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ABSTRACT

Recently, the research on processing 3D objects (preservation, restoration and analysis) has

been greatly advanced thanks to the affordable price of the accurate laser range finder. So

far, an object shape was represented by 2D information (E.g. drawings and picture) or ap-

proximated 3D information (E.g. combination of primitive shapes for 3D shape modeling in

CADs). However, 2D and approximated representation provide insufficient accurate informa-

tion for the 3D shape analysis of the object.

Our objects of interest are 3D data of cultural assets obtained through a laser range finder.

The 3D data reconstruction method Ikeuchi laboratory developed was adopted. In this thesis,

we propose the method for an object shape restoration and analysis. Our proposed method

is the extension of simultaneous registration of 3D data. In conventional simultaneous regis-

tration, the errors of 7-parameter pose and position are minimized. In our error function, We

assume that the parametric function of the ideal object is available, and the errors are mini-

mized on shape parameters as well. We assume that the parametric function of the ideal object

is available. The shape of the actual object can be restored by our proposed error function.

This thesis also describes the application of aligning method to visualize difference between

similar objects.

論文要旨

近年、高精度な三次元計測が可能なレーザーレンジセンサーの入手が容易になったこ

とにより、三次元データを用いた物体形状の保存、復元や修復、分析などの研究が可能

となった。これまで物体形状は、絵や写真などの二次元的な情報や、三次元モデリング

用の CADによるプリミティブ形状の組み合わせによる近似的な三次元情報としてしか

表現ができなかった。しかしながらこれらの表現形態は、物体形状を三次元的に分析す

るには不適切である。

我々の研究室では、レーザーレンジセンサーから得られた三次元データにより、文化

財を対象とした実物体形状をコンピュータ上で再構成する手法を開発している。本論文

では、これらの手法に基づいて作られた物体の三次元データを利用し、物体形状の復元、

分析手法を提案する。提案する手法は、三次元データ間の同時位置合わせを拡張したも

のである。三次元画像同士の同時位置合わせ問題は位置姿勢の 7パラメタによる誤差関

数の最小化問題として帰着されるが、計測された三次元形状がパラメタ関数として表さ

れる場合、位置姿勢にこれらの形状パラメタを加えた誤差関数を設定することにより、

物体形状の復元が可能となる。また、類似物体間の三次元データの位置合わせにより、

物体形状の差異を可視化することが可能となる。本稿では、これらの手法と複数の文化

財への適用例を示す。
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Chapter 1

Introduction

Various techniques on the computer graphics have been widely applied for the entertainment

purpose. Recently, CG research on actual object modeling has gained a wide interest thanks

to the accurately 3D data from the laser range finder. The acquired data are undergone reg-

istration and merging to form the highly accurate model[1] [2] [3]. The accurate models are

desirable for various application including industrial investigation. Particularly in the studies

of the precious assets, for example, a cultural treasure, actual object is often unavailable due

to its fragibility.

In the shape analysis of cultural assets, the pictures from multiple viewpoints are used in

order to analyze the shape difference between objects. Large constructions, such as building,

are restored by the combination of the primitive shapes for 3D shape modeling in CADs. Such

2D or approximated 3D representations does not provide the accurate information. Better

representation for actual objects is available through the digital data in the computer graphics.

The main objectives for this study is to measure the accuracy of “mathematical mod-

els”. The mathematical model is the plaster model imitating 3D surface of the predefined

numerical formula. The numerical formula contains parameters which affect the shape of 3D

surface. The models used in our experiment were made in Germany at the beginning of the

20th century, and they are currently preserved at Graduate School of Mathematical Sciences,

University of Tokyo. It is acclaimed that they accurately represent numerical calculation, Sup-

port documentation to this claim is scare, and there is no well-known method to measure the

accuracy of the model.

We investigated the accuracy of these mathematical models. However, parameters in the

numerical formula of the particular model are unknown. It is necessary to estimate the param-

eters from the model reconstructed by the data of the laser range sensor, and to compare the

measured data with the computed data under the estimated parameter.

6



In order to put the pair of 3D data into the same coordinate and to precisely adjust their

pose and position, registration (alignment) method is generally used. In registration, 3D data

are translated and/or rotated to minimize the distance between the pair of 3D data. There

are seven parameters in this operation. three parameters accounts for the translation and the

other four are the quaternion representation for rotation. But to measure the accuracy of the

mathematical models, parameters in the formula, which have influence on the model shape,

have to be estimated in addition to the seven parameters. In our method, all parameters are

simultaneously estimated by minimizing the extended error function which includes the shape

parameters as well as seven motion parameters.

Nishino and Ikeuchi [4] developed the simultaneous registration method for seven param-

eters. In this thesis, we extend their registration method to align the 3D data according to

the error function of arbitrary parameters. In case of the registration of mathematical models,

the parameter depending on their shape is adjusted in the same time as the pose and position

parameters. After the error function converges, the measured and estimated data is exactly fit.

We can then observe and visualize the differences between the actual model and the estimated

model.

In Chapter 2, introduce various registration strategies and describe in detail the registra-

tion method developed by Nishino and Ikeuchi. In order to improve the registration speech,

more efficient kd-tree search is necessary. BOT test is added into the convention BOB test to

determine the searching space. Details of classical and our proposed kd-tree search are found

in Chapter 3. In Chapter 4, we describe the extended registration formulation. In conventional

registration, models are fitted according to the pose and position parameter. In the extended

registration, the fitting parameters are not limited to pose and position ones. The result of

extended registration is applied to determine the shape difference between the actual and ideal

objects. Chapter 5 describes the calculation of the shape difference, and its application in

the archaeology. In Chapter 6, we evaluate the accuracy of the extended registration method.

Our extended registration is studied for its accuracy in estimating parameters according to the

measurement error, the initial registration error and the initial input parameters. The thesis is

closed with the discussion and conclusion in Chapter 7.
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Chapter 2

Registration of 3D Data

In this chapter, we survey the algorithms for registration of 3D data based on Iterative Closest

Point algorithm (ICP). ICP algorithm is widely applied in registration method. Registration

methods are developed according to various demanding. We classify the algorithms according

to the registration order, matching unit, and error metric.

Our main objective is to estimate shape parameters. More detail is provided for the strategy

appropriate for this purpose.

2.1 Registration Strategies

ICP algorithm is widely applied to solve the problem of registration of 3D data [5] [6] [7].

In this algorithm, correspondences for match point between two 3D data are searched, sum

of error between correspondences is minimized in order to match two data into the same

coordinate, pose and position. The minimization is iterated until the sum of error converges.

In the registration methods based on ICP algorithm, the following topics need to be considered.

• registration order

• matching unit

• error metric

2.1.1 Registration Order

In the registration of multiple sets of 3D data, the order of registering the data set affects the

convergence of the final result. In the direct algorithm, the alignment is repetitively performed

until all data sets were aligned [8]. The sequential strategy has low computation cost because

8



Alignment Failure!

Figure 2.1: Illustration of registration failure in sequential strategy. The pair of red and green

data are first aligned. Green and blue data are next aligned. The data are sequentially aligned.

The final alignment is between orange and black data. However, the accumulated error pre-

vented the black and red data from the correct alignment.

only two data sets are handled per one registration. However, it is susceptible to aligning

failure because the alignment errors are accumulated in each step, which leads to the wrong

convergence (Figure 2.1).

In contrast to sequential strategy, the simultaneous strategy aligns all the data at once.

More accurate registration is acquired at the cost of higher computing load. The registration

error is distributed instead of conglomerated to same data sets.

2.1.2 Matching Unit

In calculating the difference between data sets, we need to determine the corresponding of the

point on each data set. [9] [10] use the geometric property of 3D data. This strategy works

well on the assumption that one-to-one correspondence can be obtained for all feature points

and the correspondences are unchanged. Accurate registration cannot be achieved, otherwise.

More accurate registration is feasible by using 3D point because more plausible corre-

spondences can be selected again and again until the data are converged [5] [11]. This strategy

provides a number of correspondence (Figure 2.2).

Corresponding point is usually the nearest neighbor point in 3D space. Besides nearest

neighbor search, Normal-shooting [12] is widely applied to find correspondences because of

its fast convergence, but the result is less accurate. Projection correspondence is another pop-

ular method. It depends on the projection direction, but much faster convergence is achieved

9
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Figure 2.2: Correspondence using 3D point. Solid and dotted line depict the 3D data sets. Red

line shows the correspondence between the 3D data on solid and dotted line. The solid line is

then aligned to the dotted one according to the correspondence between the data.
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by the rendering hardware [13] [14].

2.1.3 Error Metric

The registration solution gives the minimum sum of error between corresponding points. Reg-

istration results greatly relied on how the error function is defined. The error is usually defined

by the distance between corresponding points. The distance may be calculated between a point

and its nearest neighbor point on the other surface [12] [14]. Additional information, such as

color [15], can be included into the function.

2.1.4 Overall

We need to align 3D data as accurately as possible in order to estimate shape parameter and

analyze their shape; that is, the accurate convergence is taken precedence over the quick one.

As shown in [16], it is best to regard the closest point as the corresponding point, because this

strategy leads to the precise 3D data convergence. Noise of 3D data has to be considered in

order to achieve the accurate correspondence between the data. Data obtained by the laser

range sensor are noisy, features such as normal cannot be estimated from the point cloud

with acceptable reliability. To cope with erroneous measurement, the simultaneous and point-

based strategies were applied and the point-to-point distance is defined as error metric. Further

details of our selected strategies are explained in the following section.

