the texture image:

For each mesh, the texture image which minimizes the inner product of the mesh

normal and the viewing direction, is chosen. To avoid too much fragmentation, the

mesh normal is averaged around the neighborhood.

5.2 Results

Proposed registration method is applied to a plastic bear object (In Figure 5.1). Range

images are measured with a Minolta VIVID 900, and the 3D geometric model has been

constructed using these alignment and merging methods [21, 25]. The obtained geometry

has 31300 vertices and 62277 meshes. 2D photographic images are taken with a NIKON

D1x digital camera which yields an image of 3008x1960 resolution. Lens distortions are

eliminated using the camera calibration method [36], and at the same time, the camera

focal length is also obtained. Other camera intrinsic parameters are assumed to be ideal-

ized value, i.e., the principal point is (0, 0), the aspect ratio is unity and the skew is zero.

Registration calculations are carried out on the PC which has the AMD Athlon processor

of 1400MHz and 512MB memory.
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To begin with, the single-viewpoint 2D-3D registration method is examined. Figure

5.2 shows detected 2D and 3D edgels. In this experiment, the occluding edgels and

the rendered edgels are used as the 3D edgels. The process of the iterative calculation

is illustrated in Figure 5.3. The camera extrinsic parameters have been refined to align

corresponding 2D edgels and 3D edgels and the proper camera viewpoint is estimated.

This registration took approximately 30 seconds. More than half of them is consumed in

the process of the 2D edge detection using Canny method which is executed several times

to obtain 3D rendered edgels. Other time consuming processes are: the rendering process

of 3D geometries using OpenGL which is necessary to obtain the z-buffer for visibility

checking, and the calculation of the objective function which is evaluated many times in

the conjugate gradient search.

Thus, 11 photographs taken from different viewpoints can be separately registered

to the 3D geometric model. However, the set of images which are registered separately

is not necessarily consistent around the boundary where images from different views

intersect. Since there always remain some registration errors due to the inaccuracy of

3D geometries, irremovable lens distortions, incorrect camera intrinsic parameters, etc.,

the perfectly correct registration cannot be achieved, and such errors must be distributed

globally. Therefore, the simultaneous registration is applied after the separate single-

viewpoint registrations, and the effects are examined. 2D edgels of two adjacent texture

images are projected onto the 3D surface and their gaps before and after the simultaneous

refinement are compared in Figure 5.4. Here, we can observe that these gaps undoubtedly

shrink, thanks to the simultaneous registration. For this simultaneous refinement, 20

iterations were necessary and it took roughly 10 minutes.

In the simultaneous registration, the objective function consists of two parts, i.e., the

single-viewpoint error terms relating to the separate 2D-3D registration and the interac-

tive error terms concerning the global errors.

E(p) = Esingle(p) + Einteractive(p) (5.1)

The behavior of these two kinds of components is examined in Figure 5.5. This graph

contains two experiments: one is the separate single-viewpoint registration of 40 itera-

tions, and the other is also the single-viewpoint registration for first 20 iterations but the

simultaneous registration follows for successive 20 iterations. Although the interactive er-

ror terms do not exist in the single-viewpoint registration, they are temporarily evaluated
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(a) (b) (c)

Figure 5.2: Detected 2D and 3D edgels: (a) 2D edgels, (b) 3D occluding edgels, and (c)

3D rendered edgels.

(a) (b) (c)

Figure 5.3: 2D-3D registration: (a) initial position, (b) after 8 iterations, and (c) after

registration calculation. The 3D geometry and 3D edgels are overlaid on the photographic

image; red pixels are the 2D edgels, green pixels are the occluding edgels, and blue pixels

are the rendered edgels.
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(a) (b)

(c) (d)

Figure 5.4: Comparison of the alignment gap: 2D edgels of the two adjacent images are

projected onto the 3D surface. (a) Aligned using the separate single-viewpoint registra-

tions. (b) Aligned using the simultaneous registration. (c), (d) Zoomed views of (a) and

(b), respectively.
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Figure 5.5: Plotting two kinds of error terms: the single error terms relating to the single-

viewpoint errors, and the interactive error terms concerning the global errors.

at each iteration to observe the global errors. While the first half of the plots are exactly

the same, we can observe the interesting difference after the simultaneous registration

starts in one experiment. It is plainly seen in the zoomed views around the simultaneous

registration (in Figure 5.6). Although the single-viewpoint registration reduces the sin-

gle error terms slightly better than the simultaneous registration, the interactive errors do

not necessarily decrease. Indeed, further single-viewpoint registration tries to reduce the

single error terms too much at the expense of the global errors.

