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ABSTRACT

The postural balance system is one of the most fundamental function

for human voluntary motion. This system has been analyzed and mod-

eled by many researchers in the past. There are two ways of controling

balance: feed-forward and feedback. Many of the feed-forward systems

are offline, which take unstable human motion as the input and convert

it to the stable one. Real-time feedback systems can manipulate only

weak perturbation. In order to generate the human-like motions of re-

covering the balance such as swinging its arms, it is nessesary to input

some motion data that the body has to follow to the feed-forward sys-

tem. In this thesis, we propose a new feedback balance control system for

the human body that can find the optimal motion of keeping its balance

against perturbation without giving any feed-forward input beforehand.

This system adopts two different strategies: the dynamic balance control

with the quadratic programming method and the posture control with

PD control. When large perturbation is applied to the model, the mo-

tion very similar to the real human such as swinging its arms or bending

its waist is generated as the optimal control.



論文要旨

人間の動作にとって，バランスの制御はもっとも基本的な働きのひと
つである。それゆえ人間のバランス制御については，従来から様々な解
析やモデル化がなされてきている。バランス制御には，フィードフォワー
ドによるものとフィードバックによるものがある。前者によるものの多
くはオフラインシステムであり，入力された不安定な動作を安定なもの
に変換するというものである。一方，後者によるリアルタイム制御では，
弱い外乱に対してしか有効に制御を行なうことができない。また，人間
にみられる腕を振り回したりしてバランスをとるといった動作は，これ
までフィードフォワードであらかじめ指令を与えておかなければならな
かった。本論文では，あらかじめ動作の指示を与えなくても外乱に対する
最適なバランス制御動作を生成する，フィードバックによるバランス制
御の手法を提案する。本システムは，二次計画法による動的バランス制
御とPD制御による姿勢の制御という 2つの制御を組み合わせて用いる。
このモデルに大きな外乱を与えた場合，腕を振り回したり腰を折り曲げ
たりという人間の動作によく似た動作が最適な制御として求められる。
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1 Introduction

The postural balance control system is one of the most fundamental sys-

tems that enable human voluntary motion. Every person unconsciously

keeps his/her balance during his/her motion. For example, even during a

simple motion such as just raising the hand, the trunk of the body is si-

multaneously controlled in order to counteract force and moment caused

by raising the arm.

Researchers in computer graphics have been working on feed-forward

human balance systems in order to create realistic human motion anima-

tion. These models often take some human gait motion as an input,

evaluate the position of the center of mass projected to the ground, or

the zero moment point through the motion, and finally fix it if some

invalid postures are found.

Ko et al [4] converted unstable motion to a stable one by decreasing

the moment applied to the body at the zero moment point to zero by

translating and rotating the pelvis and torso every frame. Komura et

al [5] calculated the balance motion by minimizing the integral of the

auxiliary moment that must be applied to the feet if the zero moment

point is out of the support surface. Tak et al [10] used the optimization
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method similar to the retargeting algorithm proposed by Gleicher [2] for

this kind of conversion.

However, these methods are off-line algorithms which cannot be used

for online simulations because the whole trajectory of the motion must

be known in advance to adjust the motion.

Many researchers have investigated the characteristics of human feed-

back postural control by analyzing the responses of the human body to

various external perturbations [9, 8, 3].

Feedback controllers have also been proposed by researchers in com-

puter graphics who used forward dynamics to simulate human motion.

Laszlo et al [7] stabilized the gait motion of a human body model using

the limit cycle control, while using either the ”up vector” or ”swing-

center-of-mass” as the regulation variable.

Wooten [11] used PD control as a postural control system, using the

position of the center of gravity as a variable. However, such methods

assume rather weak external perturbation. and slightly strong force can

definitely cause the body to fall down.

Oshita [12] used the optimization calculation for generating the mo-

tion. This algorithm finds a physically consistent motion under some

constraints when a target motion is given. The torque acting on joints

and the position of ZMP are optimized in this optimization.

In the field of biomechanics, many researchers work on the human

balance control. Some of them investigated features of balance control

of the real human [13, 14]. They actually applied perturbations to the
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real human, and measured the force, the velocity, or several physical

parameters. Others investigated the motion of balance recovery by step-

ping [15, 16]. In these researches, the motion of the real human is ana-

lyzed. On the other hand, there are some researches of simulating human

balance control in biomechanics [17, 18, 19]. However, these researches

use the simple inverse-pendulum model, which is not a multi-body human

model.