2.2 Robust Simultaneous Registration

In this study, we adopted the alignment method proposed by Nishino and Ikeuchi [4]. In

their method, the nearest neighbor points are aligned in the way that the sum of point-to-point

distance is minimized. the above section. The pseudo programming codes are as follows.

11



SimultaneousAlignment

input: MeasuredData D= {di |i = 0,1, ..., n}
input: InitialPosition P= {pi = (Ri , ti)|i = 0,1, ..., n}
output: AlignedPosition P′ = {p′ i = (R′ i , t′ i)|i = 0,1, ..., n}
local: KDTree= {kdti |i = 0,1, ..., n}

repeat

KDTree← MakeKDTree(P,D)

for all i = 0,1, ..., n do

KDTree′ ← KDTree− {kdti}
p′ i ← MinimizeErrorFunction(pi ,di ,KDTree′)

end for

P← ChangePosition(P′,P)

until ErrorFunctionConverged

P′ ← P

We denotedi , pi andp′ i (i = 0,1, ..., n) respectively by the set of 3D points in theith range

image, the initial position matrix ofdi in each iteration and the motion matrix ofdi added

to pi . For everyi, every data indi as located bypi are converted to the kd-tree structure in

function MakeKDTree. FunctionMinimizeErrorFunctionestimates the motion matrix (of

di) from the initial position (pi) by aligningdi to other range images (d j ; j , i). Function

ChangePositionmultiplies the estimated motion matrix (p′ i) by the initial position matrix

(pi) on all data (D) for the initial position in the subsequence iteration. The following sections

describe the above algorithms in detail.

2.2.1 Corresponding Point Search with Kd-tree

In [4], the nearest neighbor point is regarded as the corresponding point. When multiple

measured data are presented, it is not recommended to find the correspondence in a round

robin way. The calculation amount of the round robin is very high and equals to:

∑

i

(ni ×
∑

j,i

n j), (2.1)

where ni is the number of point in theith measured data.

Effective corresponding point search is accomplished via kd-tree search [17] [18]. Kd-tree

search algorithm is the extension of the binary search in 2-D space to the arbitrary k dimen-

sional space. Kd-tree is constructed by dividing the elements at the median on the axis where

12
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Figure 2.3: Kd-tree construction and search in 2D space. Points are divided in the above order.

Leaf node has the coordinates of points, while the others have the information of the axis and

the value where the data are divided. points divided.

the elements have the highest variance (Figure 2.3). The division of median is repeated until

the number of data in each leaf node is less than the threshold. The depth of kd-tree made from

N elements is logN. By applying kd-tree search, the calculation amount of the corresponding

point search is reduced to: ∑

i

(ni ×
∑

j,i

logn j). (2.2)

Nevertheless, the classical kd-tree search is slow with heavy computing load. To speed up the

search, we propose the search with limited searching space. Further detail of kd-tree search,

both classical and our proposed kd-tree search, are described in Chapter 3.
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2.2.2 Minimization of Error Function

Direct Error Function

The alignment is performed by rotating and translating the measured data. The movement is

determined such that the total distance between the corresponding points is minimized. The

error function (f ) is thus defined as:

f (−→t ,R) =
∑

i, j

||R−→xi +
−→
t − −→y ji ||2, (2.3)

where
−→
t translation vector,

R rotation matrix,
−→xi ith point in the data set of interest,
−→y ji the corresponding point ofxi in the jth measured data.

Even though 3×3 rotation matrix is easy for the vector or matrix computation, it has non-linear

characteristic (Equation 2.4):

RRT = I and |R| = 1 (2.4)

The quaternion representation for rotation is more suitable for the error minimization. In our

error function the quaternion representation is applied. Advantages and details of quaternion

are in Appendix A.

Let R(q) be a rotation matrix corresponding to the quaternionq, Equation (2.3) is rewritten

as follows:

f (−→t ,q) = f (−→t ,R(q)) =
∑

i, j

||R(q)−→xi +
−→
t − −→y ji ||2 (2.5)

Outlier Elimination

In the direct error function, noise leads to the imprecise registration of 3D data, because the

exact correspondences between the noisy data in the initial step is unavailable. The imprecise

correspondences must be removed before registration. Thresholding is often used to eliminate

the correspondences. The threshold value can be determined as a proportion of the standard

deviationσ of the errors in the data. Typically, it is set to greater than or equal to 3. This is the

simplest, but unreliable method because the elimination is affected by the binary classification

of the threshold value. Better elimination is obtained by M-estimation, since probability dis-

tribution of the error is considered. M-estimation maximized the probability by minimizing a

function of the form

E(z) =
∑

i

ρ(zi),

14



whereρ(z) is an arbitrary function of the errorszi in the data set. The M-estimator is the

maximum-likelihood estimator of the probability distributionP equivalent toE(z).

We can find the parameters−→p that minimizeE by taking the derivative of E with respect

to −→p and setting it to 0.

∂E

∂−→p
=

∑

i

∂ρ

∂zi
· ∂zi

∂−→p
=

∑

i

w(zi)zi
∂zi

∂−→p
= 0, (2.6)

where w(z) =
1
z
∂ρ

∂z

In [4], the Lorentz function is used as the M-estimator because it yields the best result as

written in [19].

Summary on Minimization

We have reviewed the minimization of the error function for 3D data registration. The problem

is summed up to the minimization of:

E(−→p) =
1

N(M − 1)

N∑

i

M∑

j

ρ(zi j (
−→p)), (2.7)

where −→p = (−→t ,q), (2.8)

zi j (
−→p) = ||R(q)−→xi +

−→
t − −→y ji ||2, (2.9)

ρ(zi j (
−→p)) = log(1+

1
2

zi j (
−→p)

2
), (2.10)

N = the number of data point,

M = the number of measured data

The (negative) gradient of quaternion at an identity quaternionqI is obtained by Equation

(2.11).
∂(R(q)−→xi )

∂q

∣∣∣∣∣∣
qI

= 2C(−→xi )
T

(2.11)

Detail of the calculation is described in Appendix A.
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Finally, the motion gradient is acquired by the following equation.

∂zi j (
−→p)

∂−→p
= 2(R(q)−→xi +

−→
t − −→y ji )

∂(R(q)−→xi +
−→
t − −→y ji )

∂−→p

∣∣∣∣∣∣∣
qI

=


2(−→xi +

−→
t − −→y ji )

4C(−→xi )
T
(−→xi +

−→
t − −→y ji )



=


2(−→xi +

−→
t − −→y ji )

−4−→xi × (−→t − −→y ji )


(2.12)

After the actual gradient is obtained, it is conjugated to the gradient of the motion in the

previous iteration. Motion vector (−→p) is acquired by the conjugate gradient method and line

minimization with golden section search. Details of conjugate gradient method and line min-

imization with golden section search are found in Chapter 4.
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Chapter 3

Effective Search with Kd-tree

3.1 Basic Search Algorithm

Our problem is to find the nearest neighbor point for a query point,p. In tree searching

algorithm, we start at the root node and traverse down to the leaf node that contains the query

point. In Figure 3.1-(1), node A containsp, and we compute the distances fromp to the

records of A. At first glance, the nearest neighbor search is simple and fast by searching

within A; however, the searching is not enough. As shown in Figure 3.1-(2),N′ is the nearest

neighbor ofp in node A, but the true nearest neighbor isN.

It is necessary to search a neighbor node to get the correct nearest neighbor. Instead

of checking all the neighbor nodes, neighbor nodes is checked if it satisfies the following

Bounds-Overlap-Ball (BOB):

d > dB, (3.1)

whered anddB are the distance from the query point−→p to the boundary of A and B, respec-

tively.

In this method, the nearest neighbor ofp in A is searched. The distance to the nearest

neighbor is then compared with the distance ofp to the boundary of A to all the neighbor

nodes. Only nodes that are closer top thand are searched for the nearest neighbor. In Figure

3.1, node B, C and D are closer top thand, so all of them are examined. The basic algorithm

is in the following.

If a k-d tree containsn records, the depth of the tree isO(log2 n). Because of this, Fried-

man et al.[17] asserted that the computational cost of classical kd-tree search for the nearest

neighbor isO(log2 n). However, the asserted computational cost is acquired only when the

leaf node that contains the query is examined and all other branches can be pruned by the

BOB test.
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dC dD

(1)

(2)

Figure 3.1: Example of the BOB test in kd-tree search. In (1), the point in A nearest to p, is

not guaranteed to be the nearest neighbor. (2) indicates that all neighbor nodes to A must be

examined to find the correct nearest neighbor.
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BasicSearch

input: NodeN

input: QueryPointp

output: NearestNeighborPointpn

local: TemporalNeighborPointptn

if N is leaf nodethen

ptn← FindNearestNeigborPoint(N)

if ptn is nearer top thanpn then

pn← ptn

end if

else if N is leaf nodethen

if p is inside leftson(N) then

Search(leftson(N))

if d > drightson(N) then

Search(rightson(N))

end if

else if p is inside rightson(N) then

Search(rightson(N))

if d > dleftson(N) then

Search(leftson(N))

end if

end if

end if
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In the worst case, such as Figure 3.1-(2), no branch can be pruned and the computational

cost becomesO(n)1. In particular, when the distanced from the query to the nearest neighbor

is large in comparison with the distribution of records in the k-d tree, almost all boundaries

will lie inside the ball, and all must be examined.

