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ABSTRACT

Recently, the research on processing 3D objects (preservation, restoration and analysis) has
been greatly advanced thanks to thEoalable price of the accurate laser range finder. So

far, an object shape was represented by 2D information (E.g. drawings and picture) or ap-
proximated 3D information (E.g. combination of primitive shapes for 3D shape modeling in
CADs). However, 2D and approximated representation providdfingnt accurate informa-

tion for the 3D shape analysis of the object.

Our objects of interest are 3D data of cultural assets obtained through a laser range finder.
The 3D data reconstruction method Ikeuchi laboratory developed was adopted. In this thesis,
we propose the method for an object shape restoration and analysis. Our proposed method
is the extension of simultaneous registration of 3D data. In conventional simultaneous regis-
tration, the errors of 7-parameter pose and position are minimized. In our error function, We
assume that the parametric function of the ideal object is available, and the errors are mini-
mized on shape parameters as well. We assume that the parametric function of the ideal object
is available. The shape of the actual object can be restored by our proposed error function.
This thesis also describes the application of aligning method to visualiszatice between
similar objects.
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Chapter 1

Introduction

Various techniques on the computer graphics have been widely applied for the entertainment
purpose. Recently, CG research on actual object modeling has gained a wide interest thanks
to the accurately 3D data from the laser range finder. The acquired data are undergone reg-
istration and merging to form the highly accurate model[1] [2] [3]. The accurate models are
desirable for various application including industrial investigation. Particularly in the studies

of the precious assets, for example, a cultural treasure, actual object is often unavailable due
to its fragibility.

In the shape analysis of cultural assets, the pictures from multiple viewpoints are used in
order to analyze the shapdigrence between objects. Large constructions, such as building,
are restored by the combination of the primitive shapes for 3D shape modeling in CADs. Such
2D or approximated 3D representations does not provide the accurate information. Better
representation for actual objects is available through the digital data in the computer graphics.

The main objectives for this study is to measure the accuracy of “mathematical mod-
els”. The mathematical model is the plaster model imitating 3D surface of the predefined
numerical formula. The numerical formula contains parameters wiiebtahe shape of 3D
surface. The models used in our experiment were made in Germany at the beginning of the
20th century, and they are currently preserved at Graduate School of Mathematical Sciences,
University of Tokyo. Itis acclaimed that they accurately represent numerical calculation, Sup-
port documentation to this claim is scare, and there is no well-known method to measure the
accuracy of the model.

We investigated the accuracy of these mathematical models. However, parameters in the
numerical formula of the particular model are unknown. It is necessary to estimate the param-
eters from the model reconstructed by the data of the laser range sensor, and to compare the
measured data with the computed data under the estimated parameter.



In order to put the pair of 3D data into the same coordinate and to precisely adjust their
pose and position, registration (alignment) method is generally used. In registration, 3D data
are translated ayior rotated to minimize the distance between the pair of 3D data. There
are seven parameters in this operation. three parameters accounts for the translation and the
other four are the quaternion representation for rotation. But to measure the accuracy of the
mathematical models, parameters in the formula, which have influence on the model shape,
have to be estimated in addition to the seven parameters. In our method, all parameters are
simultaneously estimated by minimizing the extended error function which includes the shape
parameters as well as seven motion parameters.

Nishino and Ikeuchi [4] developed the simultaneous registration method for seven param-
eters. In this thesis, we extend their registration method to align the 3D data according to
the error function of arbitrary parameters. In case of the registration of mathematical models,
the parameter depending on their shape is adjusted in the same time as the pose and position
parameters. After the error function converges, the measured and estimated data is exactly fit.
We can then observe and visualize thatences between the actual model and the estimated
model.

In Chapter 2, introduce various registration strategies and describe in detail the registra-
tion method developed by Nishino and Ikeuchi. In order to improve the registration speech,
more dficient kd-tree search is necessary. BOT test is added into the convention BOB test to
determine the searching space. Details of classical and our proposed kd-tree search are found
in Chapter 3. In Chapter 4, we describe the extended registration formulation. In conventional
registration, models are fitted according to the pose and position parameter. In the extended
registration, the fitting parameters are not limited to pose and position ones. The result of
extended registration is applied to determine the shapereince between the actual and ideal
objects. Chapter 5 describes the calculation of the shdferetice, and its application in
the archaeology. In Chapter 6, we evaluate the accuracy of the extended registration method.
Our extended registration is studied for its accuracy in estimating parameters according to the
measurement error, the initial registration error and the initial input parameters. The thesis is
closed with the discussion and conclusion in Chapter 7.



Chapter 2

Registration of 3D Data

In this chapter, we survey the algorithms for registration of 3D data based on Iterative Closest
Point algorithm (ICP). ICP algorithm is widely applied in registration method. Registration
methods are developed according to various demanding. We classify the algorithms according
to the registration order, matching unit, and error metric.

Our main objective is to estimate shape parameters. More detail is provided for the strategy
appropriate for this purpose.

2.1 Registration Strategies

ICP algorithm is widely applied to solve the problem of registration of 3D data [5] [6] [7].

In this algorithm, correspondences for match point between two 3D data are searched, sum
of error between correspondences is minimized in order to match two data into the same
coordinate, pose and position. The minimization is iterated until the sum of error converges.

In the registration methods based on ICP algorithm, the following topics need to be considered.

e registration order
e matching unit

e error metric

2.1.1 Registration Order

In the registration of multiple sets of 3D data, the order of registering the datffeetsahe
convergence of the final result. In the direct algorithm, the alignment is repetitively performed
until all data sets were aligned [8]. The sequential strategy has low computation cost because
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Figure 2.1: Illustration of registration failure in sequential strategy. The pair of red and green
data are first aligned. Green and blue data are next aligned. The data are sequentially aligned.
The final alignment is between orange and black data. However, the accumulated error pre-
vented the black and red data from the correct alignment.

only two data sets are handled per one registration. However, it is susceptible to aligning
failure because the alignment errors are accumulated in each step, which leads to the wrong
convergence (Figure 2.1).

In contrast to sequential strategy, the simultaneous strategy aligns all the data at once.
More accurate registration is acquired at the cost of higher computing load. The registration
error is distributed instead of conglomerated to same data sets.

2.1.2 Matching Unit

In calculating the dference between data sets, we need to determine the corresponding of the
point on each data set. [9] [10] use the geometric property of 3D data. This strategy works
well on the assumption that one-to-one correspondence can be obtained for all feature points
and the correspondences are unchanged. Accurate registration cannot be achieved, otherwise.

More accurate registration is feasible by using 3D point because more plausible corre-
spondences can be selected again and again until the data are converged [5] [11]. This strategy
provides a number of correspondence (Figure 2.2).

Corresponding point is usually the nearest neighbor point in 3D space. Besides nearest
neighbor search, Normal-shooting [12] is widely applied to find correspondences because of
its fast convergence, but the result is less accurate. Projection correspondence is another pop-
ular method. It depends on the projection direction, but much faster convergence is achieved



(2)Normal Shooting

(3)Projection

Figure 2.2: Correspondence using 3D point. Solid and dotted line depict the 3D data sets. Red
line shows the correspondence between the 3D data on solid and dotted line. The solid line is
then aligned to the dotted one according to the correspondence between the data.
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by the rendering hardware [13] [14].

2.1.3 Error Metric

The registration solution gives the minimum sum of error between corresponding points. Reg-
istration results greatly relied on how the error function is defined. The error is usually defined
by the distance between corresponding points. The distance may be calculated between a point
and its nearest neighbor point on the other surface [12] [14]. Additional information, such as
color [15], can be included into the function.

2.1.4 Overall

We need to align 3D data as accurately as possible in order to estimate shape parameter and
analyze their shape; that is, the accurate convergence is taken precedence over the quick one.
As shown in [16], it is best to regard the closest point as the corresponding point, because this
strategy leads to the precise 3D data convergence. Noise of 3D data has to be considered in
order to achieve the accurate correspondence between the data. Data obtained by the laser
range sensor are noisy, features such as normal cannot be estimated from the point cloud
with acceptable reliability. To cope with erroneous measurement, the simultaneous and point-
based strategies were applied and the point-to-point distance is defined as error metric. Further
details of our selected strategies are explained in the following section.

2.2 Robust Simultaneous Registration

In this study, we adopted the alignment method proposed by Nishino and Ikeuchi [4]. In
their method, the nearest neighbor points are aligned in the way that the sum of point-to-point
distance is minimized. the above section. The pseudo programming codes are as follows.

