
GENERATING WHOLE BODY MOTIONS FOR A BIPED

HUMANOID ROBOT

FROM CAPTURED HUMAN DANCES

人間の舞踊を模倣するロボットの全身動作の生成

by

Shinichiro Nakaoka

中岡 慎一郎

A Master Thesis

修士論文

Submitted to

the Graduate School of Information Science and Technology

the University of Tokyo

on January 28, 2003

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Katsushi Ikeuchi 池内 克史
Professor of Computer Science





ABSTRACT

Recently, the technology of biped humanoid robots has progressed to the point
where it has the potential to realize complex tasks with the whole body. The goal
of this study is imitating human dance motions for preservation of traditional
dances. The problem with dance imitation is the difference of body structure
and physical properties between humans and robots. This study describes how
we solve the problem by using filters to acquire feasible robot motions from the
original human motions and developing a motion generation method based on
motion primitives.
Human dance motions are acquired by motion caputuring systems. Analyzing

the trajectories of particular marker positions enables us to extract a high level
structure of primitive motions. Initial arm motion is generated by inverse kine-
matics of the joint positions and is modified into a stable motion which statisfys
the mechanical structure and capacity of actuators. Leg motion is generated from
the sequence of primitive motions, considering constraints of the robot. Then,
a waist trajectory which satisfies the desired balanced point between the body
and the ground is calculated. This process enables the robot to keep its balance
without falling down.
Generated motions were tested on the OpenHRP system, which consists of a

dynamics simulator and actual robots. In this test, the validity of this study has
been certified.



論文要旨

近年歩行ヒューマノイドロボットの技術が発達し、ロボットの全身を使った高度
な動作の研究が盛んである。本研究では人間の舞踊の模倣動作を対象とし、ロボッ
トによる実演を通して伝統舞踊の保存・伝達に役立てることを目的としている。模
倣動作の生成においては人間とロボットの身体構造や物理特性の違いが問題となる。
本研究では、ロボットへの適応のための動作フィルタと、基本動作要素に基づいた
動作認識・生成により、この問題を解決している。人間の舞踊動作はモーションキャ
プチャにより各関節の座標値として取り込まれる。得られた動作データに対して、
注視点の軌道を分析し舞踊を構成する基本動作要素の抽出を行う。腕の初期関節角
軌道は関節座標の逆運動学から算出し、角度・角速度制限フィルタを用いてロボッ
トの機構や駆動能力を満たした安定な関節角軌道へと修正する。脚の関節角軌道は
抽出された基本動作要素列からロボットの制約を考慮しつつ生成する。最終的に足
と床との理想的なつりあい位置を実現する腰軌道を算出し、動力学バランスを保っ
た転倒しない動きへ統合する。生成されたロボット動作の挙動を動力学シミュレー
タと実機ロボットからなるOpenHRPシステム上で検証し、本手法の有効性を確認
した。
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Chapter 1

Introduction

The final goal of this study is to contribute to the preservation of traditional
dances by developing a dancing humanoid robot that can imitate human dances.
This study also includes the following topics in the field of robotics: Learning from
observation, and balance control. In this chapter, we discuss the background, the
purpose of this study, and related studies, with regard to those topics.

1.1 Preservation of Traditional Dances

The goal of this study is to contribute to the preservation of traditional dances as
an intangible heritage. There are a number of cultural heritages in the world. that
contribute to our knowledge of human culture and life in past times. However,
due to their age, environment or political reasons, many of them are in danger of
being destoyed. In particular, intangible heritages such as the dance may be lost
because of the lack of humans who are interested in, or capable of, performing
them.

Recently, there has been an attempt to preserve these heritages by the use of
computer vision technology. Once entered into a computer, these heritages can be
recorded forever and may possibly be recreated in the future. For example, Ikeuchi
et al.[9] have developed a method of modeling cultural heritages from observation.

This thesis deals with dances as intangible heritages. There are many tra-
ditional folk dances in Japan, some of which have disappeared for the lack of
successors. The goal of this study is to preserve these dances by using the tech-
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nology of computer vision and robotics.
One typical approach to preserve dances is to utilize a motion capturing system

to capture human motion. This captured data enables us to observe dances from
various viewpoints. Realizing a realistic movie of a performance by computer
graphics is possible. However, just a movie replay is not very different from video
recording. Captured motion data has potential for various applications. There
are more advanced attempts which enable applications beyond just a replay of a
movie.

For example, Nakamura et al. [21] have proposed a method, which uses la-
banotation [7] to store and replay dances. Labanotation is a symbolic description
method for dances which enables various applications of dance motions such as
inputting, editing, searching, and analyzing based on symbols of labanotation.
However, the replay in 3D animation of this system has not yet realized realistic
motion. The replay motion tends to become awkward. This result is due to the
direct use of labanotation. The sampling of motion in labanotation is too rough
to express details of the dance. In order to solve this problem, Hattori et al. [4]
have attempted to extend labanotation for computer use. They have tried to add
symbols required for detailed expression, but the description becomes too com-
plicated to be considered as symbolic description. It seems to lose the nature of
labanotation.

Soga [27] has proposed a dance description and composition system which is
specific to ballet performance. The system enables interactive simulation of ballet
choreography with any human models. However, a minimal unit of description
and composition is a large block of motion, and the motion connection between
the units is not smooth. This becomes a problem because the lack of a smooth
connection reduces the usefulness of the composition facility. Though local motion
of replay becomes smooth, the whole motion becomes awkward.

The ’BUYO-FU’ system developed by yukawa et al. [35] is one of the most
practical applications. This system has the facility of description and composition
for dance motion, called ’BUYO-FU’. In contrast with Soga’s system, the target
dances are general ones. The minimal motion unit of this system is a small block
of motion, which is associated with symbols according to the kinds of choreogra-
phy, and the system has smooth connecting method for the motion units. The
system realizes symbolic description, practical composition, and realistic replay
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simultaneously. The problem with this system is that a human has to segment
motion and classify the segments. The system requires many dance performances
and much preprocessing by a skilled human.

It should be noted that representation is realized only by computer animation
in all the systems mentioned above. We, however, take a different approach for
representation.

1.2 Need for a Dancing Robot

The facility of computer animation is insufficient for complete preservation because
we cannot watch the actual performance by a real dancer. “Watching a dance
movie” is not the same as “Watching an actual dance by a real dancer”. In
addition, it is difficult to learn and master dances only by watching such movies.
A student needs an instructor who knows important parts of the dance.

Therefore actual dance performance is necessary. In this study, a humanoid
robot is used to realize actual dances.

For entertainment use, some dancing robots have been developed. Pollard
et al.[25] have developed a robot which imitates human dances. Their robot is
fixed with a stand at the waist and the motion is limited to the arms. Compared
with their study, we use a biped humanoid robot which stands on its legs, and
whose dance performance includes leg actions. Sony has produced dancing robot
which can perform with the whole body. However, their robot performs patterned
motion created from scratch. This study describes how the robot performs dances
by imitating human dances.

There are studies about dancing robots like the above, but a dance performance
by the whole body, including leg actions, by a human-sized robot had never been
realized. There had also been no study which attempted to do it. Note that we do
not attempt to develop a new robot hardware especially for dance performances;
rather, we use existing humanoid robots and have developed software for the
purpose, because we want to develop a generic system which can be adapt to any
kind of robot hardware.

Some may be of the opinion that robot performance cannot contribute to
dance preservation because the performance cannot be a complete imitation due
to the difference between a robot body and the human body. However, one of the
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objections to this opinion is that the experience of a real performance must give
a stronger impression than that of video movies, 3D computer graphics, or even
representations by virtual reality.

Additionally, mastery of a dance does not necessarily mean following the exact
same movement as the original because no high skilled dancers have the same bod-
ily characteristics; nor do they perform exactly the same synchronized trajectory
for the same dance. From this consideration, we can safely say that the nature of
dance motion may be revealed through the process of robot imitation despite the
differences between a robot and a human.

1.3 Learning from Observation

A robot is general-purpose machine and it should be able to master various tasks
in various situations, but programming control software to realize the tasks is
difficult not only for a nonspecialist but also for a robot engineer. It is desirable
that a robot learn and master tasks by observing human behavior. Furthermore,
this attempt may help us to understand the learning mechanism of humans. With
regard to this consideration, many previous studies attempted to develop such
a robot. In particular, for the purpose of this study, dance performance is also
considered to be a task which should be acquired by observing a human dancer.
Thus, one of the problems of this study is how to observe a human dance and how
to generate an imitating dance motion from the observation.

A framework of learning from observation s proposed by Ikeuchi et al. [8].
Within that framework, a task model which represents essential elements of the
task is defined by a human. Observation and reproduction of the task is done based
on that task model. For example, Takamatsu et al. [29] have proposed a model of
an assembly task for manipulators. In their model, the state of assembling objects
is defined based on contact relation of the objects. Manipulations which changes
the state are defined as primitive motions. On this model, a robot observes a
human demonstration and extracts a transition of the state. Then the robot
reproduces operations as a sequence of primitives which follows changes of the
state. The essence of this framework is that a human defines essential elements of
tasks beforehand. The reason for this approach is based on the assumption that
the human also has an a priori framework of ability by nature and learning is done
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on the basis of it. The problem is how to extracts elements of the framework from
observation and how to produce skilled behavior within the framework.

There are more generic approaches to learning from observation. Inamura et
al. [10] [11] have proposed a framework called ’mimesis loop’. Their framework
deals with general motion and uses common primitives for every kind of motion.
Patterns of low-level joint angles are employed as common primitives. Recogni-
tion and reproduction of motion is represented by a hidden-markov of primitive
sequences. Then, recognition and reproduction are iterated several times and
representation well matched to the original motion is acquired. In their method,
motion can be well classified according to its characteristics. For example, walking
styles such as those of old or young, male or female, tired or vital, etc. can be
recognized. However, since the method is limited to an outline of brief motion,
reproduction of precise operation is difficult. It cannot be applied to complicated
tasks such as assembly operation or dance performance so far.

