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Abstract

Displaying real objects in a virtual space by synthesizing photo-realistic virtual views

based on the measured data sets has been studied for a long time in the computer vision

and computer graphics communities. According to the analysis of the amount of geo-

metric and photometric information required to render photo-realistic images, a variety of

existing methods can be classified into two representative groups: model-based rendering

and image-based rendering. In practice, however, it is often unfeasible to take sufficient

measurements to achieve photo-reality due to the limitation on sensor accuracy, storage

size and other practical restrictions. If the amount of the obtained data set is less than that

of a theoretical lower bound, it is impossible to achieve photo-realistic rendering.

In this dissertation, we present three photo-realistic rendering methods designed to

solve the problem described above. These methods are mutually complementary; The

first and second methods take charge of, respectively, automatic and semi-automatic view

synthesis from a sparse set of two-dimensional images. The third method was developed

with the goal of rendering a variety of objects, including intricately-shaped objects, using

possibly inaccurate geometric models and view-images.

The first method, Unconstrained View-interpolation, based on image morphing, en-

ables a visually plausible synthesis of virtual three-dimensional views from only two-

dimensional images without any other knowledge of the object wished to be rendered.

Given two images, the intermediate view-image is synthesized by deforming and blending

the given images so that the intermediate image is kept natural-looking. In order to achieve

such a deformation, a fully automatic method for unconstrained image matching has been

developed. In this method, the features of the images are first extracted by a filter bank

composed of filters similar to those used in the human vision system. The mapping be-

tween the images is then sought by minimizing an objective function, taking into account

the convexity of the mapping.

While the many computer vision algorithms, including the first method, do not neces-
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sarily work well for the real data set, the second method, Pop-up Light Field, can achieve

photo-realistic view synthesis even when the set of given images is too sparse. The key to

our approach is an effective interface that enables the user to interactively improve the ren-

dering quality. The process of rendering and modifying the object is repeated iteratively

and interactively until its quality satisfies the user. The object wished to be rendered is

modeled as a set of coherent layers, and then rendered by using the layered unstructured

lumigraph rendering algorithm. In order to achieve anti-aliased rendering, we also propose

a novel method of alpha matting.

The third method, Microfacet Billboarding, is a generic framework for modeling and

rendering real-world scenes based on a measured data set. In contrast to the first two

methods, this method takes both geometric model and view-images. First, the system de-

termines the maximum resolution of the geometric model according to the consistency

within the measured data set. The details of the object are then synthesized using view-

dependent geometry and view-dependent texture mapping with alpha blending. The alpha

matte for each view-image is estimated before rendering to overcome the limitation of

sensor resolution when the object has intricate geometry like fur or pine needles. When

the amount of geometry is sufficient, this method can be regarded as one of the meth-

ods of model-based rendering while, when the geometry is totally unreliable, the method

converges to the method of image-based rendering.
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要旨

実世界の風景や物体を計測した情報を利用して，仮想空間で物体の画像を写実的に

合成する手法は，コンピュータグラフィクスやコンピュータビジョンの分野で盛ん

に研究されている．実物体の画像を写実的に合成するためには，対象物の三次元形

状 (幾何情報)とテクスチャ(光学情報)が一定量以上必要であることが理論的に示さ

れており，十分な量の幾何情報に基づき表示を行うModel-Based Rendering，十分な

量のテクスチャ情報に基づき表示を行う Image-Based Renderingの手法が数多く提案

されてきた．ところが，こうした手法を実際に適用する際には，計測装置の精度の

制限や，計測コストや容量等の現実的な制約から，必ずしも十分な計測情報が利用

できるとは限らない．従って，計測が困難な対象物や環境では写実的な再現を行う

ことができず，手法の適用範囲を制限してきた．

本論文では，このような問題を克服するために，三つの相補的な手法を提案する．

一つ目の方法である自動モーフィングに基づく視点画像補間法では，描画対象の

幾何情報が全く利用できない場合に，形状の再構築を行うことなく，画像のモーフィ

ング処理によって自由視点画像を合成する．まず，事前知識なしに，与えられた 2次

元画像間の密な対応を推定し，この対応点に基づき画像を変形・混合することによっ

て自由視点画像を生成する．画像を対応付けするための特徴量の抽出手法として，人

間の初期視覚で用いられているものと類似した，回転偏微分ガウスフィルタを用い

たフィルタバンクを提案する．また，このようにして得られた画像特徴の対応付け

を行うために，局所解を避けながら目的関数を最小化する手法を提案する．提案法

では，透明物体やテクスチャのない均質な物体に対しても，写実的な視点画像補間

が可能である．

二つ目の手法である Pop-up Light Field法では，一つ目の手法と同様に幾何形状

が利用できず,さらに入力画像から付加的な情報を得ることが難しい場合，利用者に

よる対話的な幾何モデル生成を用いて,写実的な表示を実現する．提案法では，取得

した計測情報を基に Light Field表示を行い，現実感を損なっている部分に対して層

状構造 (Coherent Layers)化処理を行うことによって描画画質を改善する．この処理
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は利用者が対話的に行うことが可能で，そのためのユーザーインターフェースを提