11



SimultaneousAlignment

input: MeasuredData D= {dji=0,1,...,n}

input: InitialPosition P={p =(R,t)i=0,1,...,n}
output: AlignedPosition P={p; = (R;,t)li=0,1,...,n}
local: KDTree= {kdf|i =0,1,...,n}

repeat
KDTree«— MakeKDTreéP, D)
forall i =0,1,...,ndo

KDTre€ « KDTree- {kdt}
p’; < MinimizeErrorFunctiofp;, d;, KDT re€)
end for
P « ChangePositio(P’, P)
until ErrorFunctionConverged
PP

We denoted;, p; andp’; (i = 0,1, ..., n) respectively by the set of 3D points in th range
image, the initial position matrix of in each iteration and the motion matrix df added
to p;. For everyi, every data ird; as located byp; are converted to the kd-tree structure in
function MakeKDTree FunctionMinimizeErrorFunctionestimates the motion matrix (of
d;) from the initial position f;) by aligningd; to other range imageslj(; j # i). Function
ChangePositiormultiplies the estimated motion matriy’() by the initial position matrix
(pi) on all data D) for the initial position in the subsequence iteration. The following sections
describe the above algorithms in detail.

2.2.1 Corresponding Point Search with Kd-tree

In [4], the nearest neighbor point is regarded as the corresponding point. When multiple
measured data are presented, it is not recommended to find the correspondence in a round
robin way. The calculation amount of the round robin is very high and equals to:

Dimix >y, (2.1)
i j#i
where R is the number of point in the#h measured data.

Effective corresponding point search is accomplished via kd-tree search [17] [18]. Kd-tree
search algorithm is the extension of the binary search in 2-D space to the arbitrary k dimen-
sional space. Kd-tree is constructed by dividing the elements at the median on the axis where

12
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Figure 2.3: Kd-tree construction and search in 2D space. Points are divided in the above order.
Leaf node has the coordinates of points, while the others have the information of the axis and

the value where the data are divided. points divided.

the elements have the highest variance (Figure 2.3). The division of median is repeated until
the number of data in each leaf node is less than the threshold. The depth of kd-tree made from
N elements is logN. By applying kd-tree search, the calculation amount of the corresponding

point search is reduced to:

Z(ni X Z logn;).

j#i

2.2)

Nevertheless, the classical kd-tree search is slow with heavy computing load. To speed up the
search, we propose the search with limited searching space. Further detail of kd-tree search,
both classical and our proposed kd-tree search, are described in Chapter 3.

13



2.2.2 Minimization of Error Function
Direct Error Function

The alignment is performed by rotating and translating the measured data. The movement is
determined such that the total distance between the corresponding points is minimized. The
error function () is thus defined as:

f(T.R) = > IIRX + T - ¥l (2.3)
1]
where T translation vector,
R  rotation matrix,
X ith pointin the data set of interest,
y_,-i’ the corresponding point of in the jth measured data.

Even though &3 rotation matrix is easy for the vector or matrix computation, it has non-linear

characteristic (Equation 2.4):
RR"=1 and |RI=1 (2.4)

The quaternion representation for rotation is more suitable for the error minimization. In our
error function the quaternion representation is applied. Advantages and details of quaternion
are in Appendix A.

Let R(q) be a rotation matrix corresponding to the quatermjoBquation (2.3) is rewritten
as follows:

f(T,0) = f(T,R@) = ) IIR@X + T - FI? (2.5)
i.j

Outlier Elimination

In the direct error function, noise leads to the imprecise registration of 3D data, because the
exact correspondences between the noisy data in the initial step is unavailable. The imprecise
correspondences must be removed before registration. Thresholding is often used to eliminate
the correspondences. The threshold value can be determined as a proportion of the standard
deviationo of the errors in the data. Typically, it is set to greater than or equal to 3. This is the
simplest, but unreliable method because the eliminatiofiésted by the binary classification

of the threshold value. Better elimination is obtained by M-estimation, since probability dis-
tribution of the error is considered. M-estimation maximized the probability by minimizing a
function of the form

E@ = p(@).

14



wherep(2) is an arbitrary function of the erro in the data set. The M-estimator is the
maximum-likelihood estimator of the probability distributi®requivalent toE(2).

We can find the parametes that minimizeE by taking the derivative of E with respect
to P and setting it to 0.

OB N9 0z _ N
W—Z 7 73 Zw(z)z 5= (2.6)
where WZ):%(;_Z

In [4], the Lorentz function is used as the M-estimator because it yields the best result as
written in [19].
Summary on Minimization

We have reviewed the minimization of the error function for 3D data registration. The problem
is summed up to the minimization of;

N M
E®) = =35 2 2@ B @7
i
where P = (t,q). (2.8)
z(B) = IR@X+T -y (2.9)
p(@i(B) = log(L+ 52,(B)). (2.10)

N = the number of data point,
M = the number of measured data

The (negative) gradient of quaternion at an identity quatergjois obtained by Equation
(2.11).
IRER)| _ ey

7 (2.11)

8]
Detail of the calculation is described in Appendix A.

15



Finally, the motion gradient is acquired by the following equation.

az;—? 2(R(A)% + T _)Tji’)a(R(Q)Yia%t -¥7) ql
= l 2(% + T —)T“)) }
4C(Z)T(Z+—>_)Tji>)
= 2(2-{_ t- yJI
= 4Z><(t —yJI ]

(2.12)

After the actual gradient is obtained, it is conjugated to the gradient of the motion in the
previous iteration. Motion vector) is acquired by the conjugate gradient method and line
minimization with golden section search. Details of conjugate gradient method and line min-
imization with golden section search are found in Chapter 4.

16



Chapter 3

Effective Search with Kd-tree

3.1 Basic Search Algorithm

Our problem is to find the nearest neighbor point for a query pgintin tree searching
algorithm, we start at the root node and traverse down to the leaf node that contains the query
point. In Figure 3.1-(1), node A containg and we compute the distances frgnto the
records of A. At first glance, the nearest neighbor search is simple and fast by searching
within A; however, the searching is not enough. As shown in Figure 3.1N(2¥ the nearest
neighbor ofp in node A, but the true nearest neighboNis

It is necessary to search a neighbor node to get the correct nearest neighbor. Instead
of checking all the neighbor nodes, neighbor nodes is checked if it satisfies the following
Bounds-Overlap-Ball (BOB):

d > dg, (3.1)

whered anddg are the distance from the query poiptto the boundary of A and B, respec-
tively.

In this method, the nearest neighbormfn A is searched. The distance to the nearest
neighbor is then compared with the distancepab the boundary of A to all the neighbor
nodes. Only nodes that are closemptthand are searched for the nearest neighbor. In Figure
3.1, node B, C and D are closerpdhand, so all of them are examined. The basic algorithm
is in the following.

If a k-d tree containg records, the depth of the tree@log, n). Because of this, Fried-
man et al.[17] asserted that the computational cost of classical kd-tree search for the nearest
neighbor isO(log, n). However, the asserted computational cost is acquired only when the
leaf node that contains the query is examined and all other branches can be pruned by the
BOB test.

17
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Figure 3.1: Example of the BOB test in kd-tree search. In (1), the point in A nearest to p, is
not guaranteed to be the nearest neighbor. (2) indicates that all neighbor nodes to A must be
examined to find the correct nearest neighbor.
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BasicSearch

input: NodeN

input: QueryPointp

output: NearestNeighborPoim,
local: TemporalNeighborPoint,

if N is leaf nodethen
P < FindNearestNeigborPoiri)
if py, is nearer tgp thanp, then
Pn < Ptn
end if
else if N is leaf nodethen
if pisinside leftsonl) then
Search(leftson(N))
if d> drightsonN) then
SearcHrightson{N))
end if
else if pis inside rightsor{l) then
SearcHrightson\))
if d> d|ef’[SOI”(N) then
Searchleftson(\))
end if
end if
end if




In the worst case, such as Figure 3.1-(2), no branch can be pruned and the computational
cost become®(n)*. In particular, when the distanckfrom the query to the nearest neighbor
is large in comparison with the distribution of records in the k-d tree, almost all boundaries
will lie inside the ball, and all must be examined.

3.2 Improving Searching Speed

As mentioned in the previous section, the computational cost of kd-tree searching may exceed
the acclaimed (logn) when the nearest neighbor in each leaf are far away. However, if the
high accuracy of the nearest neighbor which is very far from a query is not necessary, we can
limit the search to area near the query. The computational cost is then reduced by introducing
the Bounds-Overlap-Threshold (BOT) test to the searching algorithm.

