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ABSTRACT

There is a growing interest in virtual reality system such as computer games, digital
archives, many kinds of simulators and so on. And there are many researches on creating
the virtual model by observing the real objects. In this paper, we propose the method for
estimating the parameters of a bidirectional reflectance distribution function (BRDF) and
creating the photorealistic virtual model by using the light stripe range finder and polariza-
tion based image capture system. Under the fixed point light source, we capture the range
and the color images of the object which is rotated on the rotary table. Observing the
variation of intensity occurred by the object rotation, we can estimate the parameters of
BRDF (such as Torrance-Sparrow). Reflected light is separated into specularity and lam-
bertian by the polarized light source and polarization filter setted in front of the camera,
and that makes easy to estimate the parameters of BRDF. Estimating the parameters for
each point of the object surface, we can correctly reproduce the surface optical properties

even if the object surface has divergent optical properties.
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Chapter 1

Introduction

1.1 Background

It becomes more and more important to develop the easy method for getting the
accurate reflectance information as the interest in virtual reality is growing. Cur-
rently, virtual reality system is used in a wide variety of applications including
electronic commerce, simulation-and-training, and virtual museum walk-throughs.
In spite of these many needs for virtual reality models, most of the virtual reality
systems utilize models that are manually created by programmers. If we can build
a system that automatically create the models for virtual reality system, we can

drastically decrease modeling costs for virtual reality systems.

1.2 Related works

1.2.1 Image Bassed Rendering and Model Based Rendering

One major approach to building the virtual object model is the one which recon-
structs the input images taken by camera. In recent several years, many techniques
have been proposed for interpolating between views by warping input images, us-
ing depth information or correspondences between multiple images. The general
notion of generating new views from pre-acquired imagery is called image-based
rendering. Apple’s QuickTime VR is the basic one. Gorter et al.[19] proposed the

method for capturing the complete appearance of the real objects and scenes, and



rendering the images of the objects from new view positions. Unlike the traditional
shape capturing method which is used in computer vision, they didn’t use the fine
geometric representation. Instead, they used the 4D function called Lumigraph.
The Lumigraph is the subset of the complete plenoptic function which represents
the complete flow of light in all position in all directions. Levoy et al.[20] also
proposed the subset of the plenoptic function called Light Field. They interpreted
the input images as two slices of 4D function. This function can completely char-
acterizes the flow of light through unobstructed space in a static scene with fixed

illumination.

Nishino et al. [26] proposed the another approach for image-based rendering. They
used a fine geometric model and the eigen-texture which was texture-patchs made
of pictures taken from various point of view and was reduced its data set by princial-
component analysis. Wood et al.[21] also proposed the method which used a fine
geometric model and point-based color information called Lumisphere. Lumisphere

also reduced infromation quantity with the use of princial-component analysis.

The other approach to the problem is the one called model-based rendering. Usu-
ally, model-based rendering uses information of a fine geometry and a physical
surface property. Sato et al.[14] built a virtual model of a coffee cup which was
made of a fine geometric model and reflectance parameters used in a paticular re-
flectance model. They fixed the position of the camera and point light source and,

then, putted the real object on the rotary table.

1.2.2 Separation of Reflection Components

When we make a virtual model with correct reflectance properties by observing
real objects, we need to consider two reflection components: the specular reflection
component and the diffuse reflection component. If we only map the observed im-
age onto the object shape model as observed surface texture, we cannot reproduce
the appearance of the object under different viewing and illumination conditions

correctly. When highlights are observed in the original images, those highlights are



fixed on a certain position of the object surface permanently regardless of illumina-
tion and viewing conditions. Therefore, in order to model the reflection properties

correctly, we have to separate the specular reflection and diffuse reflection.

In the computer vision research, several techniques to separate the reflection com-
ponents have been developed. One major approach to the problem is the one that
uses color as a clue. Most of color based methods are based on the dichromatic re-
flection model proposed by Shafer [10]. The dichromatic reflection model suggests
that reflected lights from dielectric material have different spectral distributions be-
tween the specular and the diffuse reflection components. The specular component
has a similar spectral distribution to that of the illumination. On the other hand,
the diffuse component has an altered distribution by the colorants in the surface
medium. Consequently, the color of an image point can be viewed as the sum of of
two vectors with different directions in color space. Klinker et al.[11] observed that
color histogram of a uniformly colored object surface makes the shape of skewed
T with two limbs in the color space. One limb represents the purely diffuse points
while the other represents highlight regions. Based on this observation, Klinker et
al.[11] proposed an algorithm for automatically identifying the two limbs and us-
ing them to separate the diffuse and specular reflection components at each surface
point. Sato and lkeuchi [2] used a sequence of color images taken under actively
varying light direction, and successfully separated the reflection components for
each object surface point even if object surface is not uniformly colored.