The quality of the texture-mapped object is also compared in Figure 5.7. Since the

registration errors are absorbed globally, visual artifacts are reduced in simultaneously

registered results. However, when examined carefully, there still remain some defects

and we can consider two major reasons: registration errors and color inconsistency. The

former means that although the simultaneous registration distributes errors globally, there
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Figure 5.6: Behavior of the single error terms (a) and the interactive error terms (b).

These are the zoomed views of Figure 5.5.
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should remain excessive errors. The latter is the more serious problem. Even if the images

are perfectly aligned, there might exist the color gaps between adjacent images. This is

because the observed color in the photograph changes due to various factors: illumination

conditions, viewing positions, specular highlights, etc. Note that, to avoid such problems,

many researches concerning the texture mapping adopt the blending strategy of textures

from neighboring images.

Recently, our laboratory has been conducting the project of creating digital cultural

assets through observation, and the precise 3D geometric models of such objects have

been constructed using accurate laser scanners [18, 21, 25, 26]. Thus, the proposed reg-

istration method is applied to one of them, the Great Buddha of Kamakura (in Figure

5.8(a)) and its texture-mapped model is created. The Great Buddha of Kamakura is a

13m tall statue sitting in an open air. It was scanned using a Cyrax 2400 sensor and the

fine geometric model has been reconstructed, which has approximately 0.7 million ver-

tices and 1.3 million meshes (in Figure 5.8(b)). Since registering 2D images to such high

resolutional data requires massive computational time, the simplified model was used,

which has approximately 100 thousand vertices and 200 thousand meshes.

18 photographs are taken with D1x digital camera and they are registered to the ge-

ometric model. Results of the textured model are shown in Figure 5.9. Although the

registration process is almost the same as the previous bear example, reconstructed Great

Buddha has several visual artifacts. This is because there exist excess difficulties in this

case due to the outdoor environment and the size of the object. First, the illumination

condition should easily change in the outdoor environment. Although all measurements

of photographs are carried out within only a few minutes, the observed colors are slightly

changed. This would be caused by the imperceptible movement of the sun and the clouds.

Second, a 17mm wide lens was necessary to capture the unoccluded whole image of the

Great Buddha. The wide lens leads to larger lens distortions particularly in the periphery

of the image, and indeed, the camera calibration could not remove part of the distortions

around the leg of the Great Buddha (in Figure 5.8(a)). As a result, the simultaneous reg-

istration did not perform well especially in the lower half of the Great Buddha and this

leads to the alignment gaps around that region.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of the texture-mapped model: (a) Separate single-viewpoint reg-

istrations. (b) Simultaneous registration. (c), (d), (e), (f) Zoomed views of the top images.
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(a) (b)

Figure 5.8: The Great Buddha of Kamakura: (a) a photograph taken with the 17mm wide

lens, (b) the high resolutional geometric model.

(a) (b)

Figure 5.9: Textured Great Buddha. (a) one image is mapped, (b) 18 images are mapped.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, a novel registration method is introduced and described, which automati-

cally and simultaneously aligns multiple 2D images onto 3D geometric models. Usually,

corresponding features between the 2D image and the 3D model have to be specified to

estimate the camera position and orientation. However, in the proposed method, the cor-

respondence information between 2D edge pixels and 3D edge points are automatically

searched and updated throughout the iterative calculations. Considering the robustness

and the density of edge features, three types of 3D edge features are proposed and used in

combination. Further, the global optimization among all the 2D images are also achieved

by the simultaneous registration which considers the 2D-2D edge correspondences on

3D surfaces. To make the algorithm robust against the outliers, the framework of M-

estimates is employed. Registration results are examined with the texture mapped objects

and the meaningful importance of the simultaneous registration is presented. Also, this

method is applied to the creation of digital cultural assets and the issues concerning the

measurement in large-scale outdoor environments are revealed.

6.2 Future Work

To achieve the accurate texture mapping, lens distortions must be removed. Therefore, the

practical camera calibration is needed, which can be easily performed at the measurement

time even in the large-scale outdoor environments.
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To improve the quality of texture-mapped objects, the intrinsic color of the object sur-

face must be estimated. Since the observed texture image contains various factors at the

measurement time: illumination conditions, shadows, specular highlights, etc., the colors

of the corresponding points from different viewpoints are not consistent. Therefore, in

order to reconstruct the precise 3D models, such factors must be canceled out and the

intrinsic color of the surface needs to be estimated.
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