When it is assumed that the approximated position of the nearest neighbor, further than
6, is suficient for éfective processing, the searching ball in Figure 3.1 can be reduced to the
dashed ball in Figure 3.2. Whether node B is to be examined or not is then decided by the
following criterion.

6 > dp. (3.2)

In BOT test, when node B satisfies the above criterion and BOB test, node B can not be pruned
and needs to be examined. If node B fail to satisfy the criteria in ¢itbty BOB ofand BOT
test node B is pruned.

In Figure 3.2, Node B and D fail in the BOT test, so they are not examined. On the other
hand, node C still need to be examined sidcedc andé > dc.

In case thatl < 6, the algorithm is completely the same as the one without the BOT test. If
d > §, the improved algorithm may not find the correct nearest neighbor. The distgnee
from the query to the correct nearest neighbor is:

0 < dy < deorrect < d, (3.3)

wheredy is the smallest distance from the query to the boundary of node N, which is larger
thans.

If the maximum distance of two points in a k-d tree [3,2he volume of the hypersphere,
which contains all points of a k-d tree, is proportionalb. Similarly, the volume of the
hypersphere of radiusis proportional tas¥. Therefore, if the points in a k-d tree have uni-
form distribution, our new method reduces the searching cost of the worst cas®fnto
O((§)n).

The search algorithm with BOT test is constructed by a recursive function as shown below.

1This is a rough estimation. A more accurate estimatidD(E:ffg " 24)
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ImprovedSearch

input: NodeN

input: QueryPointp

output: NearestNeighborPoim,
local: TemporalNeighborPoint,

if N is leaf nodethen
P < FindNearestNeigborPoini)
if py, is nearer tgp thanp, then
Pn < Ptn
end if
else if N is not a leaf nod¢hen
if pisinside leftson{l) then
Search(leftson(N))
if d> drightsonny A 9 > Grightsonw) then
SearcHrightson{\))
end if
else if pis inside rightsori{) then
SearcHrightsonN))
if d> d|eftSOF(N) AN 0> d|eftSOI’IN) then
SearcHleftson(\))
end if
end if
end if
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C D

Figure 3.2: The Bounds-Overlap-Threshold (BOT) test compares a threshaoltidistances
ds, dc anddp. We examine nodes that satisfy both the BOB and BOT tests. In this case, we
examine C only. B and D are pruned by the BOT test.

N, p andd are the ambiguous node, query point and distance fsdothe current nearest
neighbor, respectively. The ambiguous node is being checked for the nearest neighbor of
p. Function rightsor{) and leftsoni) return right and left sons of nod¥, respectively.
drightson / dieftsoryyy @re the distance from the query to the boundary of fightson of
N. The diference from the classical algorithm is high lighted by gray boxes.

3.3 Application to Registration

In aligning range images, incorrect correspondences can be removed by thresholding or M-
estimation [19] [20] [21]. To compute the posture of range images, the corresponding points
farther than the threshold distance are negligible. In our experiment, based on the error dis-
tribution of the laser range finder, the threshéltvas set to Dcm. Figure 3.3 shows the
distribution of the number of leaves examined during the search for a nearest neighbor point
in the aligning application.

When we use the classical searching algorithm, the number of records examined grows
according to the distance from the queries. On the other hand, when the BOT test is applied,
the number of records examined is drastically reduced in the case that the distance from the
query is larger thawl (Figure 3.4). The total numbers of records examined are 1842640 and
470300 without and with the BOT test, respectively. The computational cost of searching for
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Figure 3.3: The graph shows the relationship between the distance from a query to the nearest
neighbor and the number of records examined, when the classical search algorithm is applied
to align range images.

nearest neighbor points is approximately 25.5% of the one by the classical search algorithm.
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Figure 3.4: The graph shows the between the distance from a query to the nearest neighbor
and the number of records examined, when the BOT test is applied to the searching algorithm
for aligning range images.

24



Chapter 4

Extended Registration
Formulation

In this chapter, we describe the parameter estimation of 3D data. Estimated parameters in-
cludes the ones whichfact their shape appearance, in addition to 7 parameters of the pose
and position of the conventional alignment.

4.1 Parameter Estimation Formulation

This chapter considers the solution to our main goal requoted here. We assume that the object
of interest can be represented by some mathematical formula. Parameters in the formula
affects the overall shape. Our goal is to estimate the parameters. By comparing the measured
data with the ideal data computed by its corresponding formula and parameter, the registration
and shape (parameter) matching problem is solved. If the pose and position can be registered
between the measured data and the ideal data, shape matching can be considered as the error
minimization problem. Moreover, 7 parameters of pose and position, and the shape parameters
in the mathematical formula are simultaneously acquired.

We extend the parameter estimation of the existing registration formulation to include the
shape parameter. The error function in Equation (2.5) is adapted to include the fitting of the
ideal data.

£(B) = Y. IR@g(K),; + T - FIP. (4.1)
i
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where B= (T.q.K)

—_—>
g(TZ)i ith point in some ideal data computed from the formula

N
whose parameters ake

Therefore,z”(_pf) in Equation (2.9) is transformed into:

2;(B) = IR@(K); + T - F3I2 (4.2)

And the motion gradient is obtained by:

0z = g —>8R T(>i _t>__|>
WD - ok« Ty T LT
a
2(@ +T-7)
= ig()T‘))i x (T - 1 (4.3)

— A(g(K);
2(g(k); + T -y HL

Then, the pseudo code of the calculation is as follows:
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SimultaneousAlignmentWithParameterEstimation

input: MeasuredData D= {dji=0,1,...,n} and IdealData d

input: InitialPosition P={p; = (R.t)li=0,1,...,n}

input: InitialPositionAndParameterOfldealData .p= (R, tc, k)

output: AlignedPosition P={p’;, = (R,t)li=0,1,...,n}

output: AlignedPositionAndE stimatedParameterOfldealData’ p(R.’, tc’, k)
local: KDTree= {kdf]i =0,1,...,n}

repeat
KDTree«— MakeKDTreéP, D)
forall i =0,1,..,ndo
KDTre€ « KDTree- {kdt}
p’; < MinimizeErrorFunctiofp;, d;, KDTre€)
end for
pc’ < MinimizeErrorFunctionWithParameterE stimatign, d., KDTree
P « ChangePositiofP’, P)
pc « ChangePositionAndParamef{ex’, pc)
until ErrorFunctionConverged
PP
P’ < Pc
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(1) (2)

0 Alignment i
failure >
ideal

data mesured mesured data taken apart!

data
(expected alignment result)

Figure 4.1: The incorrect convergence of measured data as the result of the incorrect ideal
data. In (1), measured data is expected to be converged to the dotted line. (2) showed the
converging result. The measured data are taken apart to partially match the incorrect ideal
data.

The diference from the basic algorithm (Chapter 2) is high lighted by gray boxes. To the
algorithm, we add the set of 3D points as computed by the numerical formula with the initial
parameterd.), its initial position matrix f;) and its initial estimation of the motion matrix
(pc). FunctionMinimizeErrorFunctionWithParameterE stimatialetermines the expected
motion matrix (ofd.) in the subsequent iteration from the initial position and paramet@r (
according to the entire sets of measured dBXp (FunctionChangePositionAndParameter
multiplies the expected motion matriR{, t;") by the initial position matrixi., t.) and update
the initial parameterk) to the estimated parametér)

Simultaneous registration is applied in our experiment. Because the algorithm registrates
every parameter simultaneously, registration of the measured data and fitting of the ideal data
in the same time. It is unnecessary to supply the registrated measured data. The registration
of the measured data is similar to the one in conventional algorithm. Note that the ideal data
have no &ect on the expected motion matrices of measured data. This is to avoid the incorrect
converging due to the incorrect shape parameters of the ideal data (Figure 4.1). So the kd-tree
of the ideal data is not required.

4.2 Minimization of Error Function for Parameter Estima-
tion

Error function for parameter estimation is minimized by the steepest gradient. However, steep-
est gradient method is not alwayfieient. In this study, the conjugate gradient method is
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START POINT
L

Effective Search

Ineffective Search

Figure 4.2: lllustration of anféective and inffective gradient search. In iffective search the
gradient obtained in the current step is guaranteed to be orthogonal to the one in the previous
and following step. However, many step have the gradient in the same directioffiedtive
search, these gradient should be summed up and estimated within one step.

applied. After obtaining the conjugate gradient, we have to determine the norm of motion
vector. This determination is performed by line minimization. This section explains the con-
jugate gradient and line minimization method.