3.2 Improving Searching Speed

As mentioned in the previous section, the computational cost of kd-tree searching may exceed

the acclaimed (log2 n) when the nearest neighbor in each leaf are far away. However, if the

high accuracy of the nearest neighbor which is very far from a query is not necessary, we can

limit the search to area near the query. The computational cost is then reduced by introducing

the Bounds-Overlap-Threshold (BOT) test to the searching algorithm.

When it is assumed that the approximated position of the nearest neighbor, further than

δ, is sufficient for effective processing, the searching ball in Figure 3.1 can be reduced to the

dashed ball in Figure 3.2. Whether node B is to be examined or not is then decided by the

following criterion.

δ > dB. (3.2)

In BOT test, when node B satisfies the above criterion and BOB test, node B can not be pruned

and needs to be examined. If node B fail to satisfy the criteria in either/both BOB or/and BOT

test node B is pruned.

In Figure 3.2, Node B and D fail in the BOT test, so they are not examined. On the other

hand, node C still need to be examined sinced > dC andδ > dC.

In case thatd ≤ δ, the algorithm is completely the same as the one without the BOT test. If

d > δ, the improved algorithm may not find the correct nearest neighbor. The distancedcorrect

from the query to the correct nearest neighbor is:

δ < dN < dcorrect ≤ d, (3.3)

wheredN is the smallest distance from the query to the boundary of node N, which is larger

thanδ.

If the maximum distance of two points in a k-d tree is 2D, the volume of the hypersphere,

which contains all points of a k-d tree, is proportional toDk. Similarly, the volume of the

hypersphere of radiusδ is proportional toδk. Therefore, if the points in a k-d tree have uni-

form distribution, our new method reduces the searching cost of the worst case fromO(n) to

O(( δD )kn).

The search algorithm with BOT test is constructed by a recursive function as shown below.

1This is a rough estimation. A more accurate estimation isO(
∑log2 n

k=0 2k)
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ImprovedSearch

input: NodeN

input: QueryPointp

output: NearestNeighborPointpn

local: TemporalNeighborPointptn

if N is leaf nodethen

ptn← FindNearestNeigborPoint(N)

if ptn is nearer top thanpn then

pn← ptn

end if

else if N is not a leaf nodethen

if p is inside leftson(N) then

Search(leftson(N))

if d > drightson(N) ∧ δ > drightson(N) then

Search(rightson(N))

end if

else if p is inside rightson(N) then

Search(rightson(N))

if d > dleftson(N) ∧ δ > dleftson(N) then

Search(leftson(N))

end if

end if

end if
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A B

C D

p

d

δ

Figure 3.2: The Bounds-Overlap-Threshold (BOT) test compares a thresholdδ and distances

dB,dC anddD. We examine nodes that satisfy both the BOB and BOT tests. In this case, we

examine C only. B and D are pruned by the BOT test.

N, p andd are the ambiguous node, query point and distance fromp to the current nearest

neighbor, respectively. The ambiguous node is being checked for the nearest neighbor of

p. Function rightson(N) and leftson(N) return right and left sons of nodeN, respectively.

drightson(N) / dleftson(N) are the distance from the query to the boundary of right/left son of

N. The difference from the classical algorithm is high lighted by gray boxes.

3.3 Application to Registration

In aligning range images, incorrect correspondences can be removed by thresholding or M-

estimation [19] [20] [21]. To compute the posture of range images, the corresponding points

farther than the threshold distance are negligible. In our experiment, based on the error dis-

tribution of the laser range finder, the thresholdδ was set to 1.0cm. Figure 3.3 shows the

distribution of the number of leaves examined during the search for a nearest neighbor point

in the aligning application.

When we use the classical searching algorithm, the number of records examined grows

according to the distance from the queries. On the other hand, when the BOT test is applied,

the number of records examined is drastically reduced in the case that the distance from the

query is larger thand (Figure 3.4). The total numbers of records examined are 1842640 and

470300 without and with the BOT test, respectively. The computational cost of searching for
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Figure 3.3: The graph shows the relationship between the distance from a query to the nearest

neighbor and the number of records examined, when the classical search algorithm is applied

to align range images.

nearest neighbor points is approximately 25.5% of the one by the classical search algorithm.
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Figure 3.4: The graph shows the between the distance from a query to the nearest neighbor

and the number of records examined, when the BOT test is applied to the searching algorithm

for aligning range images.
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Chapter 4

Extended Registration
Formulation

In this chapter, we describe the parameter estimation of 3D data. Estimated parameters in-

cludes the ones which affect their shape appearance, in addition to 7 parameters of the pose

and position of the conventional alignment.

4.1 Parameter Estimation Formulation

This chapter considers the solution to our main goal requoted here. We assume that the object

of interest can be represented by some mathematical formula. Parameters in the formula

affects the overall shape. Our goal is to estimate the parameters. By comparing the measured

data with the ideal data computed by its corresponding formula and parameter, the registration

and shape (parameter) matching problem is solved. If the pose and position can be registered

between the measured data and the ideal data, shape matching can be considered as the error

minimization problem. Moreover, 7 parameters of pose and position, and the shape parameters

in the mathematical formula are simultaneously acquired.

We extend the parameter estimation of the existing registration formulation to include the

shape parameter. The error function in Equation (2.5) is adapted to include the fitting of the

ideal data.

f (−→p) =
∑

i, j

||R(q)
−−−−→
g(
−→
k )i +

−→
t − −→y ji ||2, (4.1)
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where −→p = (−→t ,q,−→k )
−−−−→
g(
−→
k )i ith point in some ideal data computed from the formula

whose parameters are
−→
k

Therefore,zi j (
−→p) in Equation (2.9) is transformed into:

zi j (
−→p) = ||R(q)

−−−−→
g(
−→
k )i +

−→
t − −→y ji ||2 (4.2)

And the motion gradient is obtained by:

∂zi j (
−→p)

∂−→p
= 2(R(q)

−−−−→
g(
−→
k )i +

−→
t − −→y ji )

∂(R(q)
−−−−→
g(
−→
k )i +

−→
t − −→y ji )

∂−→p

∣∣∣∣∣∣∣∣∣∣
qI

=



2(
−−−−→
g(
−→
k )i +

−→
t − −→y ji )

−4
−−−−→
g(
−→
k )i × (−→t − −→y ji )

2(
−−−−→
g(
−→
k )i +

−→
t − −→y ji )

∂(
−−−→
g(
−→
k )i )

∂
−→
k


(4.3)

Then, the pseudo code of the calculation is as follows:
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SimultaneousAlignmentWithParameterEstimation

input: MeasuredData D= {di |i = 0,1, ..., n} and IdealData dc
input: InitialPosition P= {pi = (Ri , ti)|i = 0,1, ..., n}
input: InitialPositionAndParameterO f IdealData pc = (Rc, tc, k)

output: AlignedPosition P′ = {p′ i = (R′ i , t′ i)|i = 0,1, ..., n}
output: AlignedPositionAndEstimatedParameterO f IdealData pc

′ = (Rc
′, tc′, k′)

local: KDTree= {kdti |i = 0,1, ..., n}

repeat

KDTree← MakeKDTree(P,D)

for all i = 0,1, ..., n do

KDTree′ ← KDTree− {kdti}
p′ i ← MinimizeErrorFunction(pi ,di ,KDTree′)

end for

pc
′ ← MinimizeErrorFunctionWithParameterEstimation(pc,dc,KDTree)

P← ChangePosition(P′,P)

pc← ChangePositionAndParameter(pc
′, pc)

until ErrorFunctionConverged

P′ ← P

pc
′ ← pc
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Figure 4.1: The incorrect convergence of measured data as the result of the incorrect ideal

data. In (1), measured data is expected to be converged to the dotted line. (2) showed the

converging result. The measured data are taken apart to partially match the incorrect ideal

data.

The difference from the basic algorithm (Chapter 2) is high lighted by gray boxes. To the

algorithm, we add the set of 3D points as computed by the numerical formula with the initial

parameter (dc), its initial position matrix (pc) and its initial estimation of the motion matrix

(pc
′). FunctionMinimizeErrorFunctionWithParameterEstimationdetermines the expected

motion matrix (ofdc) in the subsequent iteration from the initial position and parameter (pc)

according to the entire sets of measured data (D). FunctionChangePositionAndParameter

multiplies the expected motion matrix (Rc
′, tc′) by the initial position matrix (Rc, tc) and update

the initial parameter (k) to the estimated parameter (k′).

Simultaneous registration is applied in our experiment. Because the algorithm registrates

every parameter simultaneously, registration of the measured data and fitting of the ideal data

in the same time. It is unnecessary to supply the registrated measured data. The registration

of the measured data is similar to the one in conventional algorithm. Note that the ideal data

have no effect on the expected motion matrices of measured data. This is to avoid the incorrect

converging due to the incorrect shape parameters of the ideal data (Figure 4.1). So the kd-tree

of the ideal data is not required.

4.2 Minimization of Error Function for Parameter Estima-

tion

Error function for parameter estimation is minimized by the steepest gradient. However, steep-

est gradient method is not always efficient. In this study, the conjugate gradient method is
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Figure 4.2: Illustration of an effective and ineffective gradient search. In ineffective search the

gradient obtained in the current step is guaranteed to be orthogonal to the one in the previous

and following step. However, many step have the gradient in the same direction. In effective

search, these gradient should be summed up and estimated within one step.

applied. After obtaining the conjugate gradient, we have to determine the norm of motion

vector. This determination is performed by line minimization. This section explains the con-

jugate gradient and line minimization method.