Nayer et al. [6] used not only color but also polarization to separate the reflection
components. Their proposed algorithm used the partial polarization included in
the reflection in order to determine the color of specular component independently
for each image point. The specular color imposes constraints on the color of the
diffuse component, and the neighboring diffuse colors that satisfy these constraints
are used to estimate the diffuse color vector for each image point.

All of these separation methods based on the dichromatic reflection model suffer
from the common weakness in that they cannot work if the specular and diffuse
reflection vectors have same direction in a color space. In this paper, we propose a

new method for separating the reflection components using polarization. Unlike the



previously proposed methods, our method does not require that the diffuse color
and the specular color are different. In order to separate the reflection components
in a robust manner, we use a controlled illumination which is linearly polarized,
and we take the images of an object through a polarization filter. Our method
is able to separate the diffuse and specular reflection components for each image
pixel independently, and therefore, it can be applied to objects with complicated

surface textures.

1.3 Thesis Outline

In the second chapter, the representative reflection models are described, and, espe-
cially, Torrance-Sparrow reflectance model which is used in this paper is described
in detail. In the third chapter, polarization mechanism which is used to separate
the reflection components is explained. In the fourth chapter, data acquisition sys-
tem, which contains the CCD camera, the light stripe range sensor, polarization
filter, point light source, and rotary table, is described. In the fifth chapter, the
details of the algorithm is described and the separation result is examined. In the
sixth chapter, the parameters of the Toraace-Sparrow are estimated, and the result
is presented. In the seventh chapter, by the estimated parameters, I synthesize the

virtual images.



Chapter 2

Reflection Mechanism

A number of reflectance models have been proposed in the past by the researchers
in the fields of applied physics and computer vision. In general, these models are
classified into two categories: a diffuse reflectance model and a specular reflectance

model.

2.1 Diffuse Reflection

A diffuse reflectance model represents reflected rays resulted from internal scatter-
ing inside surface medium.

When light strikes an interface between two different media, some percentage of the
light passes through the boundary and the remaining portion of light is refleced.
The penetrating light hits internal pigments of the objects, and is re-emitted ran-
domly(Figure.2.1). This re-emitted light is called diffuse reflection, and Lambert

is the first who modeled this phenomenon. The formula Lambert deduced is:

Litg = CuipfN-S

= Clsscost; (2.1)

where Ig;5¢, Cyiyy, 1\7, 5, 0; are the brightness, a propotional constant, the surface
orientation,the light source direction, the angle between the light source direction
and the surface orientation, respectively. The diffuse component does not depend

on the angle of reflection but depend on the incident light.



Figure 2.1: Diffuse reflection resulting from the internal scattering mechanism

2.2 Specular Reflection

A specular reflectance model, on the other hand, represents light rays reflected
on the surface of the object. The surface may be assumed to be composed of
microscopic planar elements, each of which has its own surface orientation diffent
from the macroscopic local orientation of the surface. The result is the specular
reflection component that spreads around the specular direction and that depends
on the surface roughness for the width of the distribution.

Specular reflectance model can be derived from the two completely different ap-
proaches: physical optics based and geometrical optics based. The physical optics
based approach uses electromagnetic theory and Maxwell’s equations to study the
propagation of light. On the other hand, geometrical optics based approach uses
assumption of the short wave length of light and treats the propagation of light
geometrically. The representative physical optics based model is the Beckman-
Spizzichino model, and the representative geometrical optics based model is the

Torrance-Sparrow model.