4.2.1 Conjugate Gradient Method

In the previous, the minimization applies the steepest gradient method. Though the gradient
in the current iteration is orthogonal to the one in the previous step, the same gradient is taken
repeatedly before the minimization is completed.

The conjugate gradient method has been proposed to avoid the abfii@edney. In this
method, we use the gradient conjugated to the former gradient, instead of the steepest gradient.
The usage of the gradient conjugated to the former gradient guarantees that it is a conjugated
to any other gradients.

In our implementation, we use Fletcher-Reeves method and Polak-Ribiere method [22]
[23] [24]. These two methods are closely related and have the well-found algebraic property.
DefineA G andﬁ> as the positive constant symmetry matrixrok n, the steepest and the
conjugate gradient iith minimization step, respectively. The two types of gradient vector are
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defined as follows:
— —> —
G2 =0 — A4Ah,  hig =G +yihi (4.4)
Ai andy; are determined such that

G35 =0 hu-A-Th=0 (4.5)

From Equation (4.4) and (4.5), andy; can be calculated as:

e = Ah
if G-Ah %0 N -ARh %0, A:G_ﬁi’ =G AN
T -Ah hi - Ah;
otherwise 4i=0, =0 (4.6)
As aresult, we can obtain the following equation.
T5=0 h-Ah=0 (%] (4.7)

The first equation implies th@ is orthogonal to otheﬁ} and the second implies the orthog-
onality amongﬁ> eachh is conjugated to the forme?ri.
From (4.4) and (4.7)y; and; can be found by:

904 _ @4-9)-84

= = 4.8

4 g -0 @@ “9

A = _% (4.9)
hi~Ai

4.2.2 Line Minimization

Line minimization is usually used in the gradient-based optimization. Many techniques have
been proposed for this minimization. We use a combination of golden-ratio bracketing (golden
section search) and parabolic fits. Figure 4.3 illustrate our procedure.

4.3 Experiment

In this section, we attempted to estimate the shape parameters of the mathematical models.
The corresponding formula to the tested mathematical models (Figure 4.5) were assumed to
be available. Note that the scale paramdteappears in every surface. Detail of the function
and its derivative are described in Appendix B.

The model were measured by MINOLTA VIVID 900. MINOLTA VIVID 900 is the laser
range finder and obtains the depth information by the triangulation method. Its accuracy is
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f(x)

J (%) < f(x3)

Xo X, X3 3.51 "X
X, X, (Next Step)

Figure 4.3: lllustration for line minimizationx and f(x) depict the motion vector and the
error function respectively. When the minima lies betwggandx;, Xo(= Xo + %(xl — Xo))
andxs(= Xo + %(xl — Xp)) are calculatedr(depicts a golden ratio= %5)). By comparing
f(x2) and f(xg), the position of the minima can be founded.f(;) < f(x3), the minimum
lies betweerx, andxs, so in the subsequent searghjs set atx;; otherwise, the minimum is
betweernx, andx;, sox; is set atxy. The figure shows the minimum is betwegnandxs, so
X1 in the subsequent iteration is setxat
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evaluated in Chapter 6. Initial data registration was manually performed via GUI. The initial
shape parameters were also manually estimated. The number of iteration in all tests was set
at 5. Figure 4.4 shows the convergent characteristic of our algorithm on the revolution surface
of catenary. The figure indicates that the ideal model was modified to fit the actual one. The
modification was performed via the shape parameter.

In this section, only the estimated parameters were shown. The application of the esti-
mated parameter to measure the accuracy of the mathematical models is presented in Chapter
5. The accuracy of our estimation is evaluated in Chapter 6.

The accuracy of the estimated parameters is also explained in the Chapter 6, though we
show only the obtained parameters in order to certify that shape parameters are estimated from
these data in this section. Moreover, the shafferdince between the measured data and the
computed data is visualized in the Chapter 5.

4.3.1 Revolution Surface of Catenary

This surface is generated by rotating a 2D catenary and shown in Figure 4.6-(1). The surface
by revolution always has the azimuthal symmetry. Besides scale parameteefe are 2
parametersg, b) involved in the appearance of the revolutional surfaces.

Numerical Formula
for 7a?b?l (0<b<a),

X(u, V) = (Ia(v) cosu, [a(V) sinu, 1y (V)), (4.10)

where 0<u<2r -a- sinh‘l(g) <v<a- sinh‘l(g)

#(v) = bcosh(g), (V) = fov J1- Z—ESinh‘l(;)dt (4.11)

Partial Derivatives with respect to Shape Parameter

oX _ 9 sy 2
58 ((I cosu)aa,(l sinu) 6a’|8a)’ (4.12)
where iy b
V .V
a—a = —g Slnhgl (413)
and

6_zp_vb2( 1 . v 1 ) (4.14)

78 " 2 ———sinh1= +

2a2 a Wra?
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(1) (S)

(2) (6)

(3) (7)

4 (8)

Figure 4.4: The convergent characteristic of the parametric data. (1)-(8) shows the order of
convergence to the data of the revolution surface of catenary.
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(1)Revolution Surface (2)Dini's Surface
of Catenary

(3)Kuen's Surface (4)Inverse Function of the
Elliptic Integral of the
First Kind

Figure 4.5: Mathematical models used in our experiment. (1), (2) and (3) have the constant
negative curvature on all points of the model surface.

34



?b( { cosu) (I smu)gf) g’g) (4.15)
where a6 v
i coshz—i (4.16)
and oy b v
= —;smh - (4.17)
%_T = (%sshts’ %;t]s,s— tanhs + bt|. (4.18)

Estimated Parameter

a=0.0568 b=0.0237 |=0.996

4.3.2 Dini’s Surface
This surface is generated by spirally rotating a 2D tractrix and shown in Figure 4.6-(2). This
surface has 2 parameters controlling its appearance. Théyazaa! .
Numerical Formula
for b1,

Icost Isint
coshs’ coshs’

X(st) =

where |g<a and 0<t<§@

,I(s—tanhs + bt) |, (4.19)

Partial Derivatives with respect to Shape Parameter

oX

25 = (©.0.10) (4.20)

s—tanhs+ bt], (4.21)

oX [ cost sint
9l ~ \coshs’ coshs’

Estimated Parameter

a=0309 [|=0.0569
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4.3.3 Kuen's Surface

Kuen’s surface was first discovered by T. Kuen in 1884. This surface has several self inter-
sections (indicated by the arrowed in Figure 4.6-(3)). Kuen'’s surface is a specialized case of
Enneper’s surface, and is characterized by two sets of lines or geodesics, where one of the
geodesics has spherical curvature, while the other has planar curvature. Kuen’s surface has
a property known as Joachimstal’s curvature, where all of the lines of planar curvature pass
through a common axis; furthermore, all spherical curvature lines have midpoints lying on the
same axis. Kuen'’s surface has the fixed appearance. Its size is controlled by only the scale
parameterlj.

Numerical Formula

for I,

X(u,v) =l

2(cosu + usinu) sinv | 2(sinu — ucosu) sinv I(Io ( V)+ 2 cosv ))
9 2 9

s - tan —
1+ u2sinfv 1+ u2sinfv g 1+ u23|n2\/(4

where §<v<n-6 and 6>0
Partial Derivatives with respect to Shape Parameter

oX

ol

2(cosu + usinu) sinv 2(sinu — ucosu) sinv % 2cosv
ngsiny SNV 04130 200 _
1+ u2sirfv 1+ u2sirfv 2/ 1+ usirfv

) (4.23)

Estimated Parameter

| = 0.0491

4.3.4 Inverse Function of the Elliptic Integral of the First Kind

This function, defined as jacobi amplitude, is the inverse of the following function:
dt
u= ﬁ _— (4.24)
0 1-K2sirft

Only the scale parametd) fieeds to be estimated to determine its actual appearance.
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Numerical Formula

for Al

X(o, k)_[l¢ Iklf ]
Vi- k25|n2
Partial Derivatives with respect to Shape Parameter

o f el
Jo V1T iesirtt
Estimated Parameter

| = 0.0434
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catenary
tractrix

(2)Dini's Surface

(1)Revolution Surface
of Catenary

4

m (4)Inverse Function of

(3)Kuen's Surface the Elliptic Integral
of the First Kind

Figure 4.6: Ideal data of mathematical models.
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Chapter 5

Shape Dfference Visualization

In this chapter, we describe the visualization foffetience between the measured data and
the ideal data computed from its numerical formula. The shape parameters are estimated
in the method described in the previous chapter. Although the algorithm is limited by the
presence of the mathematical models, the limitation is not critical in the field of CAD, CAGD
and CAM. To visualize the dierence, we first define the ‘fiérence value”. We then show

the application to mathematical models [25], and introduce the application to ancient bronze
mirrors.