案する．また，Layer化によって生じる，対象物の輪郭線付近におけるエイリアスを

防ぐために，視点画像間で一貫性のあるアンチエイリアシングを実現するCoherence

Matting法を提案する．提案法では，Layer化を繰り返すことにより，利用者の目的

に応じた写実性を持つ自由視点画像の合成が可能である．

三つ目の手法であるMicrofacet Billboarding法では，光学情報に加えて粗い幾何

情報も利用し，既存の計測装置では取得が困難な微細な形状を持つ対象物に対して

も写実的な描画を実現する．まず，得られた幾何情報の信頼度を計算し，精度に応じ

て対象物の形状を，大域的，局所的 (視点依存)モデルの組み合わせとして表現する．

大域的形状に基づき視点依存の微小面集合を用いて対象物の形状を近似表現し，視

点依存距離マップ，視点依存テクスチャマップを用いて詳細な描画を行う．また，テ

クスチャ画像の透過度推定を行うことにより，光学センサの解像度以下の形状を扱う

ことができ，本手法は，樹木や毛髪といった形状計測が困難な物体に対しても適用可

能である．また，この手法は，計測結果の幾何情報の解像度が高いときModel-Based

Rendering法に近づき，幾何情報の精度が低いとき Image-Based Rendering法になる

という特徴を持つ.
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Chapter 1

Introduction

1.1 Background

The synthesis of realistic virtual views remains one of the central research topics in com-

puter graphics. The range of applications encompasses various fields, including: interac-

tive catalogues for e-commerce, visual interfaces for long-distance communications and

integrated environments of reality and virtual reality as well as visual effects commonly

used in film production. Thanks to recent improvements in both microprocessor power

and networking environments, it has become possible and necessary for us to exploit the

benefits of realistic rendering even in daily life.

The ultimate goal of the research on realistic rendering is to display a scene on a screen

so that it appears as if the object actually exists behind the screen. This description, how-

ever, is somewhat ambiguous to provide a quality measure for synthesized images. Instead,

in computer graphics and computer vision communities, considerable effort has been put

forth to synthesize the virtual view of real or imaginary scenes so that they look like the

real photographs. When a synthetic image is indistinguishable from the real photograph,

it is referred as photo-realistic. We also persue the photo-realistic rendering of real-world

scenes in this dissertation.

The strategies for synthesizing photo-realistic views can be classified broadly into two

groups according to how a scene that the user wishes to render is modeled. One is the

approach in which skilled designers manually create the models of the objects that they

wished to render. Then the scene is rendered applying certain optical simulation to the

model. This approach is essential in rendering imaginary scenes; hence it is commonly

adopted in such fields as film production. The other approach is one in which the designers

1
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attempt to synthesize realistic views based on the models obtained by observing the real

world.

As is reviewed in Section 1.2, the recent trend of the research on modeling scenes is to

make the best of the latter approach, referred as modeling from reality [IS01], together with

the former framework, if necessary. Owing to the rapid progress in hardware capabilities

and software techniques of modeling scenes, it has become easy to bring real-world scenes

into the digital world. Considering that one of the most important issues in the process

of image synthesis is how to model the scene without requiring time-consuming manual

operations by the user, it seems quite reasonable to base the primary method of modeling

on the observation of real-world scenes.

In this dissertation, three different techniques for view-image synthesis based on mea-

sured data sets are proposed. All methods are designed so that the synthesized view-

images look photo-realistic even when the data sets are sparsely-sampled.

The motivation of this research is that, in practice, it is difficult to take sufficient mea-

surement to achieve photo-realistic rendering synthesis owing to some fundamental or

practical reasons concerning measurement. For instance, it often happens that the oppor-

tunity for measuring the scene wished to be rendered occurs only once. When the amount

of data obtained at the first measurement does not suffice for the purpose of photo-realistic

image synthesis, users have to try their best to render the scene using the under-sampled

data set by some means or other. The data deficiency may also arise from the limitation

of optic sensors. It is extremely difficult, if not impossible, to measure the accurate shape

of objects whose surfaces have elaborate details such as hairs or pine needles even with a

state-of-the-art method of robust geometric modeling [HSIW96, CL96, WSI98]. When the

scale of these shapes is smaller than the resolution of optic sensors, the obtained geometry

may suffer from considerable noise.