4.2.1 Conjugate Gradient Method

In the previous, the minimization applies the steepest gradient method. Though the gradient

in the current iteration is orthogonal to the one in the previous step, the same gradient is taken

repeatedly before the minimization is completed.

The conjugate gradient method has been proposed to avoid the above inefficiency. In this

method, we use the gradient conjugated to the former gradient, instead of the steepest gradient.

The usage of the gradient conjugated to the former gradient guarantees that it is a conjugated

to any other gradients.

In our implementation, we use Fletcher-Reeves method and Polak-Ribiere method [22]

[23] [24]. These two methods are closely related and have the well-found algebraic property.

DefineA −→gi and
−→
hi as the positive constant symmetry matrix ofn × n, the steepest and the

conjugate gradient inith minimization step, respectively. The two types of gradient vector are
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defined as follows:
−−→gi+1 = −→gi − λiA

−→
hi ,

−−→
hi+1 = −−→gi+1 + γi

−→
hi (4.4)

λi andγi are determined such that

−−→gi+1 · −→gi = 0,
−−→
hi+1 · A · −→hi = 0. (4.5)

From Equation (4.4) and (4.5),λi andγi can be calculated as:

i f −→gi · A−→hi , 0
−→
hi · A−→hi , 0, λi =

−→gi · −→gi

−→gi · A−→hi

, γi = −
−−→gi+1 · A−→hi
−→
hi · A−→hi

otherwise, λi = 0, γi = 0 (4.6)

As a result, we can obtain the following equation.

−→gi · −→g j = 0,
−→
hi · A−→h j = 0 (i , j) (4.7)

The first equation implies that−→gi is orthogonal to other−→g j and the second implies the orthog-

onality among
−→
hi each

−→
h is conjugated to the former

−→
hi .

From (4.4) and (4.7),γi andλi can be found by:

γi =
−−→gi+1 · −−→gi+1
−→gi · −→gi

=
(−−→gi+1 − −→gi ) · −−→gi+1

−→gi · −→gi

(4.8)

λi =
−→gi · −→hi
−→
hi · A−→hi

(4.9)

4.2.2 Line Minimization

Line minimization is usually used in the gradient-based optimization. Many techniques have

been proposed for this minimization. We use a combination of golden-ratio bracketing (golden

section search) and parabolic fits. Figure 4.3 illustrate our procedure.

4.3 Experiment

In this section, we attempted to estimate the shape parameters of the mathematical models.

The corresponding formula to the tested mathematical models (Figure 4.5) were assumed to

be available. Note that the scale parameter,l, appears in every surface. Detail of the function

and its derivative are described in Appendix B.

The model were measured by MINOLTA VIVID 900. MINOLTA VIVID 900 is the laser

range finder and obtains the depth information by the triangulation method. Its accuracy is
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Figure 4.3: Illustration for line minimization.x and f (x) depict the motion vector and the

error function respectively. When the minima lies betweenx0 andx1, x2(= x0 + τ−1
τ

(x1 − x0))

andx3(= x0 + 1
τ
(x1 − x0)) are calculated (τ depicts a golden ratio (= 1+

√
5

2 )). By comparing

f (x2) and f (x3), the position of the minima can be founded. Iff (x2) < f (x3), the minimum

lies betweenx2 andx3, so in the subsequent search,x3 is set atx1; otherwise, the minimum is

betweenx2 andx1, sox2 is set atx0. The figure shows the minimum is betweenx0 andx3, so

x1 in the subsequent iteration is set atx3.
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evaluated in Chapter 6. Initial data registration was manually performed via GUI. The initial

shape parameters were also manually estimated. The number of iteration in all tests was set

at 5. Figure 4.4 shows the convergent characteristic of our algorithm on the revolution surface

of catenary. The figure indicates that the ideal model was modified to fit the actual one. The

modification was performed via the shape parameter.

In this section, only the estimated parameters were shown. The application of the esti-

mated parameter to measure the accuracy of the mathematical models is presented in Chapter

5. The accuracy of our estimation is evaluated in Chapter 6.

The accuracy of the estimated parameters is also explained in the Chapter 6, though we

show only the obtained parameters in order to certify that shape parameters are estimated from

these data in this section. Moreover, the shape difference between the measured data and the

computed data is visualized in the Chapter 5.

4.3.1 Revolution Surface of Catenary

This surface is generated by rotating a 2D catenary and shown in Figure 4.6-(1). The surface

by revolution always has the azimuthal symmetry. Besides scale parameter (l), there are 2

parameters (a, b) involved in the appearance of the revolutional surfaces.

Numerical Formula

f or ∃a,∃ b,∃ l (0 < b ≤ a),

X(u, v) = (lφ(v) cosu, lφ(v) sinu, lψ(v)), (4.10)

where 0 ≤ u ≤ 2π, −a · sinh−1
(a
b

)
≤ v ≤ a · sinh−1

(a
b

)

φ(v) = bcosh
(v
a

)
, ψ(v) =

∫ v

0

√
1− b2

a2
sinh−1

( t
a

)
dt (4.11)

Partial Derivatives with respect to Shape Parameter

∂X
∂a

=

(
(l cosu)

∂φ

∂a
, (l sinu)

∂φ

∂a
, l
∂ψ

∂a

)
, (4.12)

where
∂φ

∂a
= −bv

a2
sinh

v
a

(4.13)

and
∂ψ

∂a
=

vb2

2a3

(
− 1

2a2
sinh−1 v

a
+

1√
v2 + a2

)
(4.14)
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Figure 4.4: The convergent characteristic of the parametric data. (1)-(8) shows the order of

convergence to the data of the revolution surface of catenary.
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Figure 4.5: Mathematical models used in our experiment. (1), (2) and (3) have the constant

negative curvature on all points of the model surface.
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∂X
∂b

=

(
(l cosu)

∂φ

∂b
, (l sinu)

∂φ

∂b
, l
∂ψ

∂b

)
, (4.15)

where
∂φ

∂b
= cosh

v
a

(4.16)

and
∂ψ

∂b
= − b

a2
sinh−1 v

a
(4.17)

∂X
∂l

=

(
cost

coshs
,

sint
coshs

, s− tanhs+ bt

)
. (4.18)

Estimated Parameter

a = 0.0568, b = 0.0237, l = 0.996

4.3.2 Dini’s Surface

This surface is generated by spirally rotating a 2D tractrix and shown in Figure 4.6-(2). This

surface has 2 parameters controlling its appearance. They areb andl.

Numerical Formula

f or ∃b,∃ l,

X(s, t) =

(
l cost
coshs

,
l sint
coshs

, l(s− tanhs+ bt)

)
, (4.19)

where |s| ≤ a and 0 ≤ t ≤ θ

Partial Derivatives with respect to Shape Parameter

∂X
∂b

= (0,0, lt) (4.20)

∂X
∂l

=

(
cost

coshs
,

sint
coshs

, s− tanhs+ bt

)
, (4.21)

Estimated Parameter

a = 0.309, l = 0.0569
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4.3.3 Kuen’s Surface

Kuen’s surface was first discovered by T. Kuen in 1884. This surface has several self inter-

sections (indicated by the arrowed in Figure 4.6-(3)). Kuen’s surface is a specialized case of

Enneper’s surface, and is characterized by two sets of lines or geodesics, where one of the

geodesics has spherical curvature, while the other has planar curvature. Kuen’s surface has

a property known as Joachimstal’s curvature, where all of the lines of planar curvature pass

through a common axis; furthermore, all spherical curvature lines have midpoints lying on the

same axis. Kuen’s surface has the fixed appearance. Its size is controlled by only the scale

parameter (l).

Numerical Formula

f or ∃l,

X(u, v) =

(
l
2(cosu + usinu) sinv

1 + u2sin2v
, l

2(sinu− ucosu) sinv

1 + u2sin2v
, l

(
log

(
tan

v
2

)
+

2 cosv

1 + u2sin2v

))
,

(4.22)

where θ ≤ v ≤ π − θ and θ > 0

Partial Derivatives with respect to Shape Parameter

∂X
∂l

=

(
2(cosu + usinu) sinv

1 + u2sin2v
,
2(sinu− ucosu) sinv

1 + u2sin2v
, log

(
tan

v
2

)
+

2 cosv

1 + u2sin2v

)
(4.23)

Estimated Parameter

l = 0.0491

4.3.4 Inverse Function of the Elliptic Integral of the First Kind

This function, defined as jacobi amplitude, is the inverse of the following function:

u =

∫ φ

0

dt√
1− k2sin2t

(4.24)

Only the scale parameter (l) needs to be estimated to determine its actual appearance.
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Numerical Formula

f or ∃l,

X(φ, k) =

lφ, lk, l
∫ φ

0

dt√
1− k2sin2t

 (4.25)

Partial Derivatives with respect to Shape Parameter

∂X
∂l

=

φ, k,
∫ φ

0

dt√
1− k2sin2t

 (4.26)

Estimated Parameter

l = 0.0434
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Figure 4.6: Ideal data of mathematical models.
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Chapter 5

Shape Difference Visualization

In this chapter, we describe the visualization for difference between the measured data and

the ideal data computed from its numerical formula. The shape parameters are estimated

in the method described in the previous chapter. Although the algorithm is limited by the

presence of the mathematical models, the limitation is not critical in the field of CAD, CAGD

and CAM. To visualize the difference, we first define the “difference value”. We then show

the application to mathematical models [25], and introduce the application to ancient bronze

mirrors.