5.1 Visualization Method

As a preparation of the shapdfdrence visualization, the data of compared objects are aligned
into the common coordinate.

Then we have to define the value representing the shdfeeatice. As shown in Figure
5.1, the position of one object is fixed and this object is defined as a base object. The other
object is defined as a check object and is aligned to the same pose and position of the base
object. The check and base object is respectively shown in Figure 5.1 as the solid and dotted
line. Difference between objects is the signed distance between the point on the check object
and its corresponding point on the base object. A point in the check object has its nearest
neighbor on the base object as its corresponding point. The shié@erdce is represented in
mathematical form as:

d = sign(n(v} - W) x [V, (5.1)

where v point on check object,
n(v) normal vector of/,
A corresponding point of.
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Figure 5.1: Signed distance calculation. The signed distance is inner product of the normal of
the point on the check object and the vector from the point to the corresponding point on the
base object.

and

. -1 if a<0

signa) =

9r@) { 1 if a=0
d is calculated on all points in the check object. The normal vector for each point is defined
as the normalized vector of the sum of the normal vector of the plane that the point is the
member. This value allows us to recognize their relative convex or concave sligperntie
to the check object. Positivéindicates that the base object is more convex; otherwise it is

more concave.

5.2 Mathematical Model

In Chapter 4, we estimated the shape parameters of the mathematical models. Therefore we
can evaluate the manufacturing accuracy of each model by visualizing the sltapendie
between the measured data of the model and the ideal data constructed according to the esti-
mated parameters.

In this section, the shapeftérence between the actual and ideal models is observed.
In each mathematical model, the ideal data is set as a base object. In each figure, green
depicts no diterence. Red and blue depicts that the actual object is more convex and concave,
respectively. In Figures 5.2 and 5.3, the signed distance of the magnitude more tinam 1.5
is regarded as error, and in Figures 5.4 and 5.5, tfierdnce of more thanndmis regarded
as error.
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Figure 5.2: Shape fierence of revolution surface of catenary

5.2.1 Revolution Surface of Catenary

Figure 5.2 indicates that the middle part of this model had almost no shipeedce to the
ideal model. Manufacturing error was concentrated on the upper and belower part (blue area).

5.2.2 Dini's Surface

Figure 5.3 shows the part generated at the minimum and maximum of the catenary curve con-
tains the shape fierence. This model contains the chipped part, and we could not determine
whether the chipped points were created during or after the manufacture. In this experiment,
we regarded them as the shapaience caused during the manufacture.

5.2.3 Kuen'’s Surface

Our experiment indicated that theffidirence between the mathematical model of Kuen's sur-
face and its corresponding ideal model was widely spread (Figure 5.4). Howeverifdre di
ence of more than mimis not visually distinguishable.
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Figure 5.3: Shape fierence of Dini’s surface

Figure 5.4: Shape fierence of Kuen’s surface

42



5.2.4 Inverse Function of the Elliptic Integral of the First Kind

5.5 shows that diierence to the ideal model was found in lots of area. In contrast to Kuen’s
surface, the dierence can be observed visually. In the figure, area with the distinct shape
difference lies between the arrows.

5.3 Ancient Bronze Mirrors

Ancient Chinese bronze mirrors have the immortal and beast pattern in their reverse side with
protruding rim of triangular cross section (Figure 5.6).

The mirrors are intensely studied because it may lead to the location of Yamatai state, the
oldest documental state in Japan. Some archaeologists propose that Yamatai state governed
the regions, where these mirrors were found. In this section, we describe how to analyze the
mirrors and the usefulness of the visualization of thfEedénce technique between the mirrors’
shape. We then show the application results.

5.3.1 Mirror Analysis and Difference Visualization

The ancient bronze mirrors, with the same decoration pattern, were excavated from the various
areas. These mirrors are cast from the same mold, or the mold duplicated from the similar
mirrors. The former is defined as “individual mirrors”, and the latter “identical mirrors”.
Individual and identical mirrors can be classified as “sibling mirrors”. So far, archaeologists
have paid attention to the classification of sibling mirrors according to the decoration patterns
so far [26], they propose that the classification of individual and identical mirrors implies the
order of the manufacture. The localfdirence of the decoration pattern indicated the duration
of usage of the mold or its duplication mold. Continuous usages causes the unique spreading
fissure or cracks of the decoration pattern are reflected in their decoration pattern.

So far, archaeologists have analyzed such shdferelice by visually observing the orig-
inal mirrors. The practice requires a huge amount of time difwtteIf the candidates caused
during the manufacturing process are automatically detected, mirror analysis can be performed
much faster. So we developed the detection method of shéfieeetlice through 3D data on
computer graphics [27]. An additional advantages of the 3D data is that the object will not
receive the further damage.

5.3.2 Application Result

We performed the shapeftiirence visualization to the five individual mirrors. They are distin-
guished by the following name: Dchoh01, Dchoh02, Dhebo02-63, Dnisik-75 and Dsamida08
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Figure 5.5: Shape fierence of inverse function of the elliptic integral of the first kind



4 kinds of patterns
and 1 inscription
on concentric circles

1 pattern
on a concentric circle|
and

immortal and beast
pattern inside

triangular cross section|

Figure 5.6: Ancient Chinese bronze mirror

(Figure 5.7).

The shape dierences between DsamidaO8 to the other bronze mirrors were observed,
because Dsamida08 was not the entire mirror, but merely a combination of the fractured parts.
So the observation of the five mirrors was possible only on the available parts of Dsamida08.

According to the algorithm in Section 5.1, Dsamida08 and the other mirrors are aligned
in the same coordinate. The corresponding points are extracted for all points in any pair of
mirrors in order to calculate theféérence value.

In our experiment, the fierence of less than@mmwas ignored. In Figure 5.8, the green,
red and blue areas indicates néfelience, convex shapedidirence and concave shaped dif-
ference, respectively. Remark that the first comparison result contained the gitdrainties.
Global diference is the result of mirror bending, partial sinking, or internal cracking. It is
caused by time and usage, and is unrelated to the sibling relationship. It should be rejected.

Areas containing the global filerence were realigned to visualize the locdfatence.

Local differences after the realignment and those found in the first comparison result were
integrated and shown in Figure 5.9.

Figure 5.10 demonstrates the deteriorating pattern of the mold upon usages. Convex shape
on a mirror corresponds to the concave part of the mold. This part tends to be worn out when
the mold is used; therefore, corresponding part of latter manufactured mirrors will be more
convex.

We further observed the localftérence inside the circles in Figure 5.9. Figures 5.11, 5.12
and 5.13 respectively show the cross sections of the part marked by the yellow, blue and white
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Base Mirror

(1) Dchoh01
from Chohoji-Minamihara

(1) Dchoh02
from Chohoji-Minamihara

(4) Dnisik-75

(3) Dhebo02-63
from Nishikurumazuka )

\_ from Hebosozuka

(5) Dsamida08
from Samida-Takarazuka
(Medley of Pieces)

Check Mirror

Figure 5.7: ldentical mirrors. DsamidaO8 is set as a check mirror, and the other mirrors are
set as its base mirrors.
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(1)Compared with Dchoh01 (2)Compared with Dchoh02
(3)Compared with Dhebo02-63 (4)Compared with Dnisik-75

Figure 5.8: Shape fierences of Dsamida08 compared to the rest four mirrors. Glofiat-di
ences are included in this stage.

47



(1)Compared with Dchoh01 (2)Compared with Dchoh02
(3)Compared with Dhebo02-63 (4)Compared with Dnisik-75

Figure 5.9: Local Shapefiierences to Dsamida08 without globaffdrences.
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continue to be used...

less distinct

Figure 5.10: The deteriorating pattern of the mold by continuous usage.