In the remainder of this chapter, after reviewing extensive research on realistic image

synthesis based on the measurement of real-world scenes, we briefly preview the three

methods proposed in this dissertation. In Chapters 2 and 3, we present, respectively, auto-

matic and semi-automatic methods for synthesizing photo-realistic virtual views without

explicit geometric modeling. The first method is the unconstrained view-interpolation,

which is based on the automatic matching of reference images. The second method, which

we refer to as the Pop-up Light Field, is a system that enables the users to model and ren-

der the scene interactively from sparse light fields without any geometrical information.

In Chapter 4, we then describe the method, which we call Microfacet Billboarding, for

rendering scenes based on a set of noisy range images and sparse texture images. Finally,
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in Chapter 5, we summarize the contributions of this thesis and suggest some possible

directions for future extension of this work.

1.2 Previous Work

In the framework of modeling from reality, all phenomena occurring in a scene are cap-

tured through a measured data set; hence, novel synthetic views of the scene are generated

directly or indirectly from the data set. When the virtual view of a scene is synthesized

based on some information on the geometric model of the scene, the techniques of ren-

dering refer to either the optical simulation on the geometric model or the warping of

reference view-images with the support of such associated knowledge as pixel correspon-

dences, depth maps and shapes of the object. On the other hand, if no geometric informa-

tion on the object is available, the synthetic views have to be generated directly from input

images by employing the algorithms of interpolation. Thus, the model required to ren-

der scenes consists of two elements: geometric information and photometric information.

The geometric information on an object is equivalent to its shape, which can be obtained

through the measurement for example using range finders and stereo reconstruction. The

photometric information is related to the object appearance, which is usually acquired as

a set of view-images of the object.

Based on the observation, existing research on the technique of synthesizing virtual

views can be broadly classified into two approaches: model-based and image-based. The

model-based approach represents the traditional way to generate virtual views of an object

or scene. This approach is referred as Model-Based Rendering (MBR) because it usually

relies on a geometric and photometric model of the object or scene wished to be ren-

dered. The image-based approach, referred as Image-Based Rendering (IBR), represents,

instead, an alternative to model-based rendering, and it synthesizes virtual views relying

on real images taken as reference in place of the model of the scene. In order to pro-

duce novel views, reference images are usually interpolated or re-projected from source

to target image. A detailed review of existing methods for model-based and image-based

rendering is presented in Sections 1.2.1 and 1.2.2 respectively.

As for the relationship between geometric and photometric information, Chai et al. [CTCS00]

established the plenoptic sampling theory which clarifies that there exists a lower bound

for the sampling rate necessary to synthesize virtual views without visual artifacts. They

applied spectral analysis to the samples of geometric and photometric information, and
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then formulated the problem of realistic image synthesis as the restoration of the original

spectra from the samples. According to the theory, when the total amount of data given

as input is above the theoretical lower bound, a virtual view of the scene can be synthe-

sized by appropriately interpolating input data using either model-based or image-based

methods mentioned above. However, when the total amount of obtained information is

less than the lower bound, the synthetic view will suffer from visual artifacts caused by

aliasing.

One of the solutions to the problem of realistic rendering based on an under-sampled

data set is to estimate appropriate correspondence between given view-images and to ap-

ply image morphing so that the synthetic view between reference images looks visually

plausible, if not physically valid. The method proposed in Chapter 2 is developed in order

to overcome the difficulty of photo-realistic rendering due to data sparseness by warp-

ing and blending measured images. This approach is different from both model-based

and image-based rendering in the sense that the method directly solves the problem in

the deficiency in given models by the techniques of two-dimensional image processing

without consideration of three-dimensional transformation. Therefore, the related work is

reviewed separately in Section 1.2.3.

Another solution is to extract some information from the given data set up to the

amount that suffices for the purpose of realistic rendering. For instance, when we have

more than one view-image of the scene we wish to render, it may be possible to estimate

the scene geometry using such methods as stereo reconstruction [Fau93]. It is, however,

often the case that even state-of-the-art automatic stereo algorithms are inadequate for pro-

ducing sufficiently accurate depth information for realistic rendering. When it is difficult

to automatically extract the additional information, one possible alternative is to incorpo-

rate interactive modeling by the user. We propose an interactive system for photo-realistic

rendering from a few images in Chapter 3. The existing methods related to the proposed

method are reviewed Section 1.2.4.