In this study, dance imitation for the robot is done on the basis of some type
of task model for a dance. The main element of this model is primitive motion,
which is a minimal unit of choreography. Whole dance motion can be composed of
a sequence of primitive motions. The same kind of primitive motion may appear
several times in a dance. These primitives are clustered into the same primitive,
and have some parameters for detail characteristics.

Dance motion can be basically symbolized by primitive motions. The problem
is the extraction of the primitive motions from the original motion data and dance
reproduction from the primitive motions. Our model is well matched to human
dance learning. A human dancer often uses a ’dance notation’, which is a symbolic
description like musical scores. Therefore, the extraction of the primitives is also
the attempt to generate dance notation automatically. If a robot generates a
dance notation by observing a dance and performs the dance according to the
dance notation, we can say that the robot learns and performs dances in the same
way that a human does.

For a performance, motion is reproduced basically as a sequence of primitive
motions. However, it is not enough to reproduce feasible motion because other
aspects besides just an expression exist. Aspects such as body balance, rhythm
of motion, and constraints of the robot must be taken into account. Adaptation
to these aspects is considered to be the skill part of this framework. In a task
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like assembly, the skill exists in the function of each operation in the task, such
as parts insertion or adhesion by welding. The skill is how to achieve an accurate
and effective result of the functions. However, the meaning of the skill of a dance
task is different from that of an assembly task because the main purpose of dance
task is not its function, but rather its expression. In other words, the function
in a dance task is different from the usual meaning. Given that the function of
dance task is to follow a sequence of motion primitives under the constraints of
a robot, e.g., mechanical structure, capacity of actuator, and balance control, the
skill of a dance task can be considered as how to acquire better expression in the
conflict between ideal expression and the constraints. In this study, the process
of adaptation to the constraints considers acquiring an expression similar to the
original dance.

1.4 Balance Control of a Biped Humanoid Robot

Recently, walking biped humanoid robots have become popular in the field of
robotics. Several studies have been made on biped walking, and walking ability
has been advanced. To achieve stable walking, both hardware ability and control
software are important.

In terms of hardware, several biped humanoid robot have been developed.
Honda [5] has produced P2 and P3; these robots are very likely the first robots
which have the hardware ability of stable dynamic walking for a long time. Re-
search on biped walking has been active again since Honda released P2 and their
products brought public attention to humanoid robots. One of the significant
features of Honda’s products is the harmonic gear motor used as a joint actuator.
This actuator has quite powerful torque, which increases control ability to realize
stable walking. Another significant feature is shock absorbers in the ankle joints.
It enables the robot to adapt to uncertain reactions when it comes in contact with
the floor. However, details of the hardware and the control software have not yet
been opened to public.

As a product of research institutes, the Humanoid Robot Project has produced
HRP-2P [19] which is designed to enable a wider range of tasks than Honda’s. For
example, it has no backpack which would restrict motion because of it weight
and size. Articulate coxa is designed to be more compact so that possibility of
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self collision is reduced. That expands the range of leg motion. Compared with
Honda’s product, detail specification of HRP-2P is open.

Another product by research institutes, the humanoid robot H6, which is de-
signed by Kagami et al.[13] has been developed. A significant feature of it is toe
joints, which expand leg motion.

In terms of control methods, some walking pattern generation methods have
been proposed. Takanishi [36] proposed a method which uses compensation mo-
tion of the upper body. Since a walking motion is recognized as cyclic pattern, the
motion can be expressed by the Fourier series. From this expression, upper body
modification which satisfies dynamic balance of walking is acquired. Kajita et al.
[16] [15] [14] have proposed the method ’3D-LIPM’. In their method, walking is
modeled as the behavior of an inverted-pendulum. Center of mass of a robot cor-
responds to pendulum sphere and leg corresponds to pendulum rod. If the height
of the pendulum is supposed to be constant, a stable walking pattern is generated
from behavior of the pendulum. For the contribution of this study, now a simple
patterned walking is stable enough. The approach of this study is that a model of
dynamics is defined and motion is acquired by a calculation formula on the model.
Another approach exists. Endo et al. [1] have proposed a method which uses a
generic algorithm to generate walking pattern. However, these methods have not
yet achieved a stable, efficient walking pattern. Currently, the method based on
modeling and formulation is practical.

In addition to walking, control methods for running also have been proposed.
For example, Nagasaki et al. [20] have proposed the running pattern generation
method. Cyclic running trajectory of center of mass is calculated by expressions
derived from dynamics analysis. This method realizes some steps of running on
simulation. However, experiment on actual robots cannot carried out because of
mechanical constraints and uncertain behavior in the real world.

Recent topics have shifted to more complex control such as adaptive walking
on rough terrain or motion which requires whole body correlation.

Yokoi et al. [34] have proposed a control method which enables walking on
rough terrein. According to input of an ankle force sensor, waist position is trans-
lated to stabilize the body. This controller is embedded in robot farmware and it
functions during walking in real-time. The controller realizes stable walking and
walking on slightly rough terrains.
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Fujiwara et al. [3] have investigated how to minimize damage to a robot when
it falls to the ground. They have proposed a method to control the attitude of a
robot while it is falling down, so that the robot lands on its shock-absorbing parts.
Their study is not only an interesting topic of robot control, but also useful to
other studies of robot control, because it enables actual experiments of unstable
motion and expands the domain of robot control.

Dance performance is a complex task; probably it is one of the most difficult
tasks because it includes arm motion over a wide range, very quick motion, unsta-
ble posture, etc. Although balance control is necessary, the task must not ignore
appearance in dance motion.

There are some generic control methods which consider dynamics. Tamiya et
al. [30] have proposed a method to keep the robot balanced when it is supported
by a single leg. Although this method is useful, it is insufficient for total balance
control for dance performances. Yamane et al. [32] have proposed the concept
of a ’Dynamics Filter’, which modifies the given motion to satisfy dynamics law.
However, the result does not necessarily mean that the robot does not fall down
with modified motion. In the field of computer animation, Tak et al. [28] proposed
the approach of ’Balance Filter’. They proposed a framework to acquire a balanced
motion from an unbalanced motion. In the first step, the dynamic property of
the original motion is calculated. Next, the property is modified to satisfy the
dynamic condition of balance. Finally, the original motion is modified to satisfy
the modified dynamic property. This process is reasonable. However, a concrete
algorithm for modification is not stated in their study. The algorithm is required
above all things.

In this study, we employ the balance control method proposed by Nishiwaki
et al. [23] [22] That method defines a model which assumes that all the body
segments move the same amount parallel to one another. On this model, balance
is maintained by translating the upper body. This method is useful because it
can generally be adapted to various cases. However, all this method deals with
is how to modify base motion to acquiring the desired balance condition. How
to create base motion and what is the better balance condition are not provided.
This study proposes a method to solve these issues in order to develop the total
technology of dance performance with balance keeping.
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1.5 Organization of This Thesis

The remainder of the thesis is organized as follows.
First the overview of this study is presented in Chapter 2. Then detailed

algorithms of the process are described in Chapters 3 and 4. Chapter 3 is about
recognition of human motion and Chapter 4 is about generation of motion for a
robot. Next the experiments of virtual and actual robots are described in Chapter
5. Finally, we summarize this study and discuss the future work in Chapter 6.
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Chapter 2

System Overview

In this chapter, we outline a whole process from a performance of a human dancer
to the performance of a robot. The system for this process is shown in Fig. 2.1.

First, dance motion is acquired as digital data from a human performance.
This process is carried out with a motion capturing system.

Since captured motion data cannot be directly imported into a robot, the data
must be converted to enable it to drive a robot. This process mainly consists of
two parts: recognizing dance motion from captured motion data and generating
motion data for a robot. Using the recognition process, symbolic representation
of the dance is acquired. The representation is composed of ’primitive motions,
which are minimal units of dance motion. The generation process uses both the
captured data and the result of the recognition. Through this conversion process,
several elements of performance such as composition of the dance or playing speed
can be edited. The whole conversion process can be automated by ’Robot Motion
Composer’ software.

As the final step, a robot performs a dance according to the generated motion
data. We use a HRP robot platform which has a common control interface between
virtual robots for simulation and actual robots. The validity of the generated
motion data is tested by simulation on a virtual robot. Then a performance of an
actual robot is realized with the same motion data.

In the following sections, details of each process are described.
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Figure 2.1: Overview of the System
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Figure 2.2: multi view camera system

2.1 Capturing Human Motion

First of all, it is necessary to acquire dance motion of human as digital data. Many
humanoid robots have CCD cameras mounted on their heads. Ideally, the robot
can recognize dance motion from movies made by these cameras. This facility
has not been achieved in previous studies, and that problem is not our present
concern. Instead, motion-capturing systems are used to acquire human motion
are the first step.

2.1.1 Motion Capturing System

A motion-capturing system is one which can acquire time series properties of pos-
ture such as joint position or joint angle. We use two popular types of the system:
the magnetic method type and the optical method type. Both systems track posi-
tions of several markers in 3D space. Magnetic systems also track orientations of
markers. Markers are attached to a performer and body motion of the performer
is captured as a sequence of each marker.

The magnetic system consists of a magnetic field generator and magnetic sen-
sors as position markers. Sensors are electronically driven by their controller.
The controller is attached to a human body and acquired data are transmitted
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by radio. This complicated sensor system restricts the total number of markers.
However, since sensors recognize both position and orientation, the number of
markers is sufficient in most cases.