5.1 Visualization Method

As a preparation of the shape difference visualization, the data of compared objects are aligned

into the common coordinate.

Then we have to define the value representing the shape difference. As shown in Figure

5.1, the position of one object is fixed and this object is defined as a base object. The other

object is defined as a check object and is aligned to the same pose and position of the base

object. The check and base object is respectively shown in Figure 5.1 as the solid and dotted

line. Difference between objects is the signed distance between the point on the check object

and its corresponding point on the base object. A point in the check object has its nearest

neighbor on the base object as its corresponding point. The shape difference is represented in

mathematical form as:

d = sign(
−−→
n(v) · −−→vvc) × |−−→vvc|, (5.1)

where v point on check object,
−−→
n(v) normal vector ofv,

vc corresponding point ofv.
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Figure 5.1: Signed distance calculation. The signed distance is inner product of the normal of

the point on the check object and the vector from the point to the corresponding point on the

base object.

and

sign(a) =


−1 i f a < 0

1 i f a ≥ 0

d is calculated on all points in the check object. The normal vector for each point is defined

as the normalized vector of the sum of the normal vector of the plane that the point is the

member. This value allows us to recognize their relative convex or concave shape difference

to the check object. Positived indicates that the base object is more convex; otherwise it is

more concave.

5.2 Mathematical Model

In Chapter 4, we estimated the shape parameters of the mathematical models. Therefore we

can evaluate the manufacturing accuracy of each model by visualizing the shape difference

between the measured data of the model and the ideal data constructed according to the esti-

mated parameters.

In this section, the shape difference between the actual and ideal models is observed.

In each mathematical model, the ideal data is set as a base object. In each figure, green

depicts no difference. Red and blue depicts that the actual object is more convex and concave,

respectively. In Figures 5.2 and 5.3, the signed distance of the magnitude more than 1.5mm

is regarded as error, and in Figures 5.4 and 5.5, the difference of more than 4mmis regarded

as error.
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Figure 5.2: Shape difference of revolution surface of catenary

5.2.1 Revolution Surface of Catenary

Figure 5.2 indicates that the middle part of this model had almost no shape difference to the

ideal model. Manufacturing error was concentrated on the upper and belower part (blue area).

5.2.2 Dini’s Surface

Figure 5.3 shows the part generated at the minimum and maximum of the catenary curve con-

tains the shape difference. This model contains the chipped part, and we could not determine

whether the chipped points were created during or after the manufacture. In this experiment,

we regarded them as the shape difference caused during the manufacture.

5.2.3 Kuen’s Surface

Our experiment indicated that the difference between the mathematical model of Kuen’s sur-

face and its corresponding ideal model was widely spread (Figure 5.4). However, the differ-

ence of more than 4mmis not visually distinguishable.
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Figure 5.3: Shape difference of Dini’s surface

Figure 5.4: Shape difference of Kuen’s surface

42



5.2.4 Inverse Function of the Elliptic Integral of the First Kind

5.5 shows that difference to the ideal model was found in lots of area. In contrast to Kuen’s

surface, the difference can be observed visually. In the figure, area with the distinct shape

difference lies between the arrows.

5.3 Ancient Bronze Mirrors

Ancient Chinese bronze mirrors have the immortal and beast pattern in their reverse side with

protruding rim of triangular cross section (Figure 5.6).

The mirrors are intensely studied because it may lead to the location of Yamatai state, the

oldest documental state in Japan. Some archaeologists propose that Yamatai state governed

the regions, where these mirrors were found. In this section, we describe how to analyze the

mirrors and the usefulness of the visualization of the difference technique between the mirrors’

shape. We then show the application results.

5.3.1 Mirror Analysis and Difference Visualization

The ancient bronze mirrors, with the same decoration pattern, were excavated from the various

areas. These mirrors are cast from the same mold, or the mold duplicated from the similar

mirrors. The former is defined as “individual mirrors”, and the latter “identical mirrors”.

Individual and identical mirrors can be classified as “sibling mirrors”. So far, archaeologists

have paid attention to the classification of sibling mirrors according to the decoration patterns

so far [26], they propose that the classification of individual and identical mirrors implies the

order of the manufacture. The local difference of the decoration pattern indicated the duration

of usage of the mold or its duplication mold. Continuous usages causes the unique spreading

fissure or cracks of the decoration pattern are reflected in their decoration pattern.

So far, archaeologists have analyzed such shape difference by visually observing the orig-

inal mirrors. The practice requires a huge amount of time and effort. If the candidates caused

during the manufacturing process are automatically detected, mirror analysis can be performed

much faster. So we developed the detection method of shape difference through 3D data on

computer graphics [27]. An additional advantages of the 3D data is that the object will not

receive the further damage.

5.3.2 Application Result

We performed the shape difference visualization to the five individual mirrors. They are distin-

guished by the following name: Dchoh01, Dchoh02, Dhebo02-63, Dnisik-75 and Dsamida08
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Figure 5.5: Shape difference of inverse function of the elliptic integral of the first kind
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Figure 5.6: Ancient Chinese bronze mirror

(Figure 5.7).

The shape differences between Dsamida08 to the other bronze mirrors were observed,

because Dsamida08 was not the entire mirror, but merely a combination of the fractured parts.

So the observation of the five mirrors was possible only on the available parts of Dsamida08.

According to the algorithm in Section 5.1, Dsamida08 and the other mirrors are aligned

in the same coordinate. The corresponding points are extracted for all points in any pair of

mirrors in order to calculate the difference value.

In our experiment, the difference of less than 0.3mmwas ignored. In Figure 5.8, the green,

red and blue areas indicates no difference, convex shaped difference and concave shaped dif-

ference, respectively. Remark that the first comparison result contained the global differences.

Global difference is the result of mirror bending, partial sinking, or internal cracking. It is

caused by time and usage, and is unrelated to the sibling relationship. It should be rejected.

Areas containing the global difference were realigned to visualize the local difference.

Local differences after the realignment and those found in the first comparison result were

integrated and shown in Figure 5.9.

Figure 5.10 demonstrates the deteriorating pattern of the mold upon usages. Convex shape

on a mirror corresponds to the concave part of the mold. This part tends to be worn out when

the mold is used; therefore, corresponding part of latter manufactured mirrors will be more

convex.

We further observed the local difference inside the circles in Figure 5.9. Figures 5.11, 5.12

and 5.13 respectively show the cross sections of the part marked by the yellow, blue and white
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            (1) Dchoh01

from Chohoji-Minamihara

         (5) Dsamida08

from Samida-Takarazuka

      (Medley of Pieces)

  (3) Dhebo02-63

from Hebosozuka

        (4) Dnisik-75

from Nishikurumazuka

 Base Mirror

Check Mirror

            (1) Dchoh02

from Chohoji-Minamihara

Figure 5.7: Identical mirrors. Dsamida08 is set as a check mirror, and the other mirrors are

set as its base mirrors.
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(1)Compared with Dchoh01 (2)Compared with Dchoh02

(3)Compared with Dhebo02-63 (4)Compared with Dnisik-75

Figure 5.8: Shape differences of Dsamida08 compared to the rest four mirrors. Global differ-

ences are included in this stage.
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(1)Compared with Dchoh01 (2)Compared with Dchoh02

(3)Compared with Dhebo02-63 (4)Compared with Dnisik-75

Figure 5.9: Local Shape differences to Dsamida08 without global differences.
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worn out

Mold

Mirror

Mold

Mirror

continue to be used...

more spread

less distinct

Figure 5.10: The deteriorating pattern of the mold by continuous usage.

circles in five mirrors. In Figure 5.11, the arrowed indicated the shape caused by the chipped

mold. By observing the growth of this chip on Dchoh01, Dnisik-75 and Dsamida08, the order

of manufacturation could be found as Dsamida08, Dchoh01 and Dnisik-75. In Figure 5.12,

the concave shape indicated by the arrow implied the manufacturing order as Dsamida08,

Dchoh02, Dchoh01, Dhebo02-63 and Dnisik-75. In the same manner, the manufacturing

order according to the local difference in Figure 5.13 was evaluated and the result was con-

sistent with those from Figures 5.11 and 5.12. Thus, we conclude that Dsamida08, Dchoh02,

Dchoh01, Dhebo02-63 and Dnisik-75 were made in this order.
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(1)Dchoh01

(2)Dchoh02

(3)Dhebo02-63

(4)Dnisik-75

(5)Dsamida08

Figure 5.11: Cross section of the mirror inside the yellow circle in Figure 5.9
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(1)Dchoh01

(2)Dchoh02

(3)Dhebo02-63

(4)Dnisik-75

(5)Dsamida08

Figure 5.12: Cross section of each mirror inside the purple circle in Figure 5.9
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(1)Dchoh01

(2)Dchoh02

(3)Dhebo02-63

(4)Dnisik-75

(5)Dsamida08

Figure 5.13: Cross section of each mirror inside the white circle in Figure 5.9
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Chapter 6

Evaluation

In Chapter 4, the shape parameters are estimated. The estimation is affected by various kinds

of error: measurement error, initial registration error and error in initially input parameter. In

this chapter, we measure the estimation errors in each process, and evaluate the accuracy of

the estimated parameters.