The relationship of the prior techniques reviewed in the following sections is illustrated

in Figure 1.2 to provide the reader a hint for better understanding; however, their positions

may be somewhat inaccurate since it is difficult to evaluate the precise amount of infor-

mation used in their method. The vertical and horizontal axes indicate, respectively, the

accuracy of geometry and the amount of texture images used for rendering. The curve in

the figure indicates the theoretical lower bound that is derived in the plenoptic sampling

theory. As mentioned above, our proposing methods take on the data set possibly sparser

than the lower bound.
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• Inverse Rendering[SWI97, YDMH99, BG01, RH01]

• EigenTexture[NSI01],SurfaceLightField[WAA+00],LightFieldMapping[CBCG02]

• View-dependent Texture[DTM96], Visual Hull[Lau94, MBR+00a]

• Opacity Hull[MPN+02]

• Layered Depth[SGwHS98], Relief Texture[OBM00]

• View-dependent Geoemtry[Rad99]

• Sprite[LS97, BSA98], Impostor[Sch95]

• View-interpolation[CW93], View-morphing[SD96]

• Lumigraph[GGSC96]

• Light Field[LH96]
• (a)

(b)

(c)

Figure 1.1: Related work arranged in a two-dimensional graph according to the amount of
geometric and photometric information required in their rendering. In order to deal with
the data set whose amount is possibly less than a theoretical lower bound, we propose
three methods of rendering: (a) Unconstrained view-interpolation (in Chapter 2) based
on the technique of automatic image morphing of two uncalibrated images, (b) Pop-up
Light Field system (in Chapter 3) for rendering sparse light fields with the aid of the user’s
interactive modeling, and (c) Microfacet Billboarding method (in Chapter 4) for rendering
intricately-shaped objects using view-dependent modeling and alpha matting.
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1.2.1 Model-based Rendering

Model-based rendering recovers the geometric and photometric models of the object, and

then renders the scene from desired virtual viewpoints based on the obtained model. Once

the complete model of the scene is created, it is relatively simple to synthesize the views;

hence, considerable effort in the research on model-based rendering has been devoted to

creating accurate models of the scenes.

The first step in model-based rendering is to create the geometric model of the ob-

ject wished to be rendered. The research on the techniques for construction of geometric

models has a long history in computer vision. Various methods based on active optical sen-

sors, such as structured light system [DT96], photometric stereo system [Woo80, Woo89]

and laser range finder, or passive algorithms such as stereo reconstruction [Fau93], struc-

ture from motion [TK92, DSTT00] and volumetric reconstruction [FK98, KS99] have

been proposed. Among them, the method based on the integration of range images ob-

tained by laser range finders is receiving increasing attention because of its high accu-

racy and robustness. With the improvement in the algorithms to cope with the prob-

lems inherent to laser scanning, for example presence of noise [WSI98, NI02] and occlu-

sion [CLF02, DMGL02], the range of possible applications [LPC+00, ISN+00] has been

extended.

The photometric model of the object is then created based on the obtained geometric

model and a set of view-images taken from usually various viewpoints by digital cameras.

The approaches to photometric modeling are broadly classified into two groups; image-

based representation and inverse rendering. In the image-based approach, ideally all pos-

sible views of the object wished to be rendered are captured and stored in a database. To

synthesize the views of the object, the most appropriate view is selected from the database

and displayed. Owing to the knowledge of accurate geometry to which the appearance

images are mapped, a certain correlation between the samples observed at the same point

on the surface can be exploited in order to compress the size of the database [NSI99],

interpolate samples [NSI01, WAA+00] and factorize the database for hardware render-

ing [CBCG02]. In the inverse rendering approach, the bi-directional reflection distribution

function (BRDF) on the object surface is directly estimated from observed images. Since

this estimation problem is ill-posed, it is often assumed that the optical phenomena occur-

ring in the scene follow some physically-based reflectance models [TS67, CT81]; then,

the reflectance parameters in the model are estimated by fitting pixel values in observed

images [SWI97], solving the inverse radiosity problem [YDMH99] or iteratively refining
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reflectance paramters [BG01]. Ramamoorthi and Hanrahan formulated the problem of in-

verse rendering as the reconstruction of an original signal from the observed samples and

provided the framework to solve many problems in inverse rendering [RH01].

Once the model of a scene has been created, it is a straightforward task to render

the scene by such methods as polygon-based rendering. When the reflectance parame-

ters on the object surface are known, a virtual view of the object can be synthesized by

drawing polygons with the colors computed according to some reflectance model. When

the photometric model is image-based, the scene is rendered by using polygons with view-

dependent texture mapping [DTM96], which generates the texture images by interpolating

reference textures according to the angle formed by the viewing direction and the camera

direction of the images.