Rather than the restriction of markers, the magnetic field is disturbed by metal
objects in the environment, a critical occurance. In a room of a reinforced concrete
building, precise data are difficult to acquire. Additionally, the available capture
area is restricted within a small area because of the capacity of the magnetic field
generator. Although the system has the above restrictions, it is useful because
accurate data is captured in real time under proper conditions. It also has the
merit of portability.

The optical system consists of several cameras and optically impressive markers
and lights. Figure 2.2 shows cameras of the system. In most systems, an infrared
ray is used to capture markers. In that case, cameras are infrared ones, markers
are made of a material which reflects infrared ray well, and lights are projectors of
infrared rays. In order to distinguish markers clearly from the background, usually
the human must wear a single-colored suit with the markers on it. Each camera
has a different position and orientation from the others, which enable it to shoot
markers which may be hidden from some cameras, and to calculate 3D position
of markers by integrating several movies obtained from different viewpoints with
the principle of triangular surveying. Figure 2.3 shows images of the same scene
taken by eight cameras.

Compared with the magnetic system, the optical system can acquire only the
position of markers, not their orientation. However, this is not a problem because
the system can have any number of markers to acquire detailed motion as far as the
markers can be distinguished. Also, the optical system capturing area can be wider
than that of the magnetic system, depending upon the distribution of cameras. On
the other hand, the optical system requires postprocessing by a human operator
for calculation of the markers, and the calculation process consumes much CPU
time. Although the optical system has the disadvantage of the complex task, it
does have the advantage of scalability.

2.1.2 Captured Digital Motion

Figure 2.4 is an example of a human dance performance and the digital motion
data captured from it. This dance is one of our target dances, ’Jongara-Bushi’,
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Figure 2.3: Acquire images from eight cameras.

the traditional folk dance in Tsugaru, Japan.
In this example, the dancer performs the dance while wearing markers on the

joints as Fig. 2.5, and the dance is captured by an optical type system ’Vicon’
which has eight cameras and 33 markers, and a capturing rate of 200 frames per
second. The number of markers is sufficient to express a dance motion except for
details of the finger movements. Figure 2.6 shows the layout of the markers.

The frame rate also matches the needs. This data becomes the basis of imi-
tating motion.

The motion data are stored in the computer as discrete sampled motion, which
is a sequence of poses in a sampling interval. Each pose is called a ’frame’. A
frame is stored as the array of marker positions, and motion data are stored as
the array of the frames in the order of time.

2.2 Conversion of Motion Data

Dance imitation is achieved through the conversion processes from captured mo-
tion data to motion data for a robot. This is the main part of this study.
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Figure 2.4: Jongara-Bushi
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Figure 2.5: Capturing Scene

One of the reasons why the conversion process are required is that the original
motion cannot be adapted to actual robots directly. Robots are usually controlled
not by captured marker positions, but by joint properties such as the angle, an-
gular velocity, or torque of each joint. Furthermore, there is a difference in body
structure and muscular ability between present robots and the human body. This
difference becomes a considerable constraint in expressing the same motion as hu-
man performance. Therefore, a conversion process from marker positions to joint
property is required and it must consider the constraints of the robot. Through
this process, the original motion data is adapted to the motion data required by
a controller of a robot.

2.2.1 Recognition Process in Conversion

There is fundamental function more than just adaptation in the conversion process.
The attempt of this study is not to develop just a dance recorder / player, but
rather to develop an ability for a robot to recognize dance motion and to perform
dances according to that recognition as a human does. This approach brings a
higher flexibility to performance than simple replay. For example, re-edit of dance
composition, adaptation to various stage condition, or interactive performance
can be listed as potential of this approach. For this approach, the conversion
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Figure 2.6: Layout of markers
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processes must include the facility of recognizing dance motion. The process has
a high level structure which utilizes the result of the recognition, in contrast with
a simple conversion process based only on the captured motion data.

Also, this approach is useful from the practical viewpoint of robot control. If
the simple conversion process is employed, there is the case that the difference in
body structure mentioned above makes the process too complicated. In that case,
it is more reasonable that robot motion is generated from scratch, according to
the recognition result.

This case especially applies to leg motion. Present robots have severe con-
straints of leg structure in movable range, self collision, power of actuators, and
contact flexibility between sole and ground, etc. Therefore, If a leg motion for a
robot is simply converted from the original data, the motion must easily include
unfeasible motion over these constraints. The modification process for these con-
straints becomes too complicated because of many elements of the constraints and
high frequency of unfeasible part. However, in this case, a feasible motion can be
more simply generated from scratch according to recognized leg actions, while, at
the same time, considering the constraints.

2.2.2 Conversion System

The outline of the conversion process is depicted in Fig. 2.7. The different process
is taken between leg motion and arm motion. Leg motion is generated from scratch
according to recognition results. This way is derived from the above discussion.
On the other hand, arm motion is generated not from scratch, but from the orig-
inal data by inverse kinematics of the marker positions. This generation process
considers recognition results and robot constraints. The reason for selecting this
way is that direct conversion in arm motion is not as complicated as leg motion,
and it would be easy to generate abundant expressions rather than generating
from scratch. The recognition result is also used in the process to adapt robot
constraints, in order to preserve important expressions of the dance. After initial
motions of arms and legs are generated, they are integrated into the robot body.
This motion still cannot be performed by the robot, because it does not satisfy
dynamic balance between the robot and the floor. The motion must be modified
to satisfy balance consistency.

We have developed software, the Robot Motion Composer (MOCO), which can
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Figure 2.7: Conversion process
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automate all of the conversion process described above. Once given the original
captured data and a robot model to target, MOCO generates motion data that
enables the robot to perform the original dance. Standard file formats of captured
motion files and robot model files such as VPM or OpenHRP model file can be
used. A user can see a performance of both the original motion and the generated
motion by 3D animation with additional information such as joint angle, center
of mass, and dynamic balanced position. A user can also specify parameters of
each process interactively. This software is useful for general use or research of
generating robot motion.

2.3 Platform of Humanoid Robot

In this study, we use the HRP system as a platform of the humanoid robot, which
has been developed by Humanoid Robot Project (HRP) [12]. The HRP system
consists of some kind of humanoid robots and dynamics simulator OpenHRP.

Three types of humanoid robots, HRP-1S, HRP-2P, and HRP-2 have been
developed so far. HRP-1S is basis of P3 developed by Honda. It has a 28-DOF
joint structure, 7-DOF in each arm, 6-DOF in each leg, and 2-DOF in the head,
shown in Fig. 2.8. Its embedded control system was improved from the original P3
by Yokoi et al. [34]. It can be controlled on the framework of the HRP platform,
and a new controller can be developed. HRP-2P is the prototype version of a new
HRP robot, which was developed from scratch in open architecture [19].Though
it has a structure similar to hat of HRP-1S, more slim legs and more compact
articulatio coxa enable more flexible, wider leg motion. It has an additional 2-
DOF in its waist which can expand upper body motion. HRP-2 is the official
release version on the basis of HRP-2P. A main difference from HRP2P is just the
look, which was designed by a professional robot designer. In this study, we use
HRP-1S for experiments.

OpenHRP [18] is the software of a dynamics simulation system for humanoid
robots. It is released as an open architecture system. Its specifications are open
so that users can define their original robot model and can program a new control
system. For example, since a robot model is described by extension format of
VRML 2.0, a standard modeling tool can be used to develop a new model. The
system consists of several distributed components such as controller, dynamics
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Figure 2.8: Joint Structure of HRP-1S
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calculator, and viewer, on the basis of CORBA. This composition enables parallel
computation and independent use of each component. It employs the dynamic
computation method proposed by Yamane et al. [33] That method has a virtual
link system which enables simulation including interaction between a robot and
environment objects. The method also focusses on calculation time. It succeeds
in realizing O(log N) complexity in simulation time. In simulations like walking,
a contact model between the robot and the floor is important to acquire realistic
results. A simulation of the model of perfectly elastic collision cannot match the
real behavior in most cases, because of uncertain reaction in contact. For this issue,
Hirukawa et al. [6] have proposed a method which uses a spring-dumper model in
contact. OpenHRP employs this method and achieves realistic simulation results.

In the HRP system, the same control programs can be used between virtual
robots for simulation and actual robots [17]. This makes development of the
controller easy, and reduces the behavior difference between simulation and real
performance.
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Chapter 3

Recognition of Dance Motion

For recognition of dance motion, a framework of symbolic representation for dance
is defined. Then the elements of the framework are extracted from a dance perfor-
mance by analyzing its motion data. The recognition result is used in the process
to generate robot motion data. Also, the extracted representation itself can be
useful to enable understanding of the dance.

In this chapter, we first describes the basic idea of the recognition process.
Then we describe the concrete algorithms to extract elements of dance motion.
The algorithms are different for the arm motion and the leg motion.

3.1 Basic Framework of Recognition

As described in Section 1.3, a dance performance is supposed to be composed as
a sequence of primitive motions, which are minimal units of choreography, and
one primitive may appear several times in the dance. In this study, to recognize a
dance performance is to extract primitive motions from it. However, what are the
primitives ? In order to recognize a dance performance, it must be defined first.

3.1.1 Primitive Motions

In our analysis of dance motion, particular distinct poses frequently appear in a
dance. A dancer pauses motion for a moment with these poses. It seems that one
of the essentials of a dance is to take these poses on the rhythm. These poses are
called as ’Key Pose’. Figure 3.1 shows the key poses in Jongara-Bushi. Just seeing
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Figure 3.1: Key Poses in Jongara-Bushi

these poses, we can roughly imagine what kind of dance it is. From the viewpoint
of key pose, the transition motion into a particular key pose can be regarded as a
primitive motion. Note that the primitive motions can be not only a whole body
motion, but also a motion of particular parts of the body. It is possible that arms
and legs perform primitives independent of each other in their own timing. In
other words, synchronized primitive motions of some parts can be integrated into
one primitive.