6.1 Measurement Error of 3D Data

The first error in the estimation is the result of the measurement error from the range finder.

In our study, MINOLTA VIVID 900 laser range finder was used to measure the actual objects.

It has three kinds of lens: tele, middle and wide. Tele lens gives highly accurate data, but its

effective scanning area is narrow (10× 10 cm2 at 1m from the laser range finder). Opposite

to tele lens, wide lens can scan much wide area (1× 1 m at 3 m2), but has lower accuracy.

Middle lens has the intermediate property of tele and wide lens.

The measurement noise depends on lots of factors. In this study, we investigate the rela-

tionship of measurement noise to the pose of the actual object. In this experiment, the data

of the white and lusterless plane at the different poses were obtained. The system is shown in

Figure 6.1. The white board was set on the turn table. The pose was changed by rotating and

translating the turn table. We denotel andθ by the distance from the white board to the laser

range finder and the angle between the normal of white board to the ray of the laser. That is,

the pose was controlled byl andθ. Five data were obtained at each pose. Principal component

analysis (PCA) was applied to analyze the point set. The plane containing the point set was

estimated and the standard deviation of plane data was obtained. The change of the standard

deviation of the plane data according to each type of lens are shown in Figures 6.2, 6.3 and

6.4.
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Figure 6.1: System to evaluate measurement error. The white board is set on the turn table,

and can be rotated around the vertical axis. In this system, the incident angle and the distance

from the white board to the laser range finder are changeable
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Figure 6.2: Graph showing the relationship between incident angle and standard deviation,

when tele lens was applied. Each curve showed the data at different distance from white board

to the finder. Standard deviation of the data is approximately 0.1mmwithin 1m distance. The

abnormal peaks are caused by the condition of white board, such as dust.
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Figure 6.3: Graph showing the relationship between incident angle and standard deviation,

when middle lens was applied. Each curve showed the data at different distance from white

board to the finder. Similar change of the standard deviation are observed within 2mdistance.
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Figure 6.4: Graph showing the relationship between incident angle and standard deviation,

when wide lens was applied. Each curve showed the data at different distance from white

board to the finder. The data within 0.5mcould not be obtained, and there were large amount

of noise when the distance exceeded 2m.
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6.2 Accuracy of Shape Parameter

In this experiment, we investigated the accuracy of estimated parameter. Parameters were

manually defined to construct the ideal data. The estimated parameters were referred as the

true parameters. Noise with the standard deviation observed in the previous section was added

to the ideal data. We then estimated the parameters from the noisy data. The initial parameters

in the estimation were subtly different than the true parameters. Since the correct parameters

are known, the accuracy of the estimation can be measured.

In this experiment, we use the model of revolution surface of catenary. The shape parame-

ters were set asa = 0.05,b = 0.02 andl = 1.00. Gaussian noise was added into the ideal data

to form the noisy data.

6.2.1 Influence of Measurement Error

We investigated the influence of the measurement noise. Noise with different standard devia-

tion was added into the ideal data. Standard deviation used in this experiment are 0.01, 0.1,

1.0, 10.0. Ten noisy data were created for each standard deviation. These noisy data were

regarded as the data measured in practice. The initial pose, position and parameter of the

virtual “measured data” were the same as the one of the computed (ideal) data. The number

of iteration was set at 15. Figures 6.5, 6.6 and 6.7 show the maximum and the minimum of

estimated parameter,a, b andl, respectively.

Effect of the noise standard deviation to the estimated parameters were similar in all pa-

rameters. The larger the standard deviation was, the larger range of the maximum and mini-

mum parameter was. Noise added in this experiment was far higher than the observed noise.

Even though noise with the standard deviation of 0.01 was added, the error in our results was

low. In previous section, the maximum standard deviation of the measurement noise in MI-

NOLTA VIVID 900 was detected at less than 0.002, the result indicated the robustness of our

estimation method against the sensor noise.

6.2.2 Influence of Initial Registration

In this section, we investigate the influence of the initial pose and position. In the same manner

as the previous section, we added the noise to the ideal data. The noisy data were regarded

as the data obtained in practice. The standard deviation of the noise (σ) was set to 0.0004

according to the observed measurement error in our previous experiment. The initial value of

every parameter was set at the true one. The coordinate of the model is shown in Figure 6.8

Effects of translation and rotation were investigated separately. For translation, noisy data

were translated 0.01, 0.02 and 0.03malong x or z axis, respectively. For rotation, three noisy
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Figure 6.5: The maximum and the minimum of estimated parametera.
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Figure 6.6: The maximum and the minimum of estimated parameterb.

57



��� ���

��� ���

��� ���

��� ���

��� ���

	
�� 

�� 	
� 

���
	�
���

	� 	�

��� ��� ��� � ��� � ����� �
��� ��������� � �"!�#�$ ��� $ %��&%�'���%�$ ��!

Figure 6.7: The maximum and the minimum of estimated parameterl.
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Figure 6.8: Model used in the experiment and its 3D coordinate.
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0.01malong x axis

a= 0.0500

b = 0.0188

l = 0.9685

0.02malong x axis

a= 0.0483

b = 0.0188

l = 0.9464

0.03malong x axis

a= 0.0478

b = 0.0192

l = 1.0072

0.01malong z axis

a= 0.0458

b = 0.0204

l = 0.9474

0.02malong z axis

a= 0.0457

b = 0.0218

l = 0.8909

0.03m along z axis

a= 0.0451

b = 0.0219

l = 0.9004

10 degrees around x axis

a= 0.0493

b = 0.0197

l = 0.9403

20 degrees around x axis

a= 0.0492

b = 0.0208

l = 0.9403

30 degrees around x axis

a= 0.0471

b = 0.0208

l = 0.9624

Table 6.1: Estimation result for shape parameters according to initial registration error.

data were rotated 10, 20 and 30 degrees around x axis. Since revolutional surface of catenary

has the x, y and z symmetry, these translation and rotation were sufficient for the evaluation.

Results of estimation were shown in Table 6.1. In the table, “0.01m along x axis” and “10

degrees around x axis” mean the noisy data is translated 0.01m along x axis and rotated 10

degrees around x axis, respectively.

Z axis for this surface is the direction of expanding/contracting. The manipulation on z

axis results in the ambiguity in the parameters. In contrast, manipulation on x axis is not

directly related to the expansion and contraction. The translation in z axis simultaneously

affects the pose/position and parameters. As the result indicated, 15 iteration was not sufficient

for good estimation for the translation on z axis, while it was sufficient for the translation

on and rotation around x axis. 45 iteration was required for the good estimation for model

undergone z axis translation.

6.2.3 Influence of Initial Parameter

We investigate the influence of initial value for the estimation. The virtual “measured data”

were made in the same manner as the previous sections, and the standard deviation of the

noise (σ) was set to 0.0004. The initial pose and position of the “measured data” were the

same as the one of the ideal data. Effect of initial value of each parameter was studied, so

only one parameter had its initial value changed from the true value at a time. The amount of

change wasα, whereα varied between parameter. Table 6.2 shows the estimation result.
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a= 0.07

a= 0.0535

b = 0.0210

l = 0.9703

a= 0.06

a= 0.0509

b = 0.0224

l = 0.9824

a= 0.04

a= 0.0491

b = 0.0185

l = 0.9487

a= 0.03

a= 0.0482

b = 0.0184

l = 0.9061

b = 0.03

a= 0.0560

b = 0.0209

l = 0.8709

b = 0.025

a= 0.0560

b = 0.0204

l = 0.8713

b = 0.015

a= 0.0440

b = 0.0196

l = 1.1202

b = 0.01

a= 0.0440

b = 0.0191

l = 0.8710

l = 1.30

a= 0.0483

b = 0.0282

l = 1.0261

l = 1.15

a= 0.0474

b = 0.0193

l = 1.0268

l = 0.85

a= 0.0517

b = 0.0216

l = 0.9752

l = 0.70

a= 0.0440

b = 0.0224

l = 0.9736

Table 6.2: Estimating result for noisy data when initial parameters was not correctly set.

The expression above each table depicts the initial input value for the parameter. For

example, “a = 0.07” means parametera is initially set to 0.07, while the other parameters

were set at its true value.

Table 6.2 indicated that the effect of incorrect initial value on each parameter was not

equal. In this experiment, parameterb gave the highest effect.
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed the estimation method for the shape parameters to the object. It is

required that the shape could be represented by some numerical formula. We first introduced

the various strategies of the registration methods, and describe their advantage and disadvan-

tage. We selected the simultaneous and point-based strategies as our base method because

we extend the registration of pose and position parameters in conventional registration to the

registration of pose, position and shape parameter.

Kd-tree is applied in the registration algorithm. To improve the speed of the registration,

we develop the novel method for pruning trees in searching. Experiments showed that the

number of the visited leaf was greatly reduced and indicated the decreasing computation cost.

From the estimated shape parameters, the ideal 3D model of the object can be constructed.

Difference to the ideal model was visualized. In this thesis, difference of the “mathematical

models” were investigated. Then we described the application of the difference visualization

in archaeology.

Finally, we evaluated the estimating accuracy of the shape parameter. The experiment

showed that the accuracy of our parameter estimation is not so affected by the measurement

noise as by the initial pose, position and parameter.