When the scale of the scenes to be rendered is so large that the resolution of the ge-

ometric model can be higher than that of the rendering screen, point-based rendering is

used to accelerate the rendering speed and to save storage space. It is often the case that a

single model is composed of over 10 million points on the object surface when the scene is

modeled with the aid of laser range finders. In such a case, it is good idea to splat the point

onto the screen instead of polygons. The use of points as the primitive to render continu-

ous surfaces was first proposed by Levoy and Whitted [LW85]. The fundamental problem

in point-based rendering is detecting and closing any holes so as to correctly reconstruct

the surface; this problem was solved by the introduction of the hierarchical Z-buffer by

Grossman and Dally [GD98]. Rusinkiewicz and Levoy [RL00a] developed the system

called QSplat, which was one of the first successful systems for point-based rendering

based on a multi-resolutional representation using a bounding sphere hierarchy. Botsch et

al. proposed a better hierarchical data structure based on the octree representation with a

clever encoding scheme [BWK02]. Dachsbacher et al. proposed the sequential point tree

representation which enabled the system to retrieve the points at the optimal level in the

hierarchical structure on rendering [DVS03].

The method presented in Chapter 4 can be regarded as a variant of model-based ren-

dering when the obtained range images are sufficiently accurate and consistent between

views to create a single geometric model. In the proposed method, the scene is rendered

by a set of discrete geometric primitives, which are stored in a hierarchical data structure

based on octree representation. When the obtained geometry is sufficiently accurate, the

method gets close to point-based rendering. On the other hand, when the acquired geome-

try is unreliable, the system tries to generate the synthetic views mainly from the acquired

images; hence, it becomes image-based.
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The prior work which is the most relevant to our method is the opacity hull proposed

by Matusik et al [MPN+02]. In this method, an opacity map for each reference view-

image is generated and used to compensate for the limited resolution of optical sensors.

While the opacity maps are applied to a static geometric model created by the image-

based visual hull [MBR+00a] in the opacity hull rendering, we adopt the view-dependent

geometry [Rad99] to solve the difficulty in integrating erroneous partial models. We also

propose an effective method of estimating alpha maps from acquired color images.

1.2.2 Image-based Rendering

Image-based rendering interpolates input reference images and produces novel views in

principle without any explicit geometric reconstruction. The problem of image-based ren-

dering can be formulated as a two step process consisting of sampling and rendering. In

the sampling stage, a set of light rays is sampled from a function called plenoptic func-

tion [AB91] that describes all possible light rays running in the space wished to be ren-

dered. In the rendering stage, the continuous plenoptic function is reconstructed with the

captured samples [ZC03]. The plenoptic function l(x, y, z, θ, φ, λ, t) is a seven-dimensional

function that models a three-dimensional dynamic environment by recording the light rays

at every space location (x, y, z), toward every possible direction (θ, φ), over any range of

wavelengths λ and at any time t.

This approach is less generic than model-based rendering since it is impossible to

produce the phenomena that are not modeled in the plenoptic function, for example, the

change of illumination. In addition, the range and domain of the function is reduced in

most of practical methods as reviewed below since the complete reconstruction of plenop-

tic function is impractical due to its high dimensionality. This limits the range of accept-

able viewpoints, typically within a convex spanned by viewpoints of reference images,

and makes it difficult to display the object in other environments. However, image-based

rendering has such advantages over model-based rendering that a rendering time is inde-

pendent from scene complexity and geometric reconstruction of the object, often difficult,

is in principle unnecessary.

Many researchers have proposed the techniques for image-based rendering by sim-

plifying the seven-dimensional plenoptic function defined in the infinite ray space in or-

der to decrease its high dimensionality. Zhang [ZCar] introduced the surface plenoptic

function, that is, a six-dimensional simplification of the original plenoptic function that

assumes that light rays do not attenuate in the empty space. Using the representation,
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two-dimensional light rays emanated from the regular scene surface can be described.