In addition to key pose, dance motion has another essential element which
appears in interactions between dancer’s body and the environment. In particular,
it appears between the legs and the floor, for example, motions such as stepping,
squatting, spinning, and jumping. The nature of these motions is some kind of
function in the interaction, rather than a particular pose in the motion. These
functions are also considered as primitive motions. In most cases, the functions are
under the constraints in the interaction. For example, leg actions are performed
under severe constraints of dynamic law, otherwise performers cannot maintain
balance. In other words, this kind of primitive motion has the aspect to solve the
conflicts between the purpose of the function and constraints in the interaction. To
know the accurate function of these motions is particularly important to reproduce
the motions.

To sum up the above discussion, primitive motions are categorized by their
nature; one is pose-oriented primitive, the motions into a key pose, the other is
function-oriented primitive, the motions of which have some kind of function in
interaction between a dancer and the environment. In other words, the former is
classified according to its appearance, and the latter is classified according to its
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function. In the latter, expressions of the same kind of primitive do not necessarily
have the same look. A dance motion is composed of both kinds of primitives.

It should be noted that primitive motions are not completely distinguished by
this category, because most motions cannot avoid some kind of interaction with
the environment, and function-oriented primitives may also be related to some
key poses. However, although most primitives have both aspects, they have one
of these aspects as their main feature. If the stronger aspect can be distinguished,
recognition and generation of the dance motion become more certain than those
which do not consider the concept of these categories.

In this study, pose-oriented primitives are applied to upper body motions, and
function-oriented primitives are applied to leg motions.

3.1.2 Extraction of Primitives

Now that primitive motions have been defined, we can discuss the next step:
extraction of primitives. Concrete algorithms are described in the following sec-
tions. We describe a basic process of extraction here. The basic process consists
of segmentation, classification, and structuring.

First of all, a whole motion must be segmented into units which become bases
of primitive motions. The segmentation is usually carried out for each body part.
First, boundaries of segments are detected. For pose oriented primitives, points of
time where motion pauses are found. If the pose at the point is regarded as a key
pose, the point becomes a segment boundary. For function-oriented primitives,
the detection process pays attention to some kind of condition for each primitive.
For example, the condition of the jump primitive is the contact state between the
whole body and the floor. The conditions determine segment boundaries. Next,
detected boundaries are merged in each body part. A range between boundaries
usually becomes one segment.

After the segmentation, each segment is classified. For key pose- oriented
primitives, the classification is carried out according to the looks of key pose and
the motion of the segment. Segments which have similar looks are clustered into
the same kind of primitive. On the other hand, for function-oriented primitives,
the kind of primitive is usually determined at the segmentation, because the mo-
tion is segmented according to the particular condition for each kind of primitive.
However, there still may be undetermined primitives at this time. For example,
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overlapping primitives of the same body part may be integrated or separated. An
ambiguous primitive which has some candidates of primitive type is determined
according to the consequent appearance pattern around it.

The classification also requires extraction of properties which determine con-
crete characteristics of primitives. For a key pose-oriented primitive, the pose are
important properties. For a function-oriented primitive, the parameters of the
function are necessary. For example, the primitive of a jumping action requires
parameters such as direction, length of jumping time, etc. These parameters
must be designed to reflect the nature of the primitive so that a minimal set of
parameters can reproduce the original motion well.

As a final step, the primitive sequence is structured according to its appear-
ance pattern. For example, iteration of the same primitive can be considered as
one coherent semantic unit. If the same pattern frequently appears, it can also be
considered as one semantic unit. Additionally, synchronized patterns between dif-
ferent parts of the body can be considered as one primitive on the block. Through
these processes, a structured sequence like dance notations described by a human
can be acquired.

3.2 Preprocessing of Captured Motion Data

In the extraction of primitives, some captured marker positions are referrencd.
However, the original data are usually not complete ones, because they include
the lack of data and noises. Before the extraction, preprocessing of the original
motion data is necessary to acquire a better extraction result.

The lack of positions is mainly due to occlusion of markers. There may be
cases that some markers cannot be shot by any cameras. In order to restore the
lacking positions, the positions of lacked frame are interpolated from the positions
around them. Currently linear interpolation is employed for this process. Since the
number of lacking positions are few in our environment, linear interpolation can
satisfy the purpose. However, a more advanced interpolation method is desirable
for general use.

The noise of the data has a significant effect on the extraction. Many pro-
cesses in the extraction refer to velocity or acceleration derived from the original
positions. In these derived data, the effect of noise tends to become largter. This
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Figure 3.2: A result of filtering. The trajectory is the height of a hand marker and
the velocity derived from it. The upper two graphs show the original trajectory,
and lower two graphs show the filtered ones.

effect make extraction results incorrect. The noise of the data must be eliminated
by some smoothing filters. We employ the gaussian smooth filter. In this method,
the position of each frame is determined from the original positions around it as
follows:

g(x) =
exp (−x

2

2σ2 )

σ
√
2π

(3.1)

g′(x) =
g(x)∑R
i=−R g(i)

(3.2)

p′i =
R∑

j=−R
g′(j)p(i+R) (3.3)

where Pi is the original position of frame i, p′i is the new position of frame i,
and R is the calculation frame range from center.

Figure 3.2 shows a result of the filtering. The graph of the original trajectory
is not smooth because of noise, and the velocity derived from them has much
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more noise. After adapting the filter, both graphs become smooth. Since this
difference is reflected to the difference of the extraction result, the preprocessing
is important to acquire a correct recognition result.

3.3 Recognition of Arm Motion

For analysis of arm motion, we focus attention on the movement of a hand, the
end of an arm. First, let investigate a speed graph of a hand. Figure 3.3 shows
the speed graphs of both hands in Jongara-Bushi.

As the graph shows, the speed changes from approximately zero to some value
in a cycle. That is, the hand motion is composed of cyclic movement in short
intervals. The dancer moves a hand and stops it repeatedly to the rhythm of
background music. A motion of one cycle is a relatively simple one, such as
“Swing down the arm” or “Push forward arm with wrist twiddle”. This tendency
appears in other dances.

From this result, the motions of one cycle are considered as primitive motions.
Since these motions aim at a particular pose, they are pose- oriented primitives.
Arm motions are recognized on the basis of the pose-oriented primitive.

The whole recognition process is as follows:

1. find key poses of each arm according to speed of a hand

2. segment motion at the points of key pose

3. classify each segment according to a trajectory of a hand

4. structure a primitive sequence of the extraction result

The detailed algorithms of this process are described in the following sections.

3.3.1 Segmentation According to Key Pose

First the key poses must be detected. The key poses are poses at the frame where
speed of a hand is approximately zero. In order to acquired the frames of a key
pose, all we have to do is to detect such a frame where the value is approximately
zero on the speed graph. The condition is as follows:
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Figure 3.3: A speed graph of a hand movement and key pose examples

(si − si−1) ≤ 0, (si+1 − si) ≥ 0 (3.4)

si ≤ Ts (3.5)

where Ts is the speed threshold for judging stopping. Inequality 3.4 judges
whether frame i is local minimum or not.

In Addition, the following condition must be satisfied for consecutive key pose
at frame i1 and i2,

i2∑
i=i1

si ≥ L (3.6)

where L is the threshold of the length of the trajectory which the hand passes
along. This condition eliminates the motions which are too short to be considered
as primitive motions.
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Acquired frames are regarded as boundary of segments. Each arm motion is
segmented at these boundaries and the segments become the base of primitive
motions. Figure 3.3 also shows a segmentation result and some of its key poses.

3.3.2 Clustering Segments

After the segments are acquired, they must be clustered so that several segments
which have similar motions are classified into the same primitive. In classification,
we focus attention on the path trajectory of a hand. Each segment is classified.
according to the shape of the trajectory. To evaluate the similarity between two
trajectories, we employ DP matching distance. Distance between segments m and
n D(m,n) is calculated by the following equations.

D(m,n) = S(Vm, Vn) (3.7)

S(k, l) = dk,l +min(Sk,l−1, Sk−1,l−1, Sk−1,l) (3.8)

di,j = |vmi − vnj | (3.9)

where Vm = {vm1, vm2, ..., vmim|vmi ∈ R3}, the sequence of positions which
represents trajectory of segment m, Vn is that of segment n.

For all the combinations of the segments, the distance is calculated. Then
the combinations which have small distance values less than the threshold are
clustered into the same primitive by using the neighbor algorithm.

Figure 3.4 shows the result of clustering in Jongara-Bushi. Each segment is
labeled by a number which represents a type of primitive motion.

3.3.3 Structuring

There is a case that the same patterns of primitives appears several times. The
patterns indicate the high level structure of the dance sequence. The frequent
patterns are considered as a combination unit of primitives. For example, in Fig.
3.4, the pattern 5-6-7 appears three times, so that the sequence of these three
primitives can be considered as one high level unit.

To extract these frequent patterns, the apriori algorithm [2] is used.
Additionally, there are primitives synchronized between the right hand and

the left hand, and some of the combinations of these synchronized primitives fre-
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Figure 3.4: Classified primitive sequence in the right arm

quently appear. They are considered as primitive motions which consist of both
arms. It is also high level structure of the sequence. To find these frequent syn-
chronized combinations, the probability of synchronized combination of primitive
A and B is calculated by the following expression:

co− occurrence(A,B) =
f(A ∩B)2

f(A)f(B)
(3.10)

where A is a primitive in right hand, B is a primitive in the left hand, f(x) is
the frequency of primitive x.