2.2.1 Physical optics based model

The physical models are directly derived from electromagnetic wave theory by usig
Maxwell’s equations. Beckmann and Spizzichino deduced their reflectance model
by solving the Maxwell’s equations by using Helmholts integral with Kirchoff’s
assumption on a perfect conductor surface. They made some assumptions to make

up their reflectance model, as follows:
e The surface hight is assumed to be normally distributed.

e The radius of curvature of surface irregularities is large compared to the

wavelength of incident light (Kirchoff’s assumption).
e The surface is assumed to be a perfect conductor.

e The shadowing and masking of surface points by adjacent surface points are

ignored.

e The light is assumed to be reflected only once and not to bounce between

surface facets before scattered in the direction of the observer.
e The incident wave is assumed to be perpendicularly polarized.

e The incident wave is assumed to be a plane wave. This assumption is rea-
sonable when the light source is at a great distance from the surface relative

to the physical dimensions of the surface.

The Beckmann-Spizzino model consists of the specular lobe and specular spike
components. The specular spike component is represented as a delta function
and causes very sharp reflection when reflection angle equals to the incidence an-
gle(specular angle). The specular lobe component is represented as a Gussian

function and causes widely spreadding reflection.

2.2.2 Geometrical optics based model

The geometrical models are derived from simplifying many of the light propagation
problems. Torrance and Sparrow obtained their reflectance model by assuming as

follows:



e The surface is modeled as a collection of planer microfacets, and the facet

slopes are assumed to be normally distributed.

e The size of palnner facets is much greater than the wave length of inciednt
light. Therefore, it can be assumed that incident light rays are reflected by

each facet in its specular direction only.
e Each facet is one side of a symmetric V-groove cavity.

e The light source is assumed to be at a great disatance from the surface so

that all incident rays are regarded to be parallel to one another.

The Torrance-Sparrow model is represented by a Gaussian function of the surface

roughness parameters.

2.3 General Reflectance Model

The Torrance-Sparrow model is aimed for modeling rough surface of any materials.
The Beckmann-Spizzichino model describes the reflection from rough to smooth
surface. The Torrance-Sparrow model is good approximation of the Beckmann-
Spizzichino model when it is applied to the rough surface. So, physical optics
based model is more general than the geometrical optics based. But, physical optics
based model has very complex mathematical forms and is difficult to manipulate.
Geometrical optics based model, however, has very simple function form, but it
can not be applied to the smooth surface materials.

In order to combine the reflection models for the smooth surface and the rough
surface, Nayer, Tkeuchi, and Kanade[12] proposed the general reflectance model.
This model consits of three components: specular spike, specular lobe, and diffuse.
Each of these components is represented by, respectively, these threee functions:
the delta function, the Gaussian function, and the Lambertian’s cosine function.
Let’s assume that the surface is located at the origin of the coodinate frame, and
that surface normal vector is in the direction of the Z axis. The beam illuminating
the surface lies in the X-Z plane, and it’s incident on the surafce is at an angle, 6;.

The observer is located at (6,, ¢,).
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Figure 2.2: Diagram of the Unified Reflectance Model

Under this geometry, general reflectance model is represented as follows

exp (—a?/20?)

I= ss(sei_er 7 B
Cundll = 0,)(6) + O P

‘|‘Cdiff cos 8; (2.2)

Css, Cs1, Caipy are constants which respectively represent the strength of the spec-
ular spike, specular lobe, and diffuse components. The « is the angle between the
surface normal and the bisector of the viewing and light source directions. The o
is the parameter related to the Torrance-Sparrow surface roughness parameter.

The ratio Cy/Cys is dependent on the optical roughness of the surface. Mathe-

matically, optical roughness is defined as
g= (27‘1’%(C080i + cos6,))? (2.3)

where o, A are the root-mean-square of the height disrtribution, and the wave-
length, respectively. For smooth surface (¢ <« 1), the spike component is dominant.
As the roughness increases, however, the spike componet shrinks rapidly, and for

rough surface g > 1, the lobe component begins to dominate. It is only for a

11



small range of roughness values that Cy and Cy are both significant. In this pa-
per, the Torrance-Sparrow model is used for representing the diffuse and specular

components.

1

o2 = B 2.4
60307,6 m=R,G, (2.4)

I, = ID,m cos@; + I&m

where 6; is the angle between the surface normal and the light source direction,
6, is the angle between the surface normal and the viewing direction, « is the
angle between the surface normal and the bisector of the light source direction
and the viewing direction, Ip,, and [g, are the scaling factor for the diffuse
and specular components, and o is the standard deviation of a facet slope of the
Torrance-Sparrow model.