[ tirror

circles in five mirrors. In Figure 5.11, the arrowed indicated the shape caused by the chipped
mold. By observing the growth of this chip on Dchoh01, Dnisik-75 and Dsamida08, the order
of manufacturation could be found as Dsamida08, DchohO1 and Dnisik-75. In Figure 5.12,
the concave shape indicated by the arrow implied the manufacturing order as Dsamida08,
Dchoh02, Dchoh01, Dhebo02-63 and Dnisik-75. In the same manner, the manufacturing
order according to the local fiierence in Figure 5.13 was evaluated and the result was con-
sistent with those from Figures 5.11 and 5.12. Thus, we conclude that Dsamida08, Dchoh02,
Dchoh01, Dhebo02-63 and Dnisik-75 were made in this order.
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(1)Dchoh01

(2)Dchoh02

(3)Dhebo02-63

(4)Dnisik-75

(5)Dsamida08

Figure 5.11: Cross section of the mirror inside the yellow circle in Figure 5.9
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(1)Dchoh01

v

(2)Dchoh02

v

(3)Dhebo02-63

7 ot Ty, o
L P ﬁ1-_':-_.!?' T T

(4)Dnisik-75

v

(5)Dsamida08

Figure 5.12: Cross section of each mirror inside the purple circle in Figure 5.9
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(1)Dchoh01

(2)Dchoh02

v

(3)Dhebo02-63

(4)Dnisik-75

(5)Dsamida08

Figure 5.13: Cross section of each mirror inside the white circle in Figure 5.9
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Chapter 6

Evaluation

In Chapter 4, the shape parameters are estimated. The estimatffacttecby various kinds

of error. measurement error, initial registration error and error in initially input parameter. In
this chapter, we measure the estimation errors in each process, and evaluate the accuracy of
the estimated parameters.

6.1 Measurement Error of 3D Data

The first error in the estimation is the result of the measurement error from the range finder.
In our study, MINOLTA VIVID 900 laser range finder was used to measure the actual objects.
It has three kinds of lens: tele, middle and wide. Tele lens gives highly accurate data, but its
effective scanning area is narrow (%010 cn? at 1 m from the laser range finder). Opposite

to tele lens, wide lens can scan much wide area (ilm at 3n¥), but has lower accuracy.
Middle lens has the intermediate property of tele and wide lens.

The measurement noise depends on lots of factors. In this study, we investigate the rela-
tionship of measurement noise to the pose of the actual object. In this experiment, the data
of the white and lusterless plane at th&@lient poses were obtained. The system is shown in
Figure 6.1. The white board was set on the turn table. The pose was changed by rotating and
translating the turn table. We dendtandd by the distance from the white board to the laser
range finder and the angle between the normal of white board to the ray of the laser. That is,
the pose was controlled byandé. Five data were obtained at each pose. Principal component
analysis (PCA) was applied to analyze the point set. The plane containing the point set was
estimated and the standard deviation of plane data was obtained. The change of the standard
deviation of the plane data according to each type of lens are shown in Figures 6.2, 6.3 and
6.4.
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White Board

Laser Range
Finder

Turn Table

Figure 6.1: System to evaluate measurement error. The white board is set on the turn table,
and can be rotated around the vertical axis. In this system, the incident angle and the distance
from the white board to the laser range finder are changeable
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Figure 6.2: Graph showing the relationship between incident angle and standard deviation,
when tele lens was applied. Each curve showed the dat&etatit distance from white board

to the finder. Standard deviation of the data is approximatdpwithin Imdistance. The
abnormal peaks are caused by the condition of white board, such as dust.
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Figure 6.3: Graph showing the relationship between incident angle and standard deviation,
when middle lens was applied. Each curve showed the datdéfatatit distance from white
board to the finder. Similar change of the standard deviation are observed withdisance.
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Figure 6.4: Graph showing the relationship between incident angle and standard deviation,
when wide lens was applied. Each curve showed the datdfatatit distance from white
board to the finder. The data within 0Ybcould not be obtained, and there were large amount

of noise when the distance exceedet.2
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6.2 Accuracy of Shape Parameter

In this experiment, we investigated the accuracy of estimated parameter. Parameters were
manually defined to construct the ideal data. The estimated parameters were referred as the
true parameters. Noise with the standard deviation observed in the previous section was added
to the ideal data. We then estimated the parameters from the noisy data. The initial parameters
in the estimation were subtly fierent than the true parameters. Since the correct parameters
are known, the accuracy of the estimation can be measured.

In this experiment, we use the model of revolution surface of catenary. The shape parame-
ters were set ag = 0.05,b = 0.02 and = 1.00. Gaussian noise was added into the ideal data
to form the noisy data.

6.2.1 Influence of Measurement Error

We investigated the influence of the measurement noise. Noise \iighatit standard devia-

tion was added into the ideal data. Standard deviation used in this experiment are 0.01, 0.1,
1.0, 10.0. Ten noisy data were created for each standard deviation. These noisy data were
regarded as the data measured in practice. The initial pose, position and parameter of the
virtual “measured data” were the same as the one of the computed (ideal) data. The number
of iteration was set at 15. Figures 6.5, 6.6 and 6.7 show the maximum and the minimum of
estimated parametex, b andl, respectively.

Effect of the noise standard deviation to the estimated parameters were similar in all pa-
rameters. The larger the standard deviation was, the larger range of the maximum and mini-
mum parameter was. Noise added in this experiment was far higher than the observed noise.
Even though noise with the standard deviation of 0.01 was added, the error in our results was
low. In previous section, the maximum standard deviation of the measurement noise in Ml-
NOLTA VIVID 900 was detected at less than 0.002, the result indicated the robustness of our
estimation method against the sensor noise.

6.2.2 Influence of Initial Registration

In this section, we investigate the influence of the initial pose and position. In the same manner
as the previous section, we added the noise to the ideal data. The noisy data were regarded
as the data obtained in practice. The standard deviation of the ngjiseas set to 0.0004
according to the observed measurement error in our previous experiment. The initial value of
every parameter was set at the true one. The coordinate of the model is shown in Figure 6.8
Effects of translation and rotation were investigated separately. For translation, noisy data
were translated 0.01, 0.02 and 0f@&long X or z axis, respectively. For rotation, three noisy
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Figure 6.5: The maximum and the minimum of estimated paranaeter
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Figure 6.8: Model used in the experiment and its 3D coordinate.
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0.01malong x axis

0.02malong x axis

0.03malong x axis

a=0.0500 a=0.0483 a=0.0478
b=0.0188 b=0.0188 b=0.0192
| =0.9685 | =0.9464 | =1.0072
0.01malong z axis 0.02malong z axis 0.03malong z axis
a=0.0458 a=0.0457 a=0.0451
b =0.0204 b=0.0218 b=0.0219
| =0.9474 [ =0.8909 | =0.9004
10 degrees around x axis 20 degrees around x axis 30 degrees around X axis
a=0.0493 a=0.0492 a=0.0471
b=0.0197 b =0.0208 b =0.0208
| =0.9403 | =0.9403 | =0.9624

Table 6.1: Estimation result for shape parameters according to initial registration error.

data were rotated 10, 20 and 30 degrees around x axis. Since revolutional surface of catenary
has the x, y and z symmetry, these translation and rotation wéieient for the evaluation.
Results of estimation were shown in Table 6.1. In the table, “@Gilong x axis” and “10
degrees around x axis” mean the noisy data is translatedn@#ang x axis and rotated 10
degrees around x axis, respectively.

Z axis for this surface is the direction of expandiantracting. The manipulation on z
axis results in the ambiguity in the parameters. In contrast, manipulation on x axis is not
directly related to the expansion and contraction. The translation in z axis simultaneously
affects the pogposition and parameters. As the result indicated, 15 iteration was fhiciesot
for good estimation for the translation on z axis, while it waffisient for the translation
on and rotation around x axis. 45 iteration was required for the good estimation for model
undergone z axis translation.

6.2.3 Influence of Initial Parameter

We investigate the influence of initial value for the estimation. The virtual “measured data”
were made in the same manner as the previous sections, and the standard deviation of the
noise ¢r) was set to 0.0004. The initial pose and position of the “measured data” were the
same as the one of the ideal datafeEt of initial value of each parameter was studied, so
only one parameter had its initial value changed from the true value at a time. The amount of
change wag, wherea varied between parameter. Table 6.2 shows the estimation result.
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a=0.07 a=0.06 a=0.04 a=0.03
a=0.0535 a=0.0509 a=0.0491 a=0.0482
b=0.0210 b=0.0224 b=0.0185 b=0.0184
| =0.9703 | =0.9824 | =0.9487 | =0.9061

b=0.03 b=0.025 b=0.015 b=0.01
a=0.0560 a=0.0560 a=0.0440 a=0.0440
b =0.0209 b =0.0204 b=0.0196 b=0.0191
| =0.8709 [ =0.8713  =1.1202 | =0.8710

[=1.30 [=1.15 | =0.85 [=0.70
a=0.0483 a=0.0474 a=0.0517 a=0.0440
b=0.0282 b=0.0193 b=0.0216 b=0.0224
| =1.0261 | =1.0268 | =0.9752 | =0.9736

Table 6.2: Estimating result for noisy data when initial parameters was not correctly set.