If this value is higher than the threshold, the combination is integrated into
one unit of primitive.

A structured sequence makes it easier to survey the whole dance sequence.

3.4 Recognition of Leg Motion

Let us now investigate the speed graph of a foot, the end of a leg. Figure 3.5
is the speed graph in Jongara-Bushi. From this, it seems that cyclic movements
similar to arm motion appear and that pose oriented primitives may be adapted.
However, there is a difference that resting frames of which the speed is almost
zero exist. During these frames, the foot is still on the floor. Is there no primitive
motion during that time?
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Figure 3.5: Speed of a foot

The fact is that the leg does not just keep the same shape even in that time.
This means that the leg which is supporting the body on the floor is almost
always moving to maintain balance. These motions cannot be ignored. They are
necessary primitive motions, which have the function of supporting the body with
balance keeping. Such a function cannot be recognized by the way of pose-oriented
primitive.

Most leg motions are such kinds of motions, because legs are directly inter-
acting with the floor. Therefore, a function-oriented primitive is reasonable for
primitive motions of legs.

In function-oriented primitives, each primitive must be precedently defined by
a human: What to do, how to recognize, parameters to express the motion, etc.
In the following sections, definition of primitives for present target dances are
described. Then the extraction methods of each primitive are described.

3.4.1 Primitives of Leg Motion

In our target dances, Jongara-Bushi and Aizu-Bandaisan, three basic actions are
observed as primitive motions: standing, stepping, and squatting. We labeled the
three primitives as STAND, STEP, and SQUAT. Figure 3.6 shows these actions.
By the way, generally there may be other basic actions such as jumping, spinning,
kicking, etc. However, since these actions do not appear in the present target
dances, currently we do not focus attention on these actions.

STAND represents the motion in which both legs support the body and main-
tain balance. One of its parameters is the length of standing time. Another
parameter is the projection position of the center of mass. This parameter is
required because that position determines the shape of the leg positions. For ex-
ample, in the pose where both feet are opened on both sides, the pose changes
whether the projection of the center of mass is on each foot or center of both feet.
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Figure 3.6: Motion primitives of the legs

In the former case, the pose becomes asymmetrical, one is shortened and the other
is stretched. In the latter case, the pose becomes symmetric. To put it the other
way round, some kind of motions can be expressed by changing the projection
point.

STEP represents one stepping motion. To be precise, the motion that one foot
is lifted up and down on the floor while the other foot is supporting the body. The
former foot is the swing foot and the latter foot is the support foot. Running steps
do not correspond to the STEP primitive. This primitive has various possibilities
for performance. To express various performances, the primitive has medium time
and final time, and has states at these times. The medium time is the time when
the swing foot is at the highest position in the whole motion. The final time is the
time when the swing foot lands on the floor again, at the end of the motion. Both
time values are measured from the beginning of the motion. As the state of swing
foot, the position and orientation of it at those times are required. In addition
to them, a state of the waist orientation at the final time is required. Those
properties are described as relative values from the support foot. The primitive
does not require the initial state so it can be adapted to any initial poses. Also,
projection position of the center of mass is not required because the contact point
between foot and the floor is always under the support foot.

SQUAT represents one squatting motion, bending the knees down and then
straightening up again. As well as STEP, this primitive has medium time and
final time, but state is required only at medium time. The medium time of this
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primitive is the time when the waist takes the lowest position. The state of medium
time is the height of the waist.

The definitions of three primitives are summarized in table 3.1.

Table 3.1: Parameters of Leg Primitives

Primitive Parameters
STAND - standing time

- projection of center of mass
SQUAT - medium time, final time

- the lowest waist height at the medium time
- medium time, final time

STEP - position and orientation of the swing foot at the medium
time and the final time
- waist orientation at the final time
* The positions and the orientations are described on the
support foot coordinate

Note that values of the primitive parameter which is concerned with the length
must be normalized into some standard human model. The normalization enables
unified description and adaptation to various robots.

3.4.2 Extracting Leg Primitives

To extract STEP primitives, the speed graph of a foot (Fig. 3.5) is analyzed.
This graph is basically a sequence of bell-shaped curves. During one unit of the
curves, the foot moves and stops. This movement is regarded as a stepping motion.
Hence, the extraction process has to find one unit of the curve which satisfies the
following conditions:

si ≥ Ts(a ≤ i ≤ b) (3.11)
b∑
i=a

si ≥ Td (3.12)
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Figure 3.7: Speed of the waist

where si is the speed at frame i, a is initial frame, b is final frame (a < b), Ts is
speed threshold, Td is threshold of length which the foot passes along. Inequality
3.12 eliminates actions too small to be regarded as stepping actions.

From the above conditions, segments of the STEP primitive are extracted.
Each segment is represented with initial frame, final frame, and medium frame at
which the swing foot takes the highest position in the motion.

After each STEP segment is extracted, its parameters are examined. The
position and the orientation of a foot is calculated from marker positions: the toe
marker and the ankle marker. These properties for both the swing foot and the
support foot are extracted at the medium frame and the final frame. Then the
parameters are acquired as relative values of the swing foot from the support foot.

To extract SQUAT primitives, a velocity graph of the waist height (Fig. 3.7)
is analyzed. In this graph, the squatting action appears as a set of a concave
curve and a convex curve, that is, the movement to lower the waist and bring it
up again. The extraction process has to find this set of curves. The following
conditions must be satisfied:

si ≤ 0(a ≤ i ≤ b), si ≥ 0(b ≤ i ≤ c) (3.13)
b∑
i=a

si ≤ Td,
c∑
i=b

si ≥ Td (3.14)

where si is the speed at frame i, a is initial frame, b is medium frame, c is final
frame (a < b < c), Ts is speed threshold, Td is threshold of length which the waist
pass along. Inequality 3.12 eliminates actions nothing but a small swinging.

The medium frame and the final frame from the initial frame are stored as
primitive parameters. Other parameters are the deepest waist height at the
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medium frame and projection of center of mass at that time. Center of mass
is approximately considered as the waist position.

The segment of STAND primitive corresponds to the frames where the speed
remains approximately zero in both the speed graph of a foot (Fig. 3.5) and the
speed graph of the waist height(Fig.3.7) at the same time. For the medium frame
of each segment, projection of center of mass is examined, and this value is stored
as the parameter.

Finally, values of parameters which are concerned with length are normalized.
Currently, the model of HRP-1S is employed as the standard model. The values
are scaled to fit to this model.

Figure 3.8 shows a extracted primitive sequence in Jongara-Bushi.
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Figure 3.8: Extracted primitive sequence and poses in some primitives
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Chapter 4

Generation of Robot Motion

Motion data for a robot is basically expressed as joint angle trajectories. The
data is generated according to the recognition result. First, initial motion data
for arms and legs are independently generated. This process considers constraints
of the robot. Then arm motion and leg motion are integrated, and modified to
satisfy dynamic balance.

In this chapter, we describe the constraints of a robot and the total method
to generate robot motion under the constraints, using the recognition result.

4.1 Constraints of Robot

A humanoid robot is usually designed to have a body as similar to the human
body as possible, and some kinds of human-like motion such as simple walking
can be performed by it. However, there are still many differences between a robot
body and the human body. The differences become constraints when motion
data captured from humans are imported into the robot. The constraints make
complete imitation impossible. The attempt to develop new robot hardware which
eliminates the constraints is an important approach. However, we currently focus
on realizing a seemingly good motion by using existing robots. In the generation
of robot motion, knowledge of the details of the constraints is necessary, and a
robot must manage to perform better expression under the constraints.

In this section, we describe the constraints of a robot from the viewpoint of
mechanical structure and capacity of actuators. A target robot for discussion is
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HRP-1S. Since HRP-1S is one of the typical humanoid robots which have been
developed until now, the discussion is generally valid with regard to most present
robots.

4.1.1 Constraints in Body Structure

It is a fact that a robot has quite a different joint structure from that of a human
body.

One of the differences is degree of freedom (DOF), which represents the number
of movable joint axes. HRP-1S has 28 DOF: 7-DOF in a arm × 2, 6-DOF in a
leg × 2, and 2-DOF in a neck (Fig. 2.8) This seems sufficient for human-like
movement. On the other hand, the human body is composed of quite complicated
articulos and muscles, so that its DOF is over 100. This indicates that DOF of
the robot is too restricted. This restriction becomes a considerable constraint for
the dance motion, because many dances include actions which require many DOF
such as torso twists. HRP-1S has no joint in the torso, so it cannot express torso
twists. In the same way, adequate DOF is not available for some parts of dance
motions.

In addition, the lack of toe joints also restricts the expression and movement
ability of legs, because a human almost always uses the toe in leg action in order
to express some motion, to control balance, or to move efficiently. Range of joint
angle is also restricted. The robot cannot raise its arms or open its legs as well as
a human does. Geometric shape of body parts also restricts motion. For example,
a backpack of HRP-1S becomes an obstruction against some kinds of motions,
such as swinging an arm behind the back. Or HRP-1S has fat legs, so leg motion
easily causes self collision.

Another significant problem is that the robot structure has singular points.
For example, the shoulder joint is constructed of a three rotation sequence of
pitch, yaw and roll. When the robot raises its arm horizontally, the DOF of the
shoulder joint decreases and the robot cannot freely change the direction of the
arm from that pose Figure 4.1 shows this situation. On the other hand, a human
can move the shoulder joint in all directions regardless of its pose.

One approach to avoid the problems of singular points is to increase the number
of joints. However, it is not easy to attach the new joint mechanism and actuator
because of the lack of space within the body.
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Figure 4.1: Pose in singular point. The robot cannot move the arm back and
forth.