In the field of robotics, the dynamic balance control for human mod-

els is investigated by many researchers. Yamane et al [20] proposed a

method to convert a physically inconsistent motion to a physically con-

sistent one. This was not implemented on real humanoid robots. Kagami

et al [21] proposed another method for generating dynamically-stable mo-

tion for humanod robots, and implemented it on humanoid robots. How-

ever, these are the method to convert a original motion to a stabler one,

then it cannot deal with unexpected large perturbations.

For biped balance, Horak et al [1] found that human use two strate-

gies for keeping the balance, the ankle strategy and hip strategy. The

ankle strategy is a strategy to use mainly the ankle joint to restore the

position of the center of gravity back to the equilibrium state. This strat-

egy is chosen when the foot surface is long enough relative to the foot

length, so that the subject can fully use his/her toes to push back the

body. When the foot surface is short relative to the foot length, the sub-

ject uses the hip and trunk joint to keep the balance, which is called the

hip strategy. Kuo et al [6] theoretically analyzed such strategies using
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the musculoskeletal model.

However, we know that people use one more strategy to keep their

balance: the arm strategy. When a person is about to lose his/her bal-

ance, and is under a condition that he/she cannot step out one leg, the

arms are rotated recursively to work as the final servo to move the center

of mass back over the feet. This strategy is effective in returning the

center of mass over the feet, because the angular momentum of the trunk

of the body is canceled out by the angular momentum generated by the

rotation of the arms. This kind of motion can be observed when a person

is wearing a snow board and is about lose the balance.

In this thesis, we propose a new dynamic balance control system for

a human body model which is composed of five body segments, the foot,

shank, thigh, trunk and arm. This is designed as the feedback system.

Using our system, the human-like body motion is obtained as the optimal

control for recovering its balance, and the arm strategy appears without

any prior feed-forward input when large perturbation force is applied to

the body. The motion of recovery closely resembles those by real human.

Our system can counteract very large external perturbation force, and

therefore it can be utilized for the feedback balance system of humanoid

robots.
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2 Algorithm

2.1 Overview

In this algorithm, the human body is represented as a multi-body

model, which consists of fifteen linked rigid bodys, and has thirty-four

degrees of freedom (DOF).

The overview of this algorithm is shown in Figure 2.1. In the first

stage, the state of the human body model, such as the angles, the angular

velocity, and the angular acceleration of the joints, is obtained.

In the second stage, the coefficients for obtaining the external force,

the moment around the center of mass, and ZMP are calculated. They

depend on the state obtained in the previous stage, and they are used for

the optimization in the next stage.

In the third stage, the optimal torque for keeping the balance of the

model is calculated. There are two strategies for the calculation; one

is the PD control and the other is the optimization by the quadratic

programming method. Superior one is chosen in each turn.

In the fourth stage, the optimal torque is applied to the model, and

in the last stage, the state is integrated by the time step. When a turn

is finished, the first stage of the next turn starts about a new state.
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Obtaining the state of the model

the quadratic programming method

Applying the torque to the model

Integrating the state by the time step

Calculating the coefficients

Calculating the optimal torque

the PD contorol

Figure 2.1: The overview of the algorithm

As shown above, the optimization is closed in each turn, then the

balance control can be done locally. It is one of important features of this

algorithm, because it makes the real-time control possible.

2.2 Body Model

The human body model used in this algorithm is as Figure 2.2. It

consists of fifteen linked rigid bodys, and has fourteen joints and thirty-

four DOF.

There are two types of joins; one is a pin joint and the other is a ball

joint. The former has one DOF, and the latter has three DOF as shown

in Figure 2.3.
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Figure 2.2: The human body model

In this thesis, there is a constraint that both feet always touch the

ground and that the model cannot make a step. Because of this, the

closed-loop topology occurs at the legs, and then DOF in legs are reduced

from fourteen DOF to eight DOF. The optimization must be done about

this reduced DOF, not about DOF of the original joints. Figure 2.4 shows

DOF considering the closed-loop constraint.