In this model, the reflections bounced only once from the light source are con-
sidered. Therefore, this model is valid only for the convex objects. So, in this
research, we use the objects for which inter-reflection does not affect our analysis
significantly.

We refer to Ip ,, as the diffuse reflection parameters, and /s, and o as the specular

reflection parameters.
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Chapter 3

Polarization

3.1 Related works

Polarization has been used for several decades in the remote sensing research. Wolff
and Boult [4] have proposed an algorithm which analyzes linear polarization states
of highlights removal and material classification. Boult and Wolff [5] have also
studied the classification of scene edges based on their polarization characteristics.
Recently, Saito et al. [13] have proposed a method for measuring surface orien-
tation of a transparent object using the degree of linear polarization in highlights
observed on the object. Yoav et al. [7] have presented the method for classifying

the transmitted image and the refelcted image on the transparent sheet.

3.2 Transmissivity of Polarization Filter

The method presented in this paper uses two linear polarization filters. One is
placed in front of a point light source in order to polarize the light source linearly,
and the other is placed in front of a camera to capture images through the linear

polarization filter.

In this paper, we use the dichroic sheet polarizers as a polarization filter. We define

the polarization filter’s transmissivity T' to the linearly polarized light as follows:

T = kycos® @ + kysin® 0 (3.1)

13



In the above equation, 6 is the angle between the transmission axis of polarization
filter and the vibrating surface of the incident light. If the polarization filter is
ideal, k; equals to 1, and k; equals to 0. But real polarization filter has a little
smaller ky than 1, and a little larger ko than 0.

In order to define the transmissivity to the non-polarized light, we introduce the
transmissivity of a pair of the polarization filters(Figure.3.1). If we define 6 as an
angle between the transmission axises of closely attached two polarization filters,

we get the transmissivity of a pair of the polarization filters.
Tpair(0) = kikysin® 0 + = (k2 + k3) cos® 6 (3.2)

In the case of # = 90° and # = 0°, we define a pair transmissivity of the polarization

filters as follows:

Hyg = T,4ir(90°) = (3.3)

Ho = Tpir (0°) = %(k? +E2) (3.4)

We substitute the above equations to eq.(3.2), then we can simplify that equation
as follows:

Tpair = Hogsin® 6 4 Hycos? 8 (3.5)

= Hgo+ (Ho — Hgg) cos® 6 (3.6)

Hygg is called closed transmissivity or extinction ratio. And Hy is called open trans-
missivity. Usually, open transmissivity has much larger value than closed trans-
missivty has, and so, the logarithm of the transmissivity(called optical density) is
used to describe the polarization filter’s property. The optical density is defined as

follows:

Ao = log (HLO) (3.7)

1
Ago = log (HQO) (38)

14
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Figure 3.1: Transmissivity of a pair polarization filters

15

-
-----

s,
et
.
.



3.3 Separation of Reflection Componetns with Polarization

As described in the previous section, the image brightness value taken by sensor is
described as:

I=15+1, (3.9)

where I; represents the diffuse component and I, represents the specular compo-
nent.

When incident light is linearly polarized, the diffuse component tends to be unpo-
larized due to its internal scattering. In contrast, the specular reflection component
tends to remain linearly polarized. Therefore, the observed brightness of the spec-
ular component can be expressed as a trigonometric function for polarization filter
angle, and that of the diffuse component can be expressed as a constant. Thus the

image brightness observed through a linear polarization filter is described as:
I=1.+I,(Ho+ (Ho — Hgpo) cos’(8 — 3)) (3.10)

where @ is the angle of the polarization filter and 3 is the phase angle determined
by the projection of the surface normal onto the plane of the filter. Hgg and Hg
are closed transmissivity and open transmissivity which are defined in the previous
section.

It should be noted that in the above equation I. is not equal to the real diffuse
intensity, and I, is not equal to the real specular intensity. The diffuse reflection
component which is unpolarized is always attenuated by the polarization filter
and the specular reflection component is also attenuated by the difference of the
reflectivity between the light waves which are parallel or perpendicular to the

incidence plane. !