When the geometric model of the surface is known, this approach is equivalent to the

surface light fields [WAA+00] for dynamic scenes. McMillan and Bishop [MB95b] in-

troduced plenoptic modeling based on a five-dimensional function obtained by ignoring

wavelength and time dimensions in the full plenoptic function. To render a novel view

from the representation, the reference images are cylindrically projected and then warped

to the viewpoint using their epipolar relationship and some visibility tests. The light field

rendering [LH96] and the lumigraph [GGSC96] reduce the full plenoptic function to a

four-dimensional function which is parameterized over viewpoint and viewing direction

by using two virtual planes. The light field rendering assumes no knowledge about the

scene geometry and applies pre-filtering during the capturing to reduce the light field sig-

nal’s bandwidth, while the lumigraph reconstructs a rough geometry for the scene with an

octree algorithm to facilitate the rendering with a small amount of images. Although the

lumigraph allows irregular sampling with a tracked handheld camera, unstructured lumi-

graph rendering [BBM+01a] deals with the problem in a generalized manner. When the

geometric model of the scene is given, unstructured lumigraph rendering is known to be

equivalent to model-based rendering with view-dependent texture mapping except for the

way texture images are interpolated. By restricting that both the cameras and the viewers

are on a plane, the plenoptic function can be reduced to a three-dimensional function in

concentric mosaics [SH99]. Similarly, a two-dimensional function that allows the cam-

eras and the viewers to turn around at a point is used in image mosaicing [GH97, Mil75]

or panoramic mosaic [SS97]. Another parameterization of a two-dimensional function is

that the cameras and the viewers can move along a certain 2-manifold with the viewing di-

rection fixed, which is used in QuickTime VR [Che95] and manifold hopping [SWCT02].

All these methods of image-based rendering assume that the reference images are suf-

ficiently given, that is, the plenoptic function used in the method is well sampled. When

input reference images do not suffice for the purpose of realistically rendering novel views,

it is necessary to extract additional knowledge of the correspondence between reference

view-images from the input images in order to compensate for the deficiency of a given

data set. As long as the obtained knowledge on image correspondence is physically valid,

it is related to the geometric model of the object. Shade et al. [SGwHS98] proposed

the method of image-based rendering using a representation, called the layered depth im-

ages (LDI), composed of a view-image and corresponding depth of the scene. Chang

et al. [CBL99] extended the LDI representation to the hierarchical structure called LDI

tree. Pfister et al. [PZvBG00] proposed the three-dimensional representation composed
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of a set of LDIs; this representation is referred to as the layered depth cubes (LDC),

and utilizes elliptical tangent disks in the rendering. These methods are strongly related

to the method of point-based rendering in the sense that the scene is represented as a

dense set of pixels with depth. On the other hand, the method of rendering based on a

small number of large planar primitives with detailed textures is appropriate to the situa-

tion when dense geometry is unavailable. Layers and sprites have been proved success-

ful [LS97, BSA98, SGwHS98] in rendering complex scenes without detailed geometric

models. Lengyel and Snyder proposed the coherent layers [LS97] constructed from three-

dimensional models for efficient rendering. Schaufler proposed a variant of the layered

methods called impostors [Sch95, Sch98a, Sch98b], in which the scene geometry is di-

vided into single or multiple layers according to the distance from the viewpoint and the

object is rendered from new viewpoints by warping reference view-images on the layers.

The three methods proposed in this dissertation can be classified into image-based

rendering in the sense that all of them do not need the complete geometric model of the

object wished to be rendered and can generate synthetic views chiefly or only from view-

images.

1.2.3 View-interpolation based on Image Morphing

When the geometric structure of the scene is unknown and the given view-images are too

sparse to achieve photorealistic rendering by the methods mentioned in the previous sec-

tions, one possible solution is to synthesize the virtual views by interpolating the reference

images based on the possibly non-physically based correspondence between the images.

In this approach, three-dimensional geometry of the object is not considered at all in the

pixel location computation; instead, the synthetic virtual view is generated on the render-

ing screen by using the image correspondence, which is referred to as image morphing or

image metamorphosis [BN92].

Before applying image metamorphosis to a set of image pairs, the correspondence be-

tween the images must be estimated from the images. One of the first attempts to estimate

plausible correspondence between images arose in the field of computer vision, aiming

to determine the motion of objects in given images. This motion is referred as optical

flow. The fundamental constraint most commonly used in optical flow estimation is based

on the assumption that pixel intensity in the scene is constant between frames [BB95].