Now, two variables of θ and ϕ are defined. The former is a vector

whose elements represent the angles of the joints, and the latter is a vector

whose elements represent the values of DOF considering the closed-loop

constraint. The relational equation about these two variables is discussed

later.
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Pin Joint (1DOF)

Ball Joint (3DOF)

Figure 2.3: Two types of joints (pin and ball)
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1

2

34
5

6 7

Thigh

Shank

Foot

Loins

Figure 2.4: The closed-loop structure at the legs

2.3 Zero Moment Point (ZMP)

The zero moment point (ZMP) is the key concept for the dynamic

balance control. Considering the static balance control, it is important

that the projection of the center of mass is in the foot supporting area.

ZMP is a similar concept to the projection of the center of mass in the

static balance control. ZMP is the point at which the moment acts from

the ground is zero. Thus, all the ground reaction force can be replaced

with the equivalent force acting on ZMP (Figure 2.5). In the dynamic

balance control, it is important that ZMP is in the foot support area.
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Figure 2.5: The concept of ZMP

Let p = t(xZMP, yZMP, zZMP) be the position of ZMP, and the following

equation is obtained:

n + (s− p)×m(s̈− g) = 0, (2.1)

where m is the mass of the body, s is the position of the center of mass,

n is the moment around the center of mass, and g = t(0, gy, 0) is the

vector of the gravity acceleration. This equation means that the moment

acting around the center of mass is equivalent to the moment generated

by the force acting on ZMP. ZMP is calculated by solving this equation.

Practically, p is written as t(xZMP, 0, zZMP), because the y-element of

the foot’s position is 0. Solving the above equation about the x- and

z-element of ZMP, the following formula is given:

xZMP =
nz + sxm(s̈y − gy)− syms̈x

m(s̈y − gy)
(2.2)

zZMP =
−nx − syms̈z + szm(s̈y − gy)

m(s̈y − gy)
. (2.3)
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2.4 Coefficients

2.4.1 What are the coefficients

In each frame, the angle and the angular velocity of the joints are

fixed, and only the angular acceleration of the joints can be changed by

the system. Thus, the postural adjustment must be performed by con-

trolling the angular acceleration. In fact, ϕ̈, elements of which represent

the acceleration of respective DOF, is optimized by the system. For the

purpose of this optimization, it is necessary to find the functions from ϕ̈

to the angular acceleration of the joints (θ̈), the external force (f), the

moment by f around the center of mass (n), and ZMP. These functions

are written as the linear equations (ZMP is written as fractions of linear

equations):

θ̈ = Jϕ̈ + k (2.4)

f = Cf ϕ̈ + df (2.5)

n = Cnϕ̈ + dn (2.6)

xZMP =
tαxϕ̈ + βx

tαcϕ̈ + βc

(2.7)

zZMP =
tαzϕ̈ + βz

tαcϕ̈ + βc

. (2.8)

The proof that the above functions can be written as the linear equations

is given below.

• θ̈ = Jϕ̈ + k

When ϕ is given, θ is determined uniquely. Therefor, the elements
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of θ are a function of ϕ:

θi = θi(ϕ). (2.9)

The derivatives of this are

θ̇i =
∑

j

ϕ̇j
∂θi

∂ϕj

(2.10)

θ̈i =
∑

j

{
ϕ̈

∂θi

∂ϕj

+
∑

k

ϕ̇jϕ̇k
∂2θi

∂ϕj∂ϕk

}

=
∑

j

ϕ̈j
∂θi

∂ϕj

+
∑

j

∑

k

ϕ̇jϕ̇k
∂2θi

∂ϕj∂ϕk

. (2.11)

The second term of (2.11) is a constant because ϕ and ϕ̇ are fixed in each

frame. Thus, the right side of (2.11) can be written as a linear expression

of ϕ̈.

• f = Cf ϕ̈ + df

The position of the center of mass is also a function of ϕ:

s = s(ϕ), (2.12)

then, in the same way as the above, it can be said that the second deriva-

tive of s is written as a linear function of ϕ. Because the external force

is expressed as

f = ms̈−mg, (2.13)

when m is the mass of the body and g is the gravity acceleration, the

external force f can be written as a linear expression of ϕ̈.
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• n = Cnϕ̈ + dn

n, the moment around the center of mass, is written as

n =
∑

i

{(si − s)×ms̈i + Iiω̇i + ωi × (Iiωi)} , (2.14)

while si is the center of mass of each rigid body, Ii is the moment of

inertia of it, and ωi is the angular velocity of it around si. The first

term of the right side of (2.14) can be written as a linear expression of ϕ̈,

because s̈ is a linear function of ϕ̈. The second term can also be written

as a linear expression of ϕ̈, because ωi = ωi(ϕ, ϕ̇), then ω̇i is a linear

function of ϕ̈:

ω̇i =
∑

j

(
ϕ̇j

∂ωi

∂ϕj

+ ϕ̈j
∂ωi

∂ϕ̇j

)
. (2.15)

The third term is a constant. Therefor n can be written as a linear

expression of ϕ̈.