The polarization state of reflected light dependents on several factors including the
material of the reflecting surface element, and the type of reflection component, i.e.
diffuse or specular. In order to describe the state of polarization of the reflected
light, the Fresnel reflection coefficients Fy(n,4) and Fj(n,v) are used [4] (Fig-

ure.3.3). The Fresnel reflection coefficients determine the polarization of reflected

! The incidence plane includes the surface normal and the illumination direction.
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-8 -B+6/2 -B+6
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Figure 3.2: Relation between the imge brightness and the orientation of a polar-

ization filter

light waves in the directions perpendicular and parallel to the plane of incidence,
respectively, and determine the maximum and the minimum intensities which are
observed when the angle # of the polarization filter varies. The parameter n is the
complex index of refraction of the surface medium and the parameter ) is the inci-
dence angle. Since we use a linearly polarized light source, we can assume that the
intensity of the specular component observed through a linear polarization filter
is guaranteed to become equal to zero at a certain angle. Hence, we obtain the
following relation between I, and specular reflection intensity:

q= FL(U7¢)

= Find) (3.11)

17



q
L, =—1I; 3.12
L+y¢ ( )

where I; equals the specular reflection intensity.

Ratio

0 Incident angle 90°

Figure 3.3: Relation between incident angle and Fresnel coefficients (F}, = F.Fs =
Fp)

It is known that the diffuse component is also polarized when the viewing angle
is close to 90 degrees, e.g., near the occluding contour of an object. However, the
diffuse component becomes linearly polarized only in narrow region and the degree
of polarization in the diffuse reflection component is generally negligible. Hence, we
assume that the diffuse component is unpolarized in our analysis. The intensity of

unpolarized light is attenuated by 1/2(ky + k2) when it passes a linear polarization

18



filter. As a result, I. and the diffuse component have a relation as below:
1
I. = 5(161 + ko) ly (3.13)

where %(kl + k3)14 is the observed intensity of the diffuse reflection.

19



Chapter 4

Data Acquisition System

4.1 Total Experimental Setup

The total experimental setup for the image acquisition system used in our exper-
iment is illustrated in Figure 4.1. An object to be modeled in this experiment
is placed on the rotary table. A sequence of range images and color images are
captured as the object is rotated at a certain angle step. For each rotation step,
one range image and thirty five color images, which are taken every five degrees

polarization filter rotation in front of the CCD camera, are obtained.

4.2 Light Source

A xeon lamp is used as a light source. The lamp is small and placed far enough
from the object so that we can assume the lamp is a point light source. In order
to illuminate the object with linearly polarized light, a linear polarization filter is

placed in front of the lamp.

4.3 Polarization Filter

In this experiments, dichromatic sheet polarizer is used as a polarization filter. The

specification of the polarization filter which we use is as follows:

Coverage Wavelength Region --- 350-650 nm

20



Transmissivity to non-polarized light beam --- (ki + ko) = 32%

Open Transmissivity (Hp) --- > 20 %

Closed Transmissivity (Hg) --- 107*

4.4 CCD Camera

We use the Victor’s KY-F70 3-CCD Digital Camera for image acquisition. The
camera has 1360 x 1024 square pixels per CCD with progressive scanning and

3-CCD color accuracy.

4.5 Light Stripe Range Sensor

A range image is obtained using a light-stripe range sensor with a liquid crystal
shutter and a color CCD video camera. Each range image pixel represents an
(X,Y, Z) location of a corresponding point on an object surface. The same color
camera is used for acquiring range images and color images. Therefore, pixels of
the range images and the color images directly correspond. Color and range images

are taken through a polarization filter.

The range sensor is calibrated to produce a 3 X 4 projection matrix Il which repre-
sents the translation between the world coordinate system and the image coordinate
system. The location of the rotary table with respect to the world coordinate sys-
tem is calibrated before image acquisition. Therefore, object location is uniquely

determined by the translation matrix 7.