There is another approach which employs a new mechanism. Okada et al.
proposed ‘Cybernetic Shoulder‘ which has no singular point on simple mechanism
[24]. This mechanism is innovative. However, although a robot with the cyber-
netic shoulder has been developed, it has only a body from the chest up which
is fixed on a stand. Currently, there is no robot which has the whole body with
the cybernetic shoulder. Such a robot may be difficult to develop, because this
mechanism requires much space in the chest.

4.1.2 Constraints in Capacity of Actuators

Capacity of actuators becomes a constraint. Actuators of HRP-1S are the most
powerful ones currently available. They are harmonic-gear motors, which real-
ize powerful torque within a compact space, because of big reduction ratio and
compact mechanism.

After Honda employed this type of motors in their product, they were widely
used as actuators of biped humanoid robots.

However, although the actuator has sufficient torque, its angular velocity is
not so very high because of the high reduction ratio. There is a case that the
actuator cannot follow the original speed of motion. Dance motion often requires
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quicker motions than walking or everyday tasks. Particularly, one of our targets,
’Jongara-Bushi’, includes motions that are too quick to follow. A faster actuator
is required to perform dances which include quick motion in the same speed.

4.2 Generation of Arm Motion

In generation of arm motions, initial values of joint angle trajectories are calcu-
lated directly by inverse kinematics of captured markers. Then the initial values
are modified to adapt constraints of a robot by joint angle filters. This process
manages to keep key poses and their timing as much as possible.

4.2.1 Inverse Kinematics from Captured Makers

To determine a pose of a robot, joint angles are required. Joint angles of arms
are calculated by inverse kinematics of captured marker positions. In general,
’inverse kinematics’ means to determine a sequence of several joint angles from a
position of one target point, usually the end of the object. On the other hand, the
inverse kinematics here is slightly different from the generic one, because we have
abundant information about joint positions, which is acquired as marker positions.
Joint angles can almost directly be calculated from position correlations among
connected markers.

Concrete process in the marker layout of Vicon (Fig. 2.6) to HRP-1S joints
(Fig. 2.8) is as follows. The calculation is independently carried out for each
frame.

First, from the markers RSHO, LSHO, STRN, T10, chest frame is acquired:

ax =
vLSHO − vRSHO
|vLSHO − vRSHO| (4.1)

az =
ax × (vT10 − vSTRN )
|ax × (vT10 − vSTRN | (4.2)

ay =
az × ax
|az × ax| (4.3)

F0 = (ax, ay, az) (4.4)

where vx is position vector of marker x, Fi is coordinate frame matrix of joint i
from the arm origin 0. Note that ’frame’ here means the coordinate system which
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represents orientation of each body part. It is different from the ’frame’ which
represents discrete time index of a motion sequence.

The following calculation process is an iteration in which angles related to the
current frame are calculated and the frame is rotated by the acquired angles. In
other words, joint angles are calculated by forward kinematics of frames.

v0 = F−1
0 · (vRELB − vRSHO) (4.5)

a0 = arctan2(−v0z,−v0y) (4.6)

F1 = R(F0x, a0) · F0 (4.7)

a1 = arcsin(
vx
|v| ) (4.8)

F2 = R(F1z , a1) · F1 (4.9)

v2 = F−1
2 ·

{
(vRWRA + vRWRB)

2
− vRELB

}
(4.10)

a2 = arctan2(v2x, v2z) (4.11)

F3 = R(F2y,−a2) · F2 (4.12)

a3 = − arccos(− v2y

|v2|) (4.13)

F4 = R(F3x, a3) · F3 (4.14)

v4 = vRWRA − vRWRB (4.15)

a4 = arctan2(v4 · F4z , v4 · F4x) (4.16)

F5 = R(F4y,−a4) · F4 (4.17)

v5 = vRFIN − vRWRA + vRWRB

2
(4.18)

a5 = arctan2(−v5 · F5z ,−v5 · F5y) (4.19)

where ai is angle of joint i, which is from the shoulder origin. R(v, r) represents
rotation matrix which rotates r around the axis v. Though the above process
assumes the right arm, the same applies to the left arm.

This process is applied to all the ’index frames’ in order to acquire motion
data for robot joints.
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4.2.2 Filters of Joint Angle Trajectory

In a joint angle sequence acquired by the above process, angles or angular velocities
may become an impossible value over the constraints of the robot. In addition to
the problem of each joint trajectory, the motion may imply poses which are in the
neighborhood of singular points. At poses near the singular point, valid moving
patterns are limited and movement may be locked. Such motion data cannot be
performed by the actual robot. This problem can be considered as a problem of
angular velocity because a non-continuous curve of velocity around a locked frame
can be considered to be a high gradient curve on a discrete system.

Therefore, first of all, values must be restricted within the possible range by
applying some filters.

We employ a filter proposed by Pollard et al. [25]. Their filter can limit angular
velocity within a specified range, and can also control angular acceleration. The
basic idea of this method is that a new angle trajectory is created by the following
the original trajectory under the limit of angular velocity. The process is similar
to the PD control method.

First, a new trajectory is created by the following equations:

θ̇i = θi − θi−1, (4.20)

θ̈′i+1 = 2
√
Ks(θ̇i − θ̇′i) +Ks(θi − θ′i) (4.21)

θ̇′i+1 = max(θ̇L,min(θ̇U , θ̇′i + θ̈′i+1)) (4.22)

θ′i+1 = θ′i + θ̇′i+1 (4.23)

where θi is the original joint angle, θ′i is new joint angle, i is a joint number,
θ̇L and θ̇U are the lower and upper velocity limits. Ks is the parameter which
controls stiffness of motion.

The result becomes a trajectory similar to the original one within the limit.
However, it must delay from the original one all through the motion, because the
trajectory cannot follow the original motion in areas over the limit. (Fig.4.2-b).

Then another trajectory is created by the inverse process of the above equations
from end to start as follows:

θ̇i = θi − θi−1 (4.24)
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Figure 4.2: Filtering joint angle trajectory

θ̈B,i−1 = 2
√
Ks(θ̇i − θ̇B,i +Ks(θi − θB,i) (4.25)

θ̇B,i−1 = max(θ̇L,min(θ̇U , θ̇B,i + θ̈B,i−1)) (4.26)

θB,i−1 = θB,i + θ̇B,i−1 (4.27)

The result becomes a trajectory of the future instance compared with the
original one (Fig.4.2-c).

Finally, both trajectories are averaged to obtain a trajectory whose shape is
overlapped by the original one as follows: (Fig.4.2-d).

θV,i =
θF,i + θB,i

2
(4.28)

In this final trajectory, the rhythm of curve approximately matches the original
one , and values are within the limit, at the same time. The locked parts around
singular points in the initial motion are also changed into a smooth curve. Figure
4.2 shows the initial motion which must lock on thactual robot, and the motion
after the filter which can be performed on the actual robot.

4.2.3 Expression of Key Poses

As described in section 3.3, an arm takes a key pose at the frame where movement
of a hand stops for a moment. Since key poses are essential elements of dance, they
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should be expressed as obviously as possible. Particularly, stopping expression and
its timing are important because they constitute the rhythm of the dance. If the
timing is out of rhythm, the performance becomes a series of awkward motions.

However, in a motion after applying the filter, expression of key poses tends to
be obscure. In most cases, the stopping of a hand is achieved by synchronized stops
of all the joints of the arm. Although the filter preserves the approximate rhythm
of each joint trajectory, stop timing may slightly differ from the original trajectory.
Furthermore, the differences of the joints are not synchronized because the filter
is independently applied to each joint. This inconsistency of stop timing leads
to deformation or obscurity of key pose expressions, and the whole performance
becomes an awkward one.

For a better performance, to clarification of key pose expressions is important.
Although to make shapes of key pose exactly the same as the original shape under
the constraints is difficult, synchronizing stop timings of all the joints with the
original timing is possible. We take this approach to achieve a better performance.

Figure 4.2 shows joint angle trajectories of the original motion and the filtered
one. Joint movement stops at extreme points, where angular velocity is zero, and
some extreme points correspond to a frame of key pose. To clarify stop expressions,
these extreme points of all the joint have to be arranged at the key pose frames
in the original motion. Note that the arrangement must carried out within the
possible range of the constraints. (Fig.4.3).

This process is as follows.

1. For each key pose frame in the original motion, find the nearest extreme
point in the modified joint graph.

2. For points which are out of the key pose frames,

• Slide the extreme point horizontally to the key pose frame.
• If the new gradient is beyond the limit of angular velocity, slide the
extreme point vertically to be under the limit.

• stretch the trajectory to pass the new extreme point.

This process restores the rhythm of the original motion. A dance performance
becomes more brilliant.
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Figure 4.3: Arrangement of the extreme points nearby the segment boundaries
(vertical lines). Dotted lines are the original trajectories and solid lines are the
arranged ones.
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Figure 4.4: Poses generated from leg primitives

4.3 Generation of Leg Motion

Leg motion for a robot is generated by using a leg primitive sequence which is
acquired from the original dance motion through the process for recognizing leg
motion.

The primitive motions for legs (described in section 3.4) are designed to contain
information which is required to recreate leg motion for a robot. Therefore, in
contrast with arm motion, leg motion is generated only from the information of
recognized primitives, in terms of the information of the original dance. Raw
marker positions are not used. Figure 4.4 shows an example of generated poses of
each kind of leg primitives.

In generating leg motion, joint angle trajectories are not directly generated.
First, position and orientation of a foot are generated. Then, joint angles are
calculated from the foot values by inverse kinematics of the leg.