• xZMP =
tαxϕ̈+βx

tαcϕ̈+βc
, zZMP =

tαzϕ̈+βz

tαcϕ̈+βc

Rewriting (2.2) and (2.3) with f and n:

xZMP =
nz + sxfy − syfx

fy

(2.16)

zZMP =
−nx − syfz + szfy

fy

, (2.17)

then these can be written as the fractions of linear expressions of ϕ̈,

because f and n are linear functions of ϕ̈,

15



2.4.2 Obtaining Coefficients

As shown above, θ̈, f , and n are expressed as the linear functions

of ϕ̈:

θ̈ = Jϕ̈ + k (2.18)

f = Cf ϕ̈ + df (2.19)

n = Cnϕ̈ + dn. (2.20)

On the other hand, these values are calculated as the functions of ϕ, ϕ̇,

and ϕ̈, using the inverse dynamics about the human model:

θ̈ = θ̈(ϕ, ϕ̇, ϕ̈) (2.21)

f = f(ϕ, ϕ̇, ϕ̈) (2.22)

n = n(ϕ, ϕ̇, ϕ̈). (2.23)

Therefore, the coefficients can be determined in the following way.

Now, we take the case of θ̈ for a example. Let 0 be a null vector and

1i be a vector whose elements are zero except for the i-th element:

1i = t(0, . . . , 0,

i-th∨
1 , 0, . . . , 0). (2.24)

First, the constant k is determined by θ̈(ϕ, ϕ̇,0), because (2.18) shows

θ̈(ϕ, ϕ̇,0) = k. (2.25)

Next, j1, the first column of J , is determined by θ̈(ϕ, ϕ̇,11)−k, because

(2.18) shows

θ̈(ϕ, ϕ̇,11) = J11 + k = j1 + k. (2.26)
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k = θ̈(ϕ, ϕ̇,0)

df = f(ϕ, ϕ̇,0)

dn = n(ϕ, ϕ̇,0)

for (i = 1; i ≤ NDOF ; ++i) {
ji = θ̈(ϕ, ϕ̇,1i)− k

cf i = f(ϕ, ϕ̇,1i)− df

cni = n(ϕ, ϕ̇,1i)− dn

}

Figure 2.6: The way to determine the coefficients

In the same way, ji is determined by θ̈(ϕ, ϕ̇,1i)− k.

In the cases of f and n, the coefficients are determined in this

way. The pseudo-program to determine these coefficients is shown in

Figure 2.6. When J , Cf , Cn, k, df , and dn are determined, the coeffi-

cients about ZMP, αx, αz, αc, βx, βz, and βc, are calculated by (2.16)

and (2.17).

2.5 Optimization

There are two strategies of optimization in this algorithm, using the

quadratic programming method and using the PD control. In this section,

first, the descriptions of each strategy are given, and then the way to

choose the strategy is explained.
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2.5.1 Quadratic Programming Method

The quadratic programming strategy is used when the perturbations

are large, and the aim is to return the center of mass to the initial position.

For attaining this goal, the motion is generated under the constraint that

the accelelation of the center of mass has a proper value. In this strategy,

it is not important that the posture of the model becomes similar to the

initial posture, and hence an optimal motion is generated with no relation

to the initial posture.

The quadratic programming method is a variation of the mathemati-

cal programming method. It is a method to solve the quadratic program-

ming problem, which consists of a objective function and constraints, and

finds the value of variables minimizing the objective function. The ob-

jective function is given as a quadratic function, and the constraints are

given as the linear equations or linear inequations. In this algorithm, the

variable is ϕ̈, then the objective function and the constraints must be

written as functions of ϕ̈.