We plan to apply our proposed technique to the geometrical field. For example, we would

like to convert the measured model into the combination of CAD primitive models. The mea-

sured data is segmented to the combination of CAD primitives, and the model parameters of

each primitive are estimated. The model then be represented by groups of primitive parameter

instead of point cloud, so the data for a model is greatly reduced. The advantage is more

distinct when the model contains of the large amount of points. Normal processing in CG is

unable to deal with such large data. Compared to point cloud, CAD primitives and parameters

are much more smaller and can be effectively handle. Thus, the research of fitting objects to
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CAD primitive paves the way for increasing versatility of “Modeling from Reality”.
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Appendix A

Quaternion for Rotation

In this Appendix, we explain the quaternion for the representation of the object rotation in

detail. First we discuss the convenience of the quaternion. Next, we show its basic operations

and the relationship between quaternion and rotation. Finally, we derive the differential of the

3× 3 rotation matrix with respect to the quaternion parameters.

A.1 Convenient Quaternion Representation for Rotation

When the point−→xi is moved to its corresponding point−→yi in 3D space, we can compute the

rotation matrixR and translation vector−→t as follows.

R−→xi +
−→
t = −→yi (A.1)

This equation is linear, but the rotation matrixR has the non-linear constraints on the 9 ele-

ments because the rotation in 3D space is represented by only 3 independent variables.

Some methods have been developed in order to solve this constraint problem. One of them

is the quaternion representation. The quaternion is composed of one scaler and three-element

vector part according to the following equation:

q = (−→n , s), (A.2)

where −→n = (u, v,w)

Intuitively speaking, this representation means the rotation in proportion to the magnitude of

saround the vector−→n .

The advantages of this rotational representation are:

• Constraint is simplified by normalizing four parameters of the quaternion.
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• Quaternion operations can be formulated from the ones of the matrix and vector.

• Inverse rotation quaternion is easily obtained by negating the scalar part.

• Quaternion representation is easily converted into axis-angle representation.

• Rotation matrix is easily obtained from the quaternion.

• Rotation is in the closed form through the quaternion when the corresponding between

3D point sets is taken.

• The differential of the rotation matrix can be solved with respect to quaternion param-

eters, so the quaternion is suitable to the iterative gradient search for 3D alignment

solution.

A.2 Quaternion Operation

In this section, we define the basic operations of the quaternion. The sum, difference and

product are respectively defined according to the following equations:

q1 + q2 = (−→n1 + −→n2, s1 + s2) (A.3)

q1 − q2 = (−→n1 − −→n2, s1 − s2) (A.4)

q1q2 = (s1
−→n2 + s2

−→n1 + −→n1 × −→n2, s1s2 − −→n1 · −→n2) (A.5)

where q1 = (−→n1, s1), q2 = (−→n2, s2)

Consider the following calculation:

qq′ = (
−→
0 , s2 + −→n · −→n ) (A.6)

where q= (−→n , s), q′ = (−−→n , s).
Rearrange the above equation to:

(qq′)

s2 + −→n · −→n
= (
−→
0 ,1) (A.7)

The right handed side of the above equation (qI = (
−→
0 ,1)) is defined as identity quaternion

since it satisfies the following relation.

qI q = qqI = q. (A.8)
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Hence, the inverse quaternion ofq (q−1) is defined as:

q−1 =
q′

s2 + −→n · −→n
(A.9)

where q= (−→n , s) q′ = (−−→n , s)
and the norm and the absolute of q are respectively as:

||q|| = s2 + −→n · −→n (A.10)

|q| =
√
||q|| (A.11)

The quaternion normalization is division by its absolute. Normalized quaternion is defined as

a unit quaternion.

A.3 Rotation Representation by Quaternion

Consider the case when the point−→p is rotated to
−→
p′ by a unit quaternionq = (−→n , s). In

quaternion space, the rotation is calculated as follows.


−→
p′

0

 = q


−→p
0

 q (A.12)

[−→p,0]T represents the vector−→p in the quaternion space. Defineq = (−→n , s), which implies

q = (−−→n , s). The above equation can then be rewritten as follows.


−→
p′

0

 =


s2−→p + 2s−→n × −→p + (−→n · −→p)−→n

0

 (A.13)

By replacing−→p,
−→
p′ and−→n with (x, y, z), (x′, y′, z′) and (u, v,w), respectively, the vector part of

the above equation is:



x′

y′

z′


=



s2 + u2 − w2 − v2 2(uv− sw) 2(sv+ uw)

2(sw+ uv) s2 + v2 − u2 − w2 2(vw− su)

2(uw− sv) 2(su+ vw) s2 + w2 − v2 − u2





x

y

z


(A.14)

In geometrical aspect, the relationship between−→p and
−→
p′ is according to the following

equation (See Figure A.1 for detail of calculations)

−→
p′ = (−→p · −→m)−→m + (−→p − (−→p · −→m)−→m) cosφ +

−→m× −→p
|−→m× −→p |

|−→p − (−→p · −→m)−→n | sinφ, (A.15)
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Figure A.1: Rotation for quaternion representation.

where−→m andφ are a normalized rotation axis and the angle between−→p and
−→
p′ around−→m,

respectively.

Because

|−→m× −→p | = |−→p − (−→p · −→m)−→m|, (A.16)

the above equation is transformed into:

−→
p′ = (−→p · −→m)−→m + (−→p − (−→p · −→m)−→m) cosφ + −→m× −→p sinφ (A.17)

By replacing−→p,
−→
p′ and−→m with (x, y, z), (x′, y′, z′) and (mx,my,mz), respectively, the vector

part of the above equation is:



x′

y′

z′


=



(1− cosφ)mx
2 + cosφ (1− cosφ)mxmy − (sinφ)mz (1− cosφ)mzmx + (sinφ)my

(1− cosφ)mxmy + (sinφ)mz (1− cosφ)my
2 + cosφ (1− cosφ)mymz − (sinφ)mx

(1− cosφ)mzmx − (sinφ)my (1− cosφ)mymz + (sinφ)mx (1− cosφ)mz
2 + cosφ





x

y

z



(A.18)

Becauseq is the unit quaternion,

s2 + u2 + v2 + w2 = 1. (A.19)
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Applying the above constraint, we compare the rotation matrix in equation (A.14) with the

one in equation (A.18), and obtain the following relationship,



u = mx sin φ
2

v = my sin φ
2

w = mz sin φ
2

s = cosφ2

(A.20)

Hence, in order to rotate the point−→p for φ radian around the normalized axis−→m, the rotation

quaternion is set to

q = ((sin
φ

2
)−→m, cos

φ

2
), (A.21)

then the quaternion calculation is performed like this.

q


−→m
0

 q (A.22)

where q = (−(sin
φ

2
)−→m, cos

φ

2
)

A.4 Jacobian of Rotation Matrix with Respect to Quater-

nions

The Jacobian of rotation matrix with respect to quaternion parameters is easier calculated with

some special condition. In this section, the conditions are formulated step by step to acquire

the Jacobian.

Let R(qu) be the rotation matrix of a unit (normalized) quaternionqu, Equation (A.1) can

be rewritten as follows. −→
p′ i = R(qu)−→pi +

−→
t (A.23)

In the derivative of the above equation with respect to quaternion parameters, we consider

only the first term in the because the derivatives of second term is zero.

As the first step of this differential process, we should remove the normalization constraint

of a quaternion. That is, we separate the normalization operation from the rotation matrix

R(qu)) as follows.

R(qu) =
1
||q||R(q) (A.24)

In R(q), quaternion parameters do not have to be normalized because the multiplication of

R(q) by 1
||q|| is the normalization operation. As mentioned earlier, it is convenient when ob-

taining the derivative under the special condition.
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The rotation from a 3D point−→p to
−→
p′ according to a unit quaternionqu of rotation can be

represented by the functionf which takes the two argument,qu and−→p as follows.

−→
p′ = R(qu)−→p

= f (qu,
−→p) (A.25)

Let the unit quaternionquopt be the optimum quaternion in the current iteration of conjugate

gradient method. The optimum quaternion in the subsequent iteration is estimated according

to:
∂ f (qu,

−→p)
∂q

,

∣∣∣∣∣∣
quopt

(A.26)

where ∂ f (qu,
−→p)

∂q

∣∣∣∣
qc

is ∂ f (qu,
−→p)

∂q atqc.

It is difficult to obtain the differential value at arbitrary quaternions. However, we can

easily acquire the differential value at an identity quaternionqI . Hence, we first rotate−→p in

the way thatquopt is transformed into the identity quaternion,qI . That is, Equation (A.25) can

be rewritten as:

R(quopt)
−→p = f (qI ,R(quopt)

−→p). (A.27)

By the above equation, the derivative at the arbitrary quaternion is transformed into the deriva-

tive at the identity quaternion:
∂ f (qu,R(quopt)

−→p)

∂q

∣∣∣∣∣∣∣
qI

, (A.28)

Let R(quopt)
−→p = −−→popt. Then the term in (A.28) can be rewritten as follows.

∂ f (qu,
−−→popt)

∂q

∣∣∣∣∣∣∣
qI

(A.29)

From the above equation and Equation (A.25),

∂ f (qu,
−−→popt)

∂q

∣∣∣∣∣∣∣
qI

=
∂(R(qu)−−→popt)

∂q

∣∣∣∣∣∣∣
qI

=
∂R(qu)
∂q

∣∣∣∣∣
qI

−−→popt + R(qu)


∂−−→popt

∂q

∣∣∣∣∣∣∣
qI



=
∂R(qu)
∂q

∣∣∣∣∣
qI

−−→popt (A.30)

because

R(qu)


∂−−→popt

∂q

∣∣∣∣∣∣∣
qI

 =
[

0 0 0 0
]
. (A.31)
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Replace Equation (A.24) into Equation (A.30).