Since this assumption is satisfied only when the differences between the images are suf-

ficiently small, systematic errors are conspicuous when the motion between the frames is
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large. When some prior information on the objects in the image concerned is available, it

helps the method to solve the correspondence problem. This approach requires a knowl-

edge of the features observed in the scene or a training set of specific kinds of images

to infer novel views; hence, the range of application is limited to such images as human

faces [NMP96, CET98] or medical images [MV98]. On the other hand, Shinagawa and

Kunii proposed the method of automatically matching images using only image intensity

as a constraint [SK98b]. A set of nonlinear filters, called critical point filters (CPF), is

used to extract image features, and dense correspondences between images are then esti-

mated in a multi-resolutional hierarchy. This method works well for the images of objects

with similar intensity distribution. In general, however, parts of the images in different

colors do not match since the criteria used to match images is the difference in intensity

itself although nonlinear filters are applied. In addition, the presence of noise in the image

can easily disrupt matching because CPF sensitively responds to the peak and pit of the

intensity. Based on the prior techniques for unconstrained image matching, a novel tech-

nique for automatic image matching is proposed in Chapter 2. This method yields dense

correspondence between images that is supposed to look natural to humans; hence, real-

istic rendering can be achieved applying image metamorphosis to the obtained reference

images.

Once the correspondence between reference images is obtained, the intermediate views

between the images can be synthesized by view-interpolation [CW93] which consists of

warping and blending the reference images. When the correspondence is physically based,

for example, geometrically-valid, the intermediate view can be synthesized by applying the

three-dimensional image warping proposed by McMillan and Bishop [MB95b, MB95a].

On the other hand, when the correspondence is non-physically based, the technique of

image metamorphosis [BN92] is used. Seitz and Dyer [SD96] proposed the intermedi-

ate method called view-morphing that can blend two different images as if the viewpoint

in the synthetic images moved around the object in the morphing sequence. Since the

image correspondence estimated by the method proposed in Chapter 2 is unnecessarily

physically-based, no constraint other than pixel correspondence is available in rendering.

Therefore, the warping and blending of reference view-images are performed using simple

tri-linear interpolation in our view-interpolation.
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1.2.4 Interactive System for Image-based Modeling and Rendering

With all state-of-the-art techniques for estimating the correspondeces between given im-

ages, it is still difficult to estimate plausible correspondences, for example, when the dif-

ference between reference images is large. Another approach to combat the problem of

data sparseness is to incorporate user interaction attempting to increase the reality of the

synthetic images.

Many image-based interactive modeling systems use only one image, which imposes

or assumes certain geometric constraints on the scenes. For instance, tour into the pic-

ture [HAA97] models the scene by a simple spidery mesh. In single view metrology [CRZ99],

two-dimensional projections of three-dimensional parallel lines must be present in the in-

put image, so that the user can click on them for computing vanishing points. An elaborate

modeling system was proposed in [MCDD01] where depth values were assigned to pixels

in a single picture. Interactive single view systems are difficult to generalize to a sparse

light field, which still consists of many images. Furthermore, while it is a straightforward

task to perform interactive image segmentation on a single image, consistent propagation

of image regions to different images is a challenging task.

The user interface (UI) for designing a multi-view interactive modeling system has

been a challenge. Most available movie editing tools are, in fact, manual systems, that

require frame-by-frame editing and consistency maintenance. Debevec et al. proposed

an interactive modeling system that makes use of a depth map derived from a sparse set

of views and an effective modeling UI [DTM96]. Plenoptic editing [SK98a] first recov-

ers a three-dimensional voxel model from a sparse light field, and then applies traditional

three-dimensional warping to the recovered model. Thus, this automatic system shares the

same shortcomings with stereo reconstruction. Recently, feature-based light field morph-

ing [ZWGS02] has been proposed to morph two light fields. The key is an easy-to-use UI

for feature specification. The feature polygons are then used to compute the visibility map

and perform ray space warping. Consistency is maintained by ray correspondence.

In the method proposed in Chapter 3, an intuitive and easy-to-use UI to facilitate pop-

up light field construction is developed. The key to the UI is the concept of a human-

in-the-loop in which the user specifies where aliasing occurs in the rendered image. The

user input is reflected in the input light field images where pop-up layers can be modified.

The user feedback is instant through a hardware-accelerated real-time pop-up light field

renderer.
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1.3 Thesis Overview

There are three main technical contributions in this thesis which correspond to the break-

down of the following chapters.

• Unconstrained view-interpolation

• Interactive system for image-based modeling and rendering

• Photo-realistic rendering of intricately-shaped objects

These methods are mutually complementary; the first two methods were developed

with the goal of achieving automatic and semi-automatic view synthesis from a sparse set

of view-images without any geometric information, while the third method takes charge of

the rendering based on a relatively large amount of measured data composed of geometric

and photometric models.

In this section, each of these topics will be briefly discussed with some simple illustra-

tions to give the reader a hint of what follows.