21



vAg
< >
A7
Linearly polarized light

Lamp

Polarization filter

Object

Range sensor

o)

Polarization filter

CCD Camera

Rotary table

Figure 4.1: Image acquisition system
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Chapter 5

Separation of Reflection Components

5.1 Separation Algorithm

In our experiments, images of a target object are taken every five degrees filer
rotation, i.e., 35 images in total. Then, the maximum intensity [I,,. and the
minimum intensity I,,,;, are determined for every image pixel. Theoretically, only
three images are sufficient for determining I,,,,, and I,,,;,. However, for increasing
the robustness of estimation of I,,,;, and I,,,,,, we use more images by rotating the
polarization filter. If I,,;, — I4» for a certain pixel is less than a threshold, we
consider the pixel to contain only the diffuse component. If I, — Ly is larger
than a threshold value, we consider that the pixel contains the specular component
and that I,,4» — Lnin is equal to 21, and [, is equal to I..

In summary, our separation technique is proceeded as follows. First, a linear po-
larization filter is placed in front of the light source and camera. Second, input
images of an object are captured for every 5 degree rotation of the polarization
filter in front of the camera. Third, I,,,, and I,,;, are determined for each pixel.
If Iae — Lmin is larger than a threshold value, we determine the pixel contains the
specular component and the intensity of the specular component is obtained from
Loz — Lin. Inmin is used for determining the intensity of the diffuse component.

Figure.5.1 shows the process of separating the reflection components.

23
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Object Surface

Figure 5.1: Mechanism of reflection componentns separation

5.2 Result

Figure.5.2 is one of the input images, and Figure.5.3 and Figure.5.4 show an cor-
rensponding example of reflection component separation by using our proposed
method. It shows that the specular and diffuse reflection components are success-
fully separated even if they have the similar color.

Figure.5.5 is another input image which has colorful texture. We use only polariza-
tion to separate reflection components, we are able to separate reflection compo-
nents robustly. Figure.5.6 and Figure.5.7 are the results of reflection components

separtion.
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Figure 5.2: Input image taken without a polarization filter
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Figure 5.3: Separated specular component
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Figure 5.4: Separated diffuse component
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Figure 5.5: Input image taken without a polarization filter
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Figure 5.6: Separated specular component
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Figure 5.7: Separated diffuse component

30



Chapter 6

Parameters Estimation

After separating the reflection components, we determine the reflectance parame-
ters using the separated reflection component images.

In order to estimate reflectance parameters, we need not only reflection component
images but also accurate geometric information. In the following sections, first, we
explain the method for constructing object shape model by multiple range images.
Second, we explain the detail of the diffuse parameters estimation. Last, we explain

the algorithm for specular parameters estimation.

6.1 Surface Shape Modeling

A sequence of range images of the object is used to construct the object shape as
a triangular mesh. Then, the number of triangles used for the object shape model
is reduced by simplifying the object shape in order to compute the reflectance pa-
rameters efficiently.

One disadvantage of using the simplified object model is that a polygonal normal
computed from the simplified triangular mesh model does not accurately approxi-
mate the real surface normal even if the object shape is preserved reasonably well.
Thus, in order to estimate the reflectance parameters correctly, we compute the
surface normals at every vertex of polygons by using the surrounding vertices.

In the following subsections, we describe reconstruction of a triangular mesh model

of the object from a sequence of range images, and estimation of the fine surface
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normals from surrounding vertices.

6.1.1 Shape modeling from range image merging

In order to reconstruct object shape as a triangular mesh model from multiple

range images, following four steps are needed.

Alignment of all range images

All of the range images are measured in the coordinate fixed to the range sensor
system, and so we need to align these images correctly. In order to align range

images, we use the technique proposed by Nishino et al.[28].

Merging based on a volumetric representation

After all of the range images are aligned to a unique coordinate system, these range
images are merged by the volumetric representation. In this experiment, we use
the method proposed by Wheeler et al.[3].

First, we consider imaginary 3D volume grids around the aligned triangular patches.
Next, in each voxel, we store the value, f(z), of the signed distance from the cen-
ter point of voxel, z, to the closet point of the object surface. The sign indicates
whether the point is outside, f(z) > 0, or inside, f(z) < 0, the object surface,
while f(z) = 0 indicates that z lies on the surface of the object.

Isosurface extraction from volumetric grid

The volumetric data is then used to construct the object surface which is rep-
resented as triangular mesh set. The marching cube algorithm [31] is used to
construct a triangular mesh. The zero crossing of the implicit surface, f(z) = 0, is

traversed in the volume grid.