First, we define the objective function. In this algorithm, the param-

eters to be minimized are the square sum of the angular acceleration of

joints and the opposit of the y-element of the acceleration of the center

of mass. The latter is required to continue standing upright. The model

will sit down without it, because the posture of sitting down is stabler

than that of standing upright. The former is for generating the low-cost

motion. The reason why the angular acceleration is chosen instead of the

18



torque, is that the torque acting at leg joints is not determined uniquely

because of the closed-loop problem, while the acceleration is determined

uniquely.

The square sum of the angular acceleration of joints is written as

tθ̈Cθθ̈, (2.27)

while Cθ is a weight matrix, which is a diagonal matrix. As the objective

function must be a quadratic function of ϕ̈, the above formula is rewritten

as

t
(
Jϕ̈ + k

)
Cθ

(
Jϕ̈ + k

)

= tϕ̈
(

tJCθJ
)
ϕ̈ +

(
2 tkCθJ

)
ϕ̈ + Const. (2.28)

Constants have no relation to a objective function.

Because the external force is written as

f = Cf ϕ̈ + df = ms̈−mg, (2.29)

the y-element of the acceleration of the center of mass is written as

s̈y =
tcf y

m
ϕ̈ +

(
df y

m
+ gy

)
, (2.30)

while cf y is the second row of Cf and df y are the y-elements of df .

Next, we define the constraints. In this algorithm, constraints are

set about the following things:

1. The range of the angles, the angular velocity, and the angular ac-

celeration of joints.
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2. The boundary in which ZMP can exist.

3. The acceleration of the center of mass.

4. The symmetry of the closed-loop of legs.

Now, let the range of the angles, the angular velocity, and the range

of the angular acceleration be

θmin ≤ θ ≤ θmax, (2.31)

θ̇min ≤ θ̇ ≤ θ̇max, (2.32)

θ̈min ≤ θ̈ ≤ θ̈max. (2.33)

All constraints must be expressed as those about the acceleration, and

hence the above ones can be rewritten as:

ξmin i < θ̈i < ξmax i (1, 2, . . . , Njoints), (2.34)

where

ξmin i =





0 (θi < θmin i or θ̇i < θ̇min i)

θ̈min i (othrewise)
(2.35)

ξmax i =





0 (θi > θmax i or θ̇i > θ̇max i)

θ̈max i (othrewise)
. (2.36)

It means that if the angle or the angular velocity of a joint is out of the

range, the angular acceleration is generated only in the direction to make

the motion slow. These have to be rewritten again to the constraints

about ϕ̈ as follows:

tjiϕ̈ ≥ ξmin i − ki (2.37)

tjiϕ̈ ≤ ξmin i − ki, (2.38)
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Figure 2.7: The area in which ZMP can exist.

while tji is the i-th row of J and ki is the i-th element of k.

The next constraint is about the area in which ZMP can exist. Fig-

ure 2.7 shows the area. Because it is considered a rectangle here, the

constraint is written as

xr ≤ xZMP ≤ xl (2.39)

zheel ≤ zZMP ≤ ztoe. (2.40)

They must be rewritten as the inequations of ϕ̈:

t(xrαc −αx)ϕ̈ ≤ βx − xrβc (2.41)

t(xlαc −αx)ϕ̈ ≥ βx − xlβc (2.42)

t(zheelαc −αz)ϕ̈ ≤ βz − zheelβc (2.43)

t(ztoeαc −αz)ϕ̈ ≥ βz − ztoeβc. (2.44)

The third constraint is about the acceleration of the center of mass.

The x-element and the z-element of the acceleration of the center of mass

are determined by its position and velocity. In fact, they are determined
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to be proportional to the opposite of the position and the velocity:

s̈x ∝ −sx, s̈x ∝ −ṡx (2.45)

s̈z ∝ −sz, s̈z ∝ −ṡz. (2.46)

These can be written as the linear equations of ϕ̈:

s̈x = fx(sx, ṡx) (2.47)

s̈z = fz(sz, ṡz). (2.48)

The last constraint is about the symmetry of the closed-loop topol-

ogy at the legs. Joins in the legs are not controlled directly, but the

parameters of ϕ̈ are controlled, and hence the structure of legs is not

considered in optimization. On the other hand, the structure, especially

the symmetry, is very important in postural adjustment by real humans;

i.e., they move in the way such that the symmetry at legs is not broken

as much as possible.