1.3.1 Preview of Unconstrained View-Interpolation

When the total amount of geometric and photometric information given as input is below

a certain theoretical lower bound, it is inevitable for synthetic images to suffer from vi-

sual artifacts; this problem, called aliasing, is caused by incorrect interpolation of input

data. Since the artifacts cannot be removed without any additional information, the com-

mon approach to reduce them is either by blurring images so that the aliasing effects are

inconceivable or by taking more measurements of objects.

In this dissertation, two different approaches to this problem are proposed; one is auto-

matic, as described below, and the other is semi-automatic, previewed in the next section.

The aliasing in synthesized images caused by the deficiency of given data can be re-

moved by properly interpolating the signals in the data. In order to interpolate input data

without aliasing, the plausible, if not correct, mapping between given data must be known

before rendering. In our automatic method, image morphing is applied to synthesize views

that are not included in given data set. The corresponding points between given images are

estimated by unconstrained automatic matching between image features. The features are

extracted by filters similar to those used in human eyes; hence, the automatically estimated

correspondence is supposed to plausible for human perception.
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Figure 1.2: The overview of morphing-based rendering system proposed in Chapter 2.
This method takes only a set of images as inputs and performs alias-free rendering without
any geometric reconstruction. The algorithm consists of two steps: automatic determina-
tion of plausible mapping between a pair of images and interactive image morphing with
the aid of hardware acceleration.

The advantage of rendering with image morphing over rendering by using geometric

information estimated by such methods as stereo estimation is that the point correspon-

dence between views does not need to be accurate geometrically; it is enough for the

correspondences to be plausible in human eyes. The difference is obvious when the ap-

pearance of objects in given images have such view-dependency as specular reflection.

1.3.2 Preview of Interactive System for Image-Based Modeling and

Rendering

Another approach to achieve realistic rendering with an under-sampled data set is to pro-

vide an effective interface that enables the user to modify scenes during rendering, if neces-

sary, so that aliasing becomes inconceivable. The advantage of this system is that the user

can improve the quality of rendering as much as he or she likes without taking additional

measurements of the object. It is also possible for the system to achieve photo-realistic

rendering of real-world scenes with no geometry and a few images of the object, gradually
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sparse light field

rendering

modeling

user interaction

coherent layers

Figure 1.3: The overview of the pop-up light field system proposed in Chapter 3. This
system takes a sparse light field as inputs and performs alias-free rendering with the aid
of user’s interactive modeling. The processes in this system form a cyclic loop consisting
mainly of user-assisted modeling and hardware-accelerated rendering. The system first
renders the light field with layered unstructured lumigraph rendering. When the synthetic
view has the artifacts caused by the sparseness in a given light field, the user specifies the
location where aliasing occurs. The system iteratively applies the user’s modification to
the original light field; hence, the reality in the rendered image can be increased as much
as the user wants.

improving the quality of rendering.

The major challenge to this approach is to determine how to represent object scene in

a sufficiently compact form, that is to say, how accurate a geometry is needed to achieve

alias-free rendering given a set of images. Obviously, photo-realistic rendering with any

data set is theoretically possible by modeling the complete geometry manually, but is not

practically feasible.

Our solution to the problem is to model the scene by a layered structure, called coherent

layers, each of which can be regarded as an approximation of the geometry for a single

object in the scene. From the observation in the plenoptic sampling theory that the aliasing

in synthetic images tends to occur where the depth discontinuity exists, it is possible to
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achieve anti-aliased rendering by approximating the scene with a set planar primitives,

which represent the objects whose variances of depth are within a certain value.

In order to overcome the aliasing caused by the limited resolution of the camera, the

contribution of sub-pixels colors around boundary of each layer are estimated as the opac-

ity of each pixel, by coherence matting which maintains the consistency of opacity be-

tween views.

In the system, the virtual view of the scene is first synthesized by unstructured lumi-

graph rendering using given data consisting of color images. Geometry of the scene can

also be used if available. Due to a deficiency of either or both geometric and photomet-

ric information, aliasing may be observed in the synthetic image. The user then specifies

where aliasing occurs on the rendering screen, and performs image segmentation so that

the scene becomes a set of coherent layers.

1.3.3 Preview of Photo-realistic Rendering of Intricately-Shaped Ob-

jects

The synthetic virtual view of real-world scenes is rendered using sets of range images and

color images taken from various viewpoints. The problem in rendering based on a practical

data set is that, when each range image given as input contains considerable amount of

geometric errors, it can be difficult to create a global model that is consistent for each view,

even with such robust techniques of geometric integration [HSIW96, CL96, WSI98].

The proposed solution to the difficulty in consistent modeling is to adopt a two-level

representation of the object shape: global geometry and local geometry. After integrating

given range images into a volumetric representation, the maximal resolution of the volume

is determined by analyzing