The expression above each table depicts the initial input value for the parameter. For
example, & = 0.07” means parameteris initially set to 0.07, while the other parameters
were set at its true value.

Table 6.2 indicated that thefect of incorrect initial value on each parameter was not
equal. In this experiment, parametegave the highestféect.
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed the estimation method for the shape parameters to the object. Itis
required that the shape could be represented by some numerical formula. We first introduced
the various strategies of the registration methods, and describe their advantage and disadvan-
tage. We selected the simultaneous and point-based strategies as our base method because
we extend the registration of pose and position parameters in conventional registration to the
registration of pose, position and shape parameter.

Kd-tree is applied in the registration algorithm. To improve the speed of the registration,
we develop the novel method for pruning trees in searching. Experiments showed that the
number of the visited leaf was greatly reduced and indicated the decreasing computation cost.

From the estimated shape parameters, the ideal 3D model of the object can be constructed.
Difference to the ideal model was visualized. In this thesiferdince of the “mathematical
models” were investigated. Then we described the application of fferafice visualization
in archaeology.

Finally, we evaluated the estimating accuracy of the shape parameter. The experiment
showed that the accuracy of our parameter estimation is ndfestted by the measurement
noise as by the initial pose, position and parameter.

We plan to apply our proposed technique to the geometrical field. For example, we would
like to convert the measured model into the combination of CAD primitive models. The mea-
sured data is segmented to the combination of CAD primitives, and the model parameters of
each primitive are estimated. The model then be represented by groups of primitive parameter
instead of point cloud, so the data for a model is greatly reduced. The advantage is more
distinct when the model contains of the large amount of points. Normal processing in CG is
unable to deal with such large data. Compared to point cloud, CAD primitives and parameters
are much more smaller and can kiEeetively handle. Thus, the research of fitting objects to
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CAD primitive paves the way for increasing versatility of “Modeling from Reality”.
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Appendix A

Quaternion for Rotation

In this Appendix, we explain the quaternion for the representation of the object rotation in
detail. First we discuss the convenience of the quaternion. Next, we show its basic operations
and the relationship between quaternion and rotation. Finally, we deriveffbeedtial of the

3 x 3 rotation matrix with respect to the quaternion parameters.

A.1 Convenient Quaternion Representation for Rotation

When the poin® is moved to its corresponding poigit in 3D space, we can compute the
rotation matrixR and translation vectot as follows.

RX+T=Y (A1)

This equation is linear, but the rotation matfxhas the non-linear constraints on the 9 ele-
ments because the rotation in 3D space is represented by only 3 independent variables.

Some methods have been developed in order to solve this constraint problem. One of them
is the quaternion representation. The quaternion is composed of one scaler and three-element
vector part according to the following equation:

q=(1,9), (A.2)
where T = (u,v,w)

Intuitively speaking, this representation means the rotation in proportion to the magnitude of
saround the vecton.
The advantages of this rotational representation are:

e Constraint is simplified by normalizing four parameters of the quaternion.

66



e Quaternion operations can be formulated from the ones of the matrix and vector.
e Inverse rotation quaternion is easily obtained by negating the scalar part.

e Quaternion representation is easily converted into axis-angle representation.

e Rotation matrix is easily obtained from the quaternion.

e Rotation is in the closed form through the quaternion when the corresponding between
3D point sets is taken.

e The diferential of the rotation matrix can be solved with respect to quaternion param-
eters, so the quaternion is suitable to the iterative gradient search for 3D alignment
solution.

A.2 Quaternion Operation

In this section, we define the basic operations of the quaternion. The sfieredce and
product are respectively defined according to the following equations:

G+ =M +M25+ ) (A.3)
h-G=(m-M,s - %) (A.4)
Qi = (S1M + SN + M X T, 1% — My - T3) (A.5)

where q=(,5), &= %)
Consider the following calculation:
af = (0,8 +7 - T) (A6)
where g=(M,s), o =(-H,9).
Rearrange the above equation to:

(Q9)

The right handed side of the above equatign= (6), 1)) is defined as identity quaternion
since it satisfies the following relation.

aqiq=dq =0q. (A.8)
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Hence, the inverse quaternion@fg-,) is defined as:

1 q
. — A.9
e A9)
where g=(A,s) ¢ =(-0.9)
and the norm and the absolute of g are respectively as:
lal=s+7 -7 (A.10)
lal = il (A.11)

The quaternion normalization is division by its absolute. Normalized quaternion is defined as
a unit quaternion.

A.3 Rotation Representation by Quaternion

Consider the case when the poigtis rotated top’ by a unit quaterniorg = (1,s). In
quaternion space, the rotation is calculated as follows.

AN
0}-q O}q (A12)

[B.0]" represents the vectds in the quaternion space. Defime= (T, s), which implies
g = (=1, s). The above equation can then be rewritten as follows.
[? l_[ SP+2sAxP+(0-P)A }

- 0

; (A.13)

By replacingp, p’ and® with (x,y,2), (X, Y, Z) and (i, v, w), respectively, the vector part of
the above equation is:

X S+ -w -V 2(uv-sw 2(sv+ uw) X
y |= 2(sw+ uv) F+ V- -w 2(vw— su) y (A.14)
z 2(uw - sV 2(su+ vw) S+wW -V -2 || z

In geometrical aspect, the relationship betw&érand? is according to the following
equation (See Figure A.1 for detail of calculations)

P :(—Fs.m)ﬁﬁ+(—rs_(3.ﬁa)ﬁa)cos¢+%m_mmﬁmmqs, (A15)
X
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mxp

——| p—(p-m)-m|sin@
|mxp|

Figure A.1: Rotation for quaternion representation.

. . . -
where™ and¢ are a normalized rotation axis and the angle betwpeand p’ aroundm,

respectively.
Because
M Pl =B - (B -™m, (A.16)
the above equation is transformed into:
P = (B - T+ (B - (B - WM cose + T x P sing (A17)

By replacing B, ? andm with (x,y,2), (X,y,Z) and fn,, my, M), respectively, the vector
part of the above equation is:

X/

y’ =

z

(1-cosg)m? +cosp (1 cosp)mum, — (sing)m, (1—cosp)mmy + (sing)m, || x
(1~ cosg)mamy + (sing)m, (1 -cosg)m?+cosp (- cosp)mm, - (sing)my || y
(1~ cosg)mmy — (sing)my (1 - cosg)mm, + (sing)my (1 - cosp)m,” + cos¢ z

(A.18)
Becausej is the unit quaternion,

S+ +vV+wW=1 (A.19)
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Applying the above constraint, we compare the rotation matrix in equation (A.14) with the
one in equation (A.18), and obtain the following relationship,

_ .
= mysing

in @
Sins
eI (A.20)
msin$
¢
= COSE

nw = < c
I

Hence, in order to rotate the poipt for ¢ radian around the normalized ax¥ the rotation
guaternion is set to

0= (sin§),cos3). (r.21)

then the quaternion calculation is performed like this.

™m|_
q[ 0 ]q (A.22)

_ (—(sin® ¢
where = (—(sin 2)ﬁ,cosz)

A.4 Jacobian of Rotation Matrix with Respect to Quater-
nions

The Jacobian of rotation matrix with respect to quaternion parameters is easier calculated with
some special condition. In this section, the conditions are formulated step by step to acquire
the Jacobian.
Let R(qy) be the rotation matrix of a unit (hormalized) quaternggnEquation (A.1) can
be rewritten as follows.
P, =RE@B+T (A.23)

In the derivative of the above equation with respect to quaternion parameters, we consider
only the first term in the because the derivatives of second term is zero.

As the first step of this dlierential process, we should remove the normalization constraint
of a quaternion. That is, we separate the normalization operation from the rotation matrix
R(qu)) as follows.