In this algorithm, constraints about symmetry are expressed as con-

straints that “the angles of two knee joints are to be as same as possible

and that of two x-elements of ankle joints are also to be as same as

possible”. This is written as follows:

θ̈rknee
<
> θ̈lknee (θrknee

>
< θlknee) (2.49)

θ̈xrankle
<
> θ̈xlankle (θxrankle

>
< θxlankle), (2.50)

where the subscripts “rknee” and “lknee” stand for the right and the left

knees, and “xrankle” and “xlankle” stand for the x-elements of the right
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and the left ankles. These are rewritten as the constraints about ϕ̈:

t(jrknee − j lknee)ϕ̈
<
> klknee − krknee (θrknee

>
< θlknee) (2.51)

t(jxrankle − jxlankle)ϕ̈
<
> kxlankle − kxrankle (θxrankle

>
< θxlankle).

(2.52)

There is no constraint about them in case

θrknee = θlknee or θxrankle = θxlankle. (2.53)
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In summary, the quadratic programming problem is as follows:

minimize tϕ̈
(

tJCθJ
)
ϕ̈ +

(
2 tkCθJ − tcf y/m

)
ϕ̈, (2.54)

subject to:

tjiϕ̈ ≥ ξmin i − ki (1, 2, . . . , Njoints) (2.55)

tjiϕ̈ ≤ ξmax i − ki (1, 2, . . . , Njoints) (2.56)

t(xrαc −αx)ϕ̈ ≤ βx − xrβc (2.57)

t(xlαc −αx)ϕ̈ ≥ βx − xlβc (2.58)

t(zheelαc −αz)ϕ̈ ≤ βz − zheelβc (2.59)

t(ztoeαc −αz)ϕ̈ ≥ βz − ztoeβc (2.60)

s̈x = fx(sx, ṡx) (2.61)

s̈z = fz(sz, ṡz) (2.62)

t(jrknee − j lknee)ϕ̈
<
> klknee − krknee (θrknee

>
< θlknee) (2.63)

t(jxrankle − jxlankle)ϕ̈
<
> kxlankle − kxrankle (θxrankle

>
< θxlankle).

(2.64)

2.5.2 PD control

The strategy of PD control is adopted for small perturbations and for

the final posture adjustment. The aim of this is to return the posture of

the model to the initial one, then the motion to make the posture similar

to the initial one is generated.

The PD control is a way to determine the acceleration of joints de-

pending on the difference of the current position and velocity from the
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target ones:

θ̈ = Kp(θ − θ0) + Kd(θ̇ − θ̇0), (2.65)

while θ0 and θ̇0 are the target angle and angular velocity, and Kp(< 0)

and Kd(< 0) are constants. These constants are determined to maximize

|Kp| and |Kd| while keeping the ratio of these and making ZMP within

the support area.

2.5.3 Choice of the Strategy

In this section, the way to choose the appropriate strategies from

the quadratic programming method or the PD control is described. The

advantage of the balance control with the quadratic programming method

is that it is possible to generate the optimal motion with no relation to

the initial posture. However, because of this advantage, this strategy also

generate a big motion against a small perturbation, and hence the model

cannot keep the posture of standing upright. On the other hand, the PD

control can keep the model standing upright, but cannot deal with large

perturbations at all.

Considering these features, the choice of the strategies is as follows.

When the projection of the center of mass is near the center of the foot

support area, the PD control is chosen, and otherwise the quadratic pro-

gramming method is chosen. In this algorithm, the situation that the

projection is near the center of the foot support area is considered that

the model is under a stable state. The concept of this choice is shown in
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The area where the
PD control is used.

The area where
ZMP must exist.

Foot Foot

Figure 2.8: The area where the PD control is used, and the area where

the quadratic programming method is used.

Figure 2.8.
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3 Experiments

3.1 Implementation

The proposed algorithm is implemented on a PC with a Intel Pen-

tium4 Processor (1.7GHz) and Linux 2.2.17, using the C++ language,

egcs-2.91.66. The SD/FAST library, a product of Symbolic Dynamics

Inc., is used for the dynamic simulation, the Qt library, a product of

Trolltech, is used for the GUI toolkit, and Mesa 3.4.2, a OpenGL com-

patible 3D Graphics library, is used for rendering the results. The analysis

takes approximately 1 second per a frame.

3.2 Experiments

The physical parameters of the model are determined based on the

author’s body. The mass and the length of each rigid body is defined as

Table 3.1. The distance between shoulder joints is forty centimeters, and

that between hip joints is thirty centimeters. The moment of inertia is

calculated by approximation cylinder using these value.