4.3.1 Generation of Foot Trajectory

For each primitive in the acquired sequence, a foot trajectory which represents an
action of the primitive is generated. To be precise, the values of the foot trajectory
are the position of the ankle joint and the orientation of the sole. These values are
expressed on the waist coordinate, because the inverse kinematics of leg require
such values.

For the STEP primitive, the trajectories are basically created by interpolating
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initial, medium, and final states of position and orientation. The initial state is
the state just before entering the new primitive motion. The medium state and
the final state are determined by the parameters of the STEP primitive. The
parameters of the primitive are values of a swing foot and the waist, and they are
relative values from a support foot. Since values required by the inverse kinematics
are relative ones from the waist, coordinates must be converted.

A trajectory is calculated as follows.
For a support leg, the initial position vector and orientation matrix on the

waist coordinate are known. They are expressed as wvsu,initial, wMsu,initial, where
BvA,i is a vector of a foot A based on B at frame i, BMA,i is a rotation matrix
which represents orientation of a foot A based on B at frame i. The final position
is calculated to be the center of the feet as follows:

wvsu,final = −suM−1
w,final

suvsw,final
2

(4.29)

From these values, a trajectory of a support leg is calculated by interpolation
as follows:

suvsu,i = IV finali=initial(
wvsu,initial,

wvsu,final, i) (4.30)
wMsu,i = IRfinali=initial(

wMsu,initial,
suM−1

w,final, i) (4.31)

where IV bi=a(A,B, i) is a vector at frame i in the interpolation from value A at
frame a to value B at frame b, IR is the similar interpolation function of rotation
matrix by euler angle. We use third polynominal interpolation where velocity is
zero at end points.

For a swinging leg, required values are calculated in similar way:

wvsw,mid = wvsu,mid + wMsu,mid
suvsw,mid (4.32)

wvsw,final = −wvsu,final (4.33)

Then, a trajectory is calculated as follows. In a swinging leg, interpolation
uses not only the final state but also the medium state:
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wvsu,i =

{
IV midi=initial(

wvsw,initial,
wvsw,mid)

IV finali=mid(
wvsw,mid,

wvsw,final)
(4.34)

wMsw,i =

{
IRmidi=initial(

wMsw,initial,
wMsu,mid

suMsw,mid)
IRfinali=mid(

wMsw,mid,
wMsu,final

suMsw,final)
(4.35)

There is the case that medium state and final state are modified according
to the robot constraints. The modification is caused by contact condition, the
constraint of movable range, and self collision.

A sole of a robot must be lie flat against the floor when a foot comes in contact
with the floor. Otherwise, a foot cannot support the body stabley. On the other
hand, a human can freely contact a foot with the floor. Therefore, final foot
orientation in acquired STEP primitives must be constrained to be horizontal,
and final position must be level with the floor.

Movable range of robot legs is usually narrower than that of human legs. If the
state of a primitive is beyond that range, it must be restricted within the range.

Since the robot has fat legs, self collision of legs easily occurs. Or, modification
for movable range may cause a collision. The motion which includes self collision
cannot be performed. Therefore, whether collision occurs must be checked in the
generation process. If collision occurs, the position of the collision and related
links is examined, and the trajectory is modified to cause no collision.

For the SQUAT primitive and STAND primitive, foot trajectories are gener-
ated by a similar process, state interpolation which considers the constraints.

4.3.2 Inverse Kinematics of Leg

Since leg motion is initially generated as a trajectory of one point, the end of a leg,
inverse kinematics is required in order to calculate joint angles of legs. In contrast
with arm motion, inverse kinematics here corresponds to the usual one, that is, to
determine a sequence of several joint angles from position and orientation of one
target point.

In general, for the objects which consist of many joints, inverse kinematics is
difficult to solve directly. In that case, inverse kinematics is solved by difference
calculation with the Jacobian matrix. If the current pose is given, differences of
joint angles from that pose are calculated from difference of the target point. Joint
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angle trajectories are acquired by moving the target point in small steps from the
initial pose. This method is useful because it can be mechanically applied to
generic cases, and many robot systems use this method. However, this method
cannot deal with the poses around singular points. For example, when a robot
assume the pose in which the knee joint is fully expanded to linear, the knee joint
falls into singular point.

In dance performance, using the full capacity of the body is frequently required.
It is desirable that inverse kinematics can deal with poses around singular points.

Fortunately, the leg structure of HRP-1S is not too complicated to solve inverse
kinematics directly. Joint angles are calculated as follows:

a0 = yaw (4.36)

o =




− sin(yaw)
cos(yaw)

0


 (4.37)

k = Rz(−a0) · R
(
o,
π

2
− arcsin( |v|

L
)
)
· L

2|v|v (4.38)

a1 = arctan2(ky,−kz) (4.39)

a2 = arcsin
(−2kx

L

)
(4.40)

a3 = π − 2 arcsin
( |v|
L

)
(4.41)

a4 = pitch− (a2 + a3) (4.42)

a5 = roll − a1 (4.43)

where ai is angle of a leg joint i, a number is from the waist. v is a position of
a foot, pitch, roll, yaw is orientation of a foot, L is length of a leg.

4.4 Balance Control

In the motion generated through the above generation process, the robot has the
ability to assume poses in the motion sequence. However, if the robot tries to
perform the motion on the floor being supported by its legs, the robot will be
unable to keep its balance and it will fall down.
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This section describes how to control the robot motion to maintain balance so
that a robot can actually perform the dance. Such controls for dynamic balance
should be adapted both in off-line motion generation and online, real-time control.
This thesis focuses on the former issue. The latter is solved by the control system
embedded in HRP-1S.

4.4.1 Dynamic Force Balance

Because the above generation process does not consider dynamics, the generated
motion does not always satisfy dynamic consistency in interaction with the floor.

Strictly speaking, in appearance, the motion is generated under the assumption
that all areas of a foot sole comes in contact with the floor when supporting
the body. However, in dynamics, the motion does not necessarily satisfy that
assumption. Hence actual behavior comes from the assumption that the sole of a
supporting foot slants against the floor. At that time, the desired motion is not
achieved. If the robot still tries to follow the subsequent motion even in that time,
the robot will fall down.

In order to increase stability, one valid approach is to reduce amount of the
moments generated by movement of the upper body.

The Pollard method which is mentioned in Section 4.2.2 is also useful for this
purpose because it can control angular acceleration by parameter Ks in equation
4.21 and 4.25. The higher Ks is, the bigger angular acceleration becomes. If
higher Ks is applied to arm motion, response to the original motion becomes
better, but the moment of the upper body becomes bigger. On the contrary,
when Ks is smaller, response is worse but moment of the upper body is smaller
so that dynamics stability is better.

When arms move in wide arcs with high acceleration, big moment is generated
so that the robot becomes unstable. In this case, more stable motion can be
acquired by reducing Ks.

This method is useful to increase stability. However, this cannot become a
fundamental solution for balance control because stability conflicts with response
of motion, and after all, this method does not guarantee dynamic consistency at
all.
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Figure 4.5: Supporting area when both feet support the body

4.4.2 Zero Moment Point

Recall that the motion is generated under the assumption that all areas of a foot
sole come in contact with the floor when it is supporting the body. In other words,
a sole does not rotate during that time. In terms of dynamics, this assumption is
satisfied when the point at which the moment to the robot body is zero exists in
the area of the sole surface. During this time, the sole does not rotate. The point
is called the ’zero moment point (ZMP)’ and the area is called the ’supporting
area’. If a robot is supported by both feet, the supporting area corresponds to
the convex area which consists of both soles as shown in Fig. 4.5. The concept of
ZMP was proposed by Vukobratovic [31].

Given the physical model of a robot, a trajectory of ZMP can be calculated
from motion data for the robot, under the assumption that the supporting area is
infinite. If ZMP moves out of an actual supporting area, the motion is impossible
to perform because the actual motion must imply rotation of the supporting sole
at that time. In this way, dynamic consistency of the motion can be checked from
the calculated ZMP trajectory.

A simple model of interaction between a robot and the floor is represented in
Fig. 4.6.In this model, the truck on a table corresponds to the center of mass of
a robot, and a stand of the table corresponds to a sole of the robot. Moment at
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Figure 4.6: Simple Model for ZMP calculation

a point on the stand is calculated as follows:

τP = Mg(x − p)−Mẍh (4.44)

where τP is moment at a point P ,M is mass of a robot, x is horizontal position
of center of mass, p is position of the point P , h is height of center of mass,.

When the table maintains balance, the stand does not rotate. That is, the
point at which τP is zero exists on the stand. In this case, the following equations
are derived:

Mg(x− p)−Mẍh = 0 (4.45)

p = x− h

g
ẍ (4.46)

ZMP corresponds the position p .
In practice, the strict model is not as simple as Fig.4.6. The robot body

consists of many joints and segments. Since the segments are a rigid body, their
moment element cannot be ignored. Being considered these elements, ZMP is
calculated by summing up force and moment which each segment acts:
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xzmp =
∑

miziẍi − ∑{mi(z̈i + g)xi + (0, 1, 0)T Iiω̇i}
−∑

mi(z̈i + g)
(4.47)

where xzmp is x-axis position of ZMP, xi, zi are a position of a segment i, mi

is mass, Ii is inertia tensor ωi is an angular velocity vector and g is gravitational
constant. This expression is on x-axis. A siimilar expression is valid on y-axis,
and the calculation can be separately performed on each axis.

Dynamic consistency of the motion can be checked from calculated ZMP tra-
jectory. If calculated ZMP of the motion is always in the supporting area, the
motion is a feasible one. To put it another way, the motion has to be generated
or modified to have such a ZMP trajectory.

In this study, a desired ZMP trajectory which is always in the supporting area
is prepared first. Then the motion is modified to realize the trajectory. This
approach was proposed by Tak et al. [28].