Figure 6.1 shows the constructed object shape model which is made of triangular

meshes.
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Figure 6.1: Constructed object shape model

6.1.2 Surface normal estimation

Polygonal normals computed from the triangular surface meshes are only approx-
imation of the real object surface normals. If and only if the object surface is
relatively smooth and does not have high curvature points, polygonal normals can
approximate real surface well. In order to estimate reflectance parameters correctly
at the every point of the object surface, we need three directions: the viewing di-
rection, the light source direction, and the surface normal. And so, we have to

compute surface normals more precisely.

For computing the accurate surface normals, we use the eigen vector of the covari-
ance matrix of the neighboring 3D points. The covariance matrix of n 3D points

(X1, Y1, 7] , whose centroid is [X,Y, Z], is described as follows:

. | (= X)
C=3"| Wi—v) | [(X- %), (= V), (4 2)] (6.1)
=1 —
(Z1— Z)
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Eigen vector associated with
the smallest eigen value

Input 3D points

Figure 6.2: Principal component analysis for normal estimation

The eigen vector associated with the eigen value of the smallest magnitude can
be considered the surface normal(Figure. 6.2). The surface normals are computed
at all of the vertex points which consists triangular meshes. And surface normal

within the triangular mesh is obtained by bilinear interpolation.

6.2 Diffuse Parameters estimation

Using the separated diffuse reflection image, we can estimate the diffuse reflec-
tion parameters (Ip g, Ip,q,Ip,B) without undesirable effects from the specular
reflection component. The incidence angle #; can be obtained by range sensor and
camera calibration.

Figure 6.3 shows the estimated diffuse parameter image. We can see the object

surface color which is not attenuated due to the incidence angle.

6.3 Specular Parameters estimation

After estimating the diffuse parameters, we also estimate the specular parameters
(IsrsIsq,Is B, o) using the angle a and the angle 6, as a known information.

As described in the Chapter 3, separated specular images are attenuated by a
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certain ratio determined by Fresnel reflection coefficients. But attenuation ratio
is constant overall highlight region, we can correctly estimate the specular pa-
rameters. More precisely, the Fresnel reflection coefficients are dependent on the
incidence angle. However, the Fresnel coefficients are constant around the inci-
dence angle less than 30 degree, and the specular reflection is observed only near
the surface normal direction in our experimental setup. Therefore, by setting the
light and camera in the same direction, we can assume that the Fresnel reflection

coeflicients are constant.

There is a significant difference between estimation of the diffuse and specular
reflection. Diffuse reflection can be observed overall the object surface which is
illuminated by a beam of light. On the other hand, specular reflection is observed
from a limited viewing direction, and is observed over a narrow area of the object
surface. So, we have to select the sampling pixels carefully for specular parameters
estimation. We used the same strategy described in [14]. Figure 6.4 and 6.5 show

the estimated o and Is which are projected on the mesh model.
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Figure 6.3: Estimated diffuse parameter image
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Figure 6.4: Specular parameter(o) image
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Figure 6.5: Specular parameter(/g) image
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Chapter 7

Synthesized Images

Using the diffuse and specular reflection parameters estimated in the previous
section, and the surface mesh model of the object, we synthesized virtual images
of the object under different illumination and viewing conditions. For synthesizing
virtual images, the accurate surface normals obtained by the PCA are also used.

Figure 7.1 shows the comparison between original images and synthesized images

viewed from different directions.

Comparing the synthesized images with the original images, we notice that synthe-
sized images are darker than the original images. This is, I think, caused by the
variation of the polarizer’s optical density with respect to the wavelength. Dichroic
sheet polarizer has a different transmissivity to the different wavelength. In order to
avoid this problem, we should have calibrated white balance every before capturing

images without polarizer and before capturing images through polarizer.
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Figure 7.1: Comparison between input images and synthesized images
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Chapter 8

Conclusion

In this paper, we proposed a new method for separating the reflection components
using polarization. Unlike the previously proposed methods, our method does not
require the difference of color between the specular reflection and diffuse reflection.
So, our method can robustly separate the reflection components even if objects
have a white texture and illumination color is white. After reflection components
separation, we estimate the parameters of a reflection model by using the separated
reflection components. By synthesizing virtual images under the arbitrary illumi-
nation and viewing, we have shown that the reflection parameters are successively

estimated from the separated reflection components.
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