The four patterns of perturbation are added to the model:

• the force of 500N for 0.1 second from the backward direction,
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elements mass (kg) length (cm)

head 4.90 25

chest 18.06 40

loins 12.04 20

upper arm 2.52 25

forearm 1.54 25

hand 0.49 10

thigh 7.98 40

shank 3.71 40

foot 1.26 25

Table 3.1: The weight and length of rigid bodys

• the force of 300N for 0.1 from the forward direction,

• the force of a sinusoidal wave (100 sin(2πt) [N]) from the forward

direction,

• the force of 200N for 0.1 from the right direction.

The analysis is performed every 0.01 second, and all perturbations act on

near the center of mass. The balance control is begun after 0.2 second

since perturbations occur.

3.3 Results

The results of the experiments are shown in Figure 3.1–3.4. In the

first experiment, when the force of 500N acts from the back, the model

keeps its balance by swinging its arms and bending down.

The meaning of these is as the following. When the force acts, the
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angular momentum is generated and makes the model fall down forward.

In order to reduce the effect of it, the model must generate the angular

momentum of the same direction, and the motion of swinging its arms

and bending down is very effective for the purpose.

These motions are often observed as the balance recovery motion by

real humans. They, probably empirically, select these motion for keeping

their balance.

In the second experiment, when the force of 300N acts form the

front, the model also swing its arms to keep its balance. In this case,

the direction of the force is opposite from the previous case, and then

the rotation of the arms is opposite, too. Because the waist cannot bend

backward as much as forward, the arms must be swung more than the

previous case.

In the third experiment, the force of a sinusoidal wave always acts

on the model. The frequency of it is 1Hz. In this case, the PD control is

usually chosen, and sometimes, when the model cannot keep its balance

by the PD control, the quadratic programming method is chosen and the

arms are quickly moved for adjusting the angular momentum acting on

the model.

In the last experiment, the force of 200N acts from the right side

direction. The model also keeps its balance by swing its arms in this

case. However, when the force acts from the side directions, the model

can keep its balance against the smaller force than when it acts from the

front or the back. It is probably because there are a fewer DOF in the
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direction of the sides than in the direction of the front and the back.
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0.0sec 0.2sec 0.4sec 0.6sec

0.8sec 1.0sec 1.2sec 1.4sec

1.6sec 1.8sec

Figure 3.1: The result (1)
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0.0sec 0.2sec 0.4sec 0.6sec

0.8sec 1.0sec 1.2sec 1.4sec

1.6sec 1.8sec 2.0sec 2.2sec

2.4sec 2.6sec 2.8sec 3.0sec

3.2sec 3.4sec 3.6sec 3.8sec

Figure 3.2: The result (2)
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0.0sec 0.2sec 0.4sec 0.6sec

0.8sec 1.0sec 1.2sec 1.4sec

1.6sec 1.8sec 2.0sec 2.2sec

2.4sec 2.6sec 2.8sec 3.0sec

3.2sec 3.4sec 3.6sec 3.8sec

Figure 3.3: The result (3)
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0.0sec 0.2sec 0.4sec 0.6sec

0.8sec

Figure 3.4: The result (4)
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4 Conclusions

In this thesis, a new algorithm for the postural adjustment of the human

body model is proposed and implemented. This method is a feedback

system and can deal with large perturbations. It switches two methods

to generate motions; one uses the quadratic programming method and

the other uses the PD control. The former is for large perturbations and

the latter is for small perturbations or final posture adjustment. The

choice of them depends on the position of the center of mass.

In the experiments, the motion which is similar to the real human

motion appeared, such as swinging the arms and bending down. We

empirically know that these motion are effective for keeping our balance,

and this fact is experimentally confirmed by the proposed optimization

calculation.
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5 Future work

In the proposed algorithm, the feet must touch the ground and cannot

move. However, this constraint is too strong. When a large perturbation

is applied, stepping motion is usually selected for preventing the body

from falling down. Therefore, it is desirable that the algorithm allows the

stepping motion.

Moreover, although only standing upright is permitted for the ini-

tial posture in this algorithm, it is not a reasonable constraints from the

viewpoint of the applications of this algorithm. In the future, the algo-

rithm will be able to deal with various situations, such as the perturbation

during the gait.
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