1
R(qu) = mR(Q) (A.24)

In R(q), quaternion parameters do not have to be normalized because the multiplication of
R(q) by ﬁ is the normalization operation. As mentioned earlier, it is convenient when ob-
taining the derivative under the special condition.
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The rotation from a 3D poinp to? according to a unit quaterniag, of rotation can be
represented by the functidnwhich takes the two argumen, and B as follows.

—

p’ R(qu)B
f (0w, B) (A.25)

Let the unit quaterniony,,,; be the optimum quaternion in the current iteration of conjugate
gradient method. The optimum quaternion in the subsequent iteration is estimated according

to: B
af(qu’ )
" (A.26)

Quopt

where "”(ga’_m . is "”(ga’_’” at .

It is difficult to obtain the dferential value at arbitrary quaternions. However, we can
easily acquire the éfierential value at an identity quaternign Hence, we first rotate in
the way thatyy,, is transformed into the identity quaterniap, That is, Equation (A.25) can
be rewritten as:

R(quopt)ﬁ = f(a, R(quopt)ﬁ)' (A.27)

By the above equation, the derivative at the arbitrary quaternion is transformed into the deriva-
tive at the identity quaternion:

of(qu, R
(G, R(Ouop) B) ’ (A.28)
aq
i
Let R(GQuop) B = Popt- Then the term in (A.28) can be rewritten as follows.
f —_—>
6 (qU’ popt) (A29)
aq
8]
From the above equation and Equation (A.25),
af(QU,m) _ a(R(QU)p_W)t)
(9q i aq i
_ OR@)| — JPop:
= aq . Popt + R(Qu)[ aq .
R | —
= A.
9 g Popt (A.30)
because R
OPopt
R(qu)( 5 q]:[o 00 0] (A:31)
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Replace Equation (A.24) into Equation (A.30).

OR(qu) 0 ( 1 )
.\ = =R
aa 1~ oaliai @),
J(1 1 0
= —|—=| R@)+{— ]| =R ‘)
aq(nqu)ql @) (uq.n)(aq @)
Since
SO ST
Equation (A.32) is transformed into:
oR@)| _ 9 ( 1 ) . 9R(@)
aq g, aq\lidl/l, aq g

(A.32)

(A.33)

From the definition of the quaternian= (u v w s, the first term in the right handed

side of Equation (A.33) can be rewritten as:

saliall, = liail"oa

( 1 ) [_ (llal)y”— lialy” )" (|IQI|)’]
lla 112 du v aw as

J

[ -2u —2v -2w -2s | 1
|

=000 -2]
0 0o0][oo0o0]f0O0O]|[-2 0
= ||oooffooollooof 0 -2
0 o0oof[ooo]fooofo o

0

0

-2
(A.34)

By replacingR(q) with Equation (A.14) the second term in the right handed side of Equation

(A.33) can be evaluated as follows.

R@| _ [ 20 ®o ®o ® |
6q a ou ov ow as a
2u 2v 2w -2v 2u 2s -2w -2s 2u
= v -2u -2s 2u 2v 2w l 2s -2w 2
2w 2s  -2u -2s 2w -2V 2u v 2w
0 0 O 0O 0 2 0 -2 0 2 00
= 0 0 -2 0O 0 O lz 0O O 0 2 0
02 O -2 00 0O 0 O 0 0 2

2s 2w 2V
2w 2s -2u
-2w  2u 2s
G
(A.35)



From Equation (A.34) and (A.35), the solution of Equation (A.33) can be found as:

R 00 O 0 0 2][o -2 0][0 0 O
% ={lo o 2|l 0o oofl2 o oflo o0 o0 (A.36)
a 02 0|l-20o0fl0 o oflo oo

Note that the scaler term of the quaternion disappears in case that the derivative is evaluated
atq,. To calculate the (negative) gradient, we have to estimate only the 3 parameters of its
vector part.

By replacing Equation A.36 into Equation (A.30), we have the following relationship:
differential as follows.

9 (Gu, R(Guopd) B)

9 a
_ 0f(qu. Popd)
aq A
_ OR(Q)| =
- aq a opt
[0 0 o[ 0O 0 2 0 -2 0 0 0O X
= 0 0 -2 0O 0O 2 0 O 0 0O ly
10 2 O -2 00 0 0 O 0 0O z
[0 0 © X 0 0 2 0 -2 0 X 0 0O
= 0 0 -2 y [ 0 O O} 2 0 O Iy 0 0O y
10 2 O z -2 00 z 0O 0 O z 0 0O z
0 2Z5pt —2Yopt O
= —2Zpt 0 2%pt 0 |, (A.37)
2Yopt  —2Xopt 0 0

Xopt

—_—
where  Popt = | Yopt
Zopt

When ignored the last column, thex43 matrix in the right handed side of Equation (A.37)
is the skew-symmetric matrix (iio_gt multiplied by —2. Skew-symmetric matrix is a useful
expression, for example, for a cross product of two vectors:

. ayb, — asby 0 -a g by .
Axb=| ab-ba |=| & 0 -a || b |=C(@E)b, (A.38)
ayby — byay —a, a 0 b,
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ay by
where d=| a D= by
a, b,

Considering-C(@) = C(@)", Equation (A.37) is finally transformed into:

A (0lu, R(Guopy) B)

e = 2C(Popy) " - (A.39)

a

After obtaining the dferential value afy, that is, the rotation axisq, = (1u, Av, Aw, 0)(U?+
v? + W2 = 1) in quaternion representation (negative gradient of the quaternion’s vector part in
line minimization process), we need the rotation amount around the determined axis. If the
expected rotation quaternion is denotedyhyin the following equation

q =q +Aqy = (Au, AV, Aw, 1), (A.40)
the scaler pant is calculated by normalization of the above quaternion.
gs=2%+1 (A.41)

Then we can obtain the rotation amowgrftom the above equation and the equation (A.21) as
follows.

¢ = 2arcco:{/12{r 1) (A.42)
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Appendix B

Derivation of Partial Derivatives

In this chapter, we show the derivation of partial derivatives of the numerical formula repre-
sented by each mathematical models.

B.1 Revolution Surface of Catenary

B.1.1 Numerical Formula

X(u,v) = (I¢(v) cosu, [g(v) sinu, [y (v)), (B.1)

where ¢(v) = bcos ;, z//(v)_f w/l——smh‘

parameter a b,

B.1.2 Preliminary

From g
sinhx = —2e , (B.2)
the following equation is obtained.
sinirix = log(x + VX2 + 1) (B.3)
ﬁ(sinh’lx) -1 (B.4)
ox 2 +1
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B.1.3 Partial Derivative

Partial Derivative with respect to Parametera

oX

7 ((Icosu)— (Ismu)a¢ lﬁ)

oa

where

o ( b2 1\,] b2 (—a—lzsinh‘lg)

oa - B2 g1
2,/1—¥smh :

Partial Derivative with respect to Parameterb

oX ¢ aw
b ((I cosu) (Ismu)ab ab)
where
) v
ab = oSy

=2sinhty
W [ 1_Esinh12]—
a)o

b J1- Zsinfrty

I
|
|
0,
>
3
|

Partial Derivative with respect to Parameter|

(29_)'( = (¢(v) cosu, (V) sinu, (V)
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(B.8)
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(B.11)



B.2 Dini's Surface

B.2.1 Numerical Formula
|cost |sint
X(S,t) = Fshs, Tshs,l(s—tanhs-i' bt) s (812)

parameter b |
B.2.2 Partial Derivative
Partial Derivative with respectto b

oxX

5 = (0,0, 1t) (B.13)

Partial Derivative with respect to |

88_>I( = (%sﬁs’ %,s— tanhs + bt|, (B.14)
B.3 Kuen’s Surface
B.3.1 Numerical Formula
X(u,v) =
|2(coslu:uu2:2213 va’|2(5m;;52(;?§;3 va,l(log(tan\—zl) + 1+2§§ssvi_n2v)) (B.15)
parameter |

Partial Derivative with respect to |

oX

al

2(cosu + usinu) sinv 2(sinu — ucosu) sinv % 2 cosv
- , - ,Iog(tan—)+—_
1 + u2sirfv 1 + u2sirfv 1 + u2sirfv

5 ) (B.16)

B.4 Inverse Function of the Elliptic Integral of the First Kind

B.4.1 Numerical Formula
(B.17)

¢ dt
O
— SI

parameter |

7



Partial Derivative with respect to |

(B.18)

%_(fpkfp—dt )
ol " Jo V1 Kesintt
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