4.4.3 Desired ZMP

It is fundamental that desired ZMP must be inside a supporting area. If the sup-
porting area remains on one state, ZMP should remain a stable point in the center
of the area or just below the ankle joint. However, supporting state changes with
steps. A stability of motion depends on a ZMP trajectory with state transitions.
For stable transition, the ZMP trajectory should be as smooth as possible. In this
study, we applied the following criteria.

• In STEP state, ZMP must be located at the center of a supporting sole.

• In STAND state, ZMP moves from a previous position to the next sup-
porting position by third order polynomial equation. Initial velocity and
accelerations and final ones are kept at zero.

• If the period of STAND state is long, transition is separated into three steps:
(1) from a previous position to center of supporting area, (2) stay there and
(3) move to the next supporting position.

• If the period of STAND state is short, ZMP movement speeds up and robot
motion becomes unstable. Adequate transition time is required for stable
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Figure 4.7: A motion with support state transition. A marker on the feet shows
ZMP.

motion. In this case, ZMP movement is expanded so that it starts in the
previous state and extends into the next state. Acceleration and deceleration
of ZMP is done in those states.

From the above method, we generate a desired ZMP trajectory and modify
the trajectory of the upper body position. Figure 4.7 shows a sequence of support
state and ZMP trajectory.

4.4.4 How to realize desired ZMP

Given a desired ZMP trajectory, a motion must be modified to realize it. The
problem is to solve the equation 4.47 under the situation that positions and angular
velocities of each segment are unknown variables and the position of ZMP is
given. However, this problem is impossible to solve directly, because the number
of variables is too great and they are constrained by joint structure. In addition,
better modification of which the difference from the original motion is smaller
must be found among infinite solutions.
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Nishiwaki et al. [23] [22] proposed a method to solve this problem simply.
In equation 4.47, in order to realize desired ZMP x′p, consider that only xi is

modified to x′i:

x′p =
∑

miziẍ′i − ∑{mi(z̈i + g)x′i + (0, 1, 0)T Iiω̇i}
−∑

mi(z̈i + g)
(4.48)

Supposing xep = x′p − xp and xei = x′i − xi, the following equation is derived
from 4.47 and 4.48.

xep =
∑

miziẍei −
∑

mi(z̈i + g)xei
−∑

mi(z̈i + g)
(4.49)

In this equation, the constraint that all the segments translate parallel in the
same distance is assumed. That is, for all the segments i, xei = xe:

−
∑

mizi∑
mi(z̈i + g)

ẍe + xe = xep (4.50)

This represents the same situation as equation 4.46. In practice, modification
can be approximately considered as upper body translation.

On a discrete system in ∆t, the following equation is expressed:

ẍe(ti) =
xe(ti+1)− 2xe(ti) + xe(ti−1))

∆t2
(4.51)

From equation 4.50 and 4.51, the following equation is derived:

xezmp(ti) =
−hxe(ti+1) + (2h+ g∆t2)xe(ti)− hxe(ti−1)

g∆t2
(4.52)

where xezmp is the difference between the original ZMP and the desired ZMP, xe

is a difference between positions of the original segments and modified positions,
ti is time at frame i, h is height of center of mass, ∆t is time per one frame.

This equation is expressed by information of 3 consecutive frames. These types
of equations are solved as tridiagonal simultaneous linear equations [26]. xe(ti)
can be calculated mechanically.
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This method cannot figure out a result which completely follows the desired
ZMP trajectory in one calculation, because the constraint that all the segments
translate parallel in the same distance is actually impossible. However, a result
easily converges in interaction of calculation, because the difference between actual
behavior and the constraints becomes smaller and smaller in interaction. Although
a modification is limited to horizontal translation of the upper body, this method
is effective in controlling balance.
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Chapter 5

Experiments

We generated motions for humanoid robot HRP-1S by our method which we have
described in this thesis, and tested the motions on the robot platform. In this
chapter, we examine the validity of the generated robot motions.

5.1 Appearance of Generated Robot Performance

Figure 5.1 shows a captured dance motion and a robot motion for HRP-1S in
Jongara-Bushi. The robot motion is automatically generated from the captured
motion by our method. For comparison, two motions are simultaneously per-
formed on the same stage.

It seems that the result can be regarded as a good imitation of the human
performance. Although the filter changes appearance of arm motion, difference of
hand trajectories do not stand out so much. The most remarkable difference is
trajectories of a whole body. Since movable range of the robot legs is restricted,
the robot cannot always follow a rapid turn or a wide step in the original motion.
This cannot be avoided.

A method to evaluate similarity of performances is necessary. It is difficult
problem. Simple comparison of trajectories of some body parts such as hands
makes no sense because body type is different between a robot and a human,
and this also applies among skilled human dancers. We currently have no proper
method, so we cannot evaluate appearance of the performance.
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Figure 5.1: Comparison between original motion and generated robot motion

63



5.2 Feasibility in Dynamics

Compared with appearance, validity of dynamics is clearly evaluated by whether
a robot succeeds in a performance. First, a motion is tested on the dynamics
simulator. If the robot can stably perform a dance from beginning to end in
simulation, an actual performance by a robot is performed as an experiment.

5.2.1 ZMP in Generated Motions

Before simulation, ZMP behavior should be checked. Robot Motion Composer
has a facility to show ZMP with animation of a desired performance. In a motion
without balance control, ZMP movement becomes noisy and it cannot remain in
the supporting area. When balance control is applied to the motion, ZMP move-
ment becomes quite stable. However, ZMP cannot completely follow the desired
one and it cannot always be in the supporting area. The precise reason for this is
not clear, but we suppose that ZMP in an initial motion before balance control is
too noisy to fix completely. The balance control method seems to require smooth-
ness of an initial ZMP trajectory. Initial leg motion is mechanically generated by
third polynomial interpolation. This process does not consider dynamics at all.
It seems to affect balance control.

5.2.2 Simulation of Upper Body Motion

As a first step, we examine a performance without leg steps. Three motions
through different generation processes are tested. First is the motion without
balance control. The econd is also without balance control, but is applied small
ks in equation 4.21 and 4.25 against unstable part of the first motion. As described
in Section 4.4.1, ks can control stability of upper body motion. The third motion
is applied to all the generation process, including balance control. The tests are
done in OpenHRP in HG control mode, without feedback control. The setting of
that condition attempts to certify validity of only the generation process.

In the first one, the robot fell over at the first swinging action of its arms.
The second one could sustain the performance until the largest swing of arms at
the latter part. Stiffness parameter ks has some function for balance control, but
small ks makes a motion lazy. It should be used with light ks value just to help
the main balance control. In the third one, the robot could stably perform a dance
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Figure 5.2: Simulation results of upper body performances. Upper sequence shows
a motion without balance control. Lower sequence shows a motion with balance
control.

from beginning to end. Figure 5.2 shows the results of the first one and the third
one.

5.2.3 Performance by Real HRP-1S

Figure 5.3 shows an actual performance by real HRP-1S. The robot could perform
upper body motions, including squats, from beginning to end.

In the first experiments, motion became unstable due to impacts generated
from actuators. This behavior was caused by a limit over angular velocity. When
the actuator is driven by commands over the limit of angular velocity, the actuator
still just follows the commands. However, when the commands turn around, the
forward direction of the actuator immediately changes , and the rapid turn gen-
erates impacts. By restricting proper limitation for actual capacity, the impacts
disappear and the performance becomes stable.

5.2.4 Performance with Leg Steps

As next step, we tried a performance that included leg steps. Performance tends
to be unstable when the robot uses maximum ability for expression, such as a wide
step. Restricting such wide steps, allows a robot to perform the dance without
falling over on simulation. Figure 5.4 shows the simulation result.
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Figure 5.3: Performance of Jongara-bushi by HRP-1S

Figure 5.4: Simulation with leg steps

66



Chapter 6

Conclusion

In this thesis, we described a method to realize a dancing robot which has the
ability to observe and imitate human dance performance.

Human dance motions are acquired by the motion capturing system. A se-
quence of primitive motions is extracted from acquired motion data. On the basis
of the extracted primitives, a motion for the robot is generated. Imitation from
observation is achieved on this framework.

Initial arm motion is generated by inverse kinematics of the joint positions
and it is modified into a feasible motion which satisfies the mechanical structure
and capacity of actuators. Leg motion is generated from the sequence of primitive
motions, considering constraints of the robot. Then waist trajectory which satisfies
the desired balance point between body and ground is calculated. This process
enables the robot to keep its balance without falling down.

Through the process proposed in this thesis, captured human motion is auto-
matically converted to a feasible robot motion.

Generated motions were tested on the HRP robot platform. As initial ex-
periments, the upper body motion of Jongara-Bushi was successfully tested on
OpenHRP dynamics simulator. Then the robot HRP-1S could actually perform
the dance, maintaing balance by its legs. As next step, we succeeded a simulation
of a motion which includes leg steps. Through these tests, the validity of this
study has been certified.
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6.0.5 Future Work

First of all, experiments of a whole body motion on the actual robot should be
realized. Although performances of such motions have been realized on simulation,
an actual performance seems to require more stable motions. The generation
method of the initial leg motion should be improved to consider dynamics. The
present balance control method itself has enough ability; additional light condition
of dynamics in the generation process may help to acquire more stable motions.

There is still a significant problem, i.e., how to evaluate the skill of dance
performance in a mathematical way ? Without a reliable method of evaluation,
dance performances by a robot makes no sense in our purpose. It must be a
necessary element of evaluation that a robot dancer can actually perform dances
while keeping its balance, that is to say, a skill of dynamics. This skill has been
achieved to some degree. In addition to this, the skill in appearance is defined,
and we will try to achieve a skilled performance in both dynamics and appearance.
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