∂R(qu)
∂q

∣∣∣∣∣
qI

=
∂

∂q

(
1
||q||R(q)

)∣∣∣∣∣∣
qI

=
∂

∂q

(
1
||q||

)∣∣∣∣∣∣
qI

R(qI ) +

(
1
||qI ||

) (
∂

∂q
R(q)

∣∣∣∣∣
qI

)
(A.32)

Since

R(qI ) = I ,
1
||qI || = 1,

Equation (A.32) is transformed into:

∂R(qu)
∂q

∣∣∣∣∣
qI

=
∂

∂q

(
1
||q||

)∣∣∣∣∣∣
qI

I +
∂R(q)
∂q

∣∣∣∣∣
qI

. (A.33)

From the definition of the quaternionq =
(

u v w s
)
, the first term in the right handed

side of Equation (A.33) can be rewritten as:

∂

∂q

(
1
||q||

)∣∣∣∣∣∣
qI

I =

(
1
||q||

(
− (||q||)′

∂q

))∣∣∣∣∣∣
qI

I

=

(
1
||qI ||2

) 
[
− (||q||)′

∂u
− (||q||)′

∂v
− (||q||)′

∂w
− (||q||)′

∂s

]∣∣∣∣∣∣
qI

 I

=
[
−2u −2v −2w −2s

]∣∣∣∣
qI

I

=
[

0 0 0 −2
]
I

=





0 0 0

0 0 0

0 0 0





0 0 0

0 0 0

0 0 0





0 0 0

0 0 0

0 0 0





−2 0 0

0 −2 0

0 0 −2




(A.34)

By replacingR(q) with Equation (A.14) the second term in the right handed side of Equation

(A.33) can be evaluated as follows.

∂R(q)
∂q

∣∣∣∣∣
qI

=
[

∂R(q)
∂u

∂R(q)
∂v

∂R(q)
∂w

∂R(q)
∂s

]∣∣∣∣
qI

=





2u 2v 2w

2v −2u −2s

2w 2s −2u





−2v 2u 2s

2u 2v 2w

−2s 2w −2v





−2w −2s 2u

2s −2w 2v

2u 2v 2w





2s −2w 2v

2w 2s −2u

−2w 2u 2s





∣∣∣∣∣∣∣∣∣∣
qI

=





0 0 0

0 0 −2

0 2 0





0 0 2

0 0 0

−2 0 0





0 −2 0

2 0 0

0 0 0





2 0 0

0 2 0

0 0 2




(A.35)
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From Equation (A.34) and (A.35), the solution of Equation (A.33) can be found as:

∂R(qu)
∂q

∣∣∣∣∣
qI

=





0 0 0

0 0 −2

0 2 0





0 0 2

0 0 0

−2 0 0





0 −2 0

2 0 0

0 0 0





0 0 0

0 0 0

0 0 0




(A.36)

Note that the scaler term of the quaternion disappears in case that the derivative is evaluated

at qI . To calculate the (negative) gradient, we have to estimate only the 3 parameters of its

vector part.

By replacing Equation A.36 into Equation (A.30), we have the following relationship:

differential as follows.

∂ f (qu,R(quopt)
−→p)

∂q

∣∣∣∣∣∣∣
qI

=
∂ f (qu,

−−→popt)

∂q

∣∣∣∣∣∣∣
qI

=
∂R(qu)
∂q

∣∣∣∣∣
qI

−−→popt

=





0 0 0

0 0 −2

0 2 0





0 0 2

0 0 0

−2 0 0





0 −2 0

2 0 0

0 0 0





0 0 0

0 0 0

0 0 0







x

y

z



=





0 0 0

0 0 −2

0 2 0





x

y

z





0 0 2

0 0 0

−2 0 0





x

y

z





0 −2 0

2 0 0

0 0 0





x

y

z





0 0 0

0 0 0

0 0 0





x

y

z





=



0 2zopt −2yopt 0

−2zopt 0 2xopt 0

2yopt −2xopt 0 0


, (A.37)

where −−→popt =



xopt

yopt

zopt



When ignored the last column, the 4× 3 matrix in the right handed side of Equation (A.37)

is the skew-symmetric matrix of−−→popt multiplied by−2. Skew-symmetric matrix is a useful

expression, for example, for a cross product of two vectors:

−→a × −→b =



aybz − azby

azbx − bzax

axby − bxay


=



0 −az ay

az 0 −ax

−ay ax 0





bx

by

bz


= C(−→a )

−→
b , (A.38)
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where −→a =



ax

ay

az


−→
b =



bx

by

bz



Considering−C(−→a ) = C(−→a )T , Equation (A.37) is finally transformed into:

∂ f (qu,R(quopt)
−→p)

∂q

∣∣∣∣∣∣∣
qI

= 2C(−−→popt)
T . (A.39)

After obtaining the differential value atqI , that is, the rotation axisλqv = (λu, λv, λw,0)(u2+

v2 + w2 = 1) in quaternion representation (negative gradient of the quaternion’s vector part in

line minimization process), we need the rotation amount around the determined axis. If the

expected rotation quaternion is denoted byq′, in the following equation

q′ = qI + λqv = (λu, λv, λw,1), (A.40)

the scaler partqs is calculated by normalization of the above quaternion.

qs = λ2 + 1 (A.41)

Then we can obtain the rotation amountφ from the above equation and the equation (A.21) as

follows.

φ = 2arccos

(
1

λ2 + 1

)
(A.42)
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Appendix B

Derivation of Partial Derivatives

In this chapter, we show the derivation of partial derivatives of the numerical formula repre-

sented by each mathematical models.

B.1 Revolution Surface of Catenary

B.1.1 Numerical Formula

X(u, v) = (lφ(v) cosu, lφ(v) sinu, lψ(v)), (B.1)

where φ(v) = bcosh
(v
a

)
, ψ(v) =

∫ v

0

√
1− b2

a2
sinh−1

( t
a

)
dt

parameter a, b, l

B.1.2 Preliminary

From

sinhx =
ex − e−x

2
, (B.2)

the following equation is obtained.

sinh−1x = log(x +
√

x2 + 1) (B.3)

∴
∂

∂x
(sinh−1x) =

1√
x2 + 1

(B.4)
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B.1.3 Partial Derivative

Partial Derivative with respect to Parametera

∂X
∂a

=

(
(l cosu)

∂φ

∂a
, (l sinu)

∂φ

∂a
, l
∂ψ

∂a

)
(B.5)

where
∂φ

∂a
= −bv

a2
sinh

v
a

(B.6)

∂ψ

∂a
=


√

1− b2

a2
sinh−1 v

a


b2 ∂

∂a

(
− 1

a2 sinh−1 v
a

)

2
√

1− b2

a2 sinh−1 v
a

=
b2

2
∂

∂a

(
− 1

a2
sinh−1 v

a

)

=
b2

2


1

2a3
sinh−1 v

a
− 1

a2

1√
v2

a2 + 1


(
− v

a2

)

=
vb2

2a3

(
− 1

2a2
sinh−1 v

a
+

1√
v2 + a2

)
(B.7)

Partial Derivative with respect to Parameterb

∂X
∂b

=

(
(l cosu)

∂φ

∂b
, (l sinu)

∂φ

∂b
, l
∂ψ

∂b

)
(B.8)

where

∂φ

∂b
= cosh

v
a

(B.9)

∂ψ

∂b
=


√

1− b2

a2
sinh−1 v

a


−2b
a2 sinh−1 v

a

2
√

1− b2

a2 sinh−1 v
a

= − b
a2

sinh−1 v
a

(B.10)

Partial Derivative with respect to Parameter l

∂X
∂l

= (φ(v) cosu, φ(v) sinu, ψ(v)) (B.11)
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B.2 Dini’s Surface

B.2.1 Numerical Formula

X(s, t) =

(
l cost
coshs

,
l sint
coshs

, l(s− tanhs+ bt)

)
, (B.12)

parameter b, l

B.2.2 Partial Derivative

Partial Derivative with respect to b

∂X
∂b

= (0,0, lt) (B.13)

Partial Derivative with respect to l

∂X
∂l

=

(
cost

coshs
,

sint
coshs

, s− tanhs+ bt

)
, (B.14)

B.3 Kuen’s Surface

B.3.1 Numerical Formula

X(u, v) =
(
l
2(cosu + usinu) sinv

1 + u2sin2v
, l

2(sinu− ucosu) sinv

1 + u2sin2v
, l

(
log

(
tan

v
2

)
+

2 cosv

1 + u2sin2v

))
(B.15)

parameter l

Partial Derivative with respect to l

∂X
∂l

=

(
2(cosu + usinu) sinv

1 + u2sin2v
,
2(sinu− ucosu) sinv

1 + u2sin2v
, log

(
tan

v
2

)
+

2 cosv

1 + u2sin2v

)
(B.16)

B.4 Inverse Function of the Elliptic Integral of the First Kind

B.4.1 Numerical Formula

X(φ, k) =

lφ, lk, l
∫ φ

0

dt√
1− k2sin2t

 (B.17)

parameter l
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Partial Derivative with respect to l

∂X
∂l

=

φ, k,
∫ φ

0

dt√
1− k2sin2t

 (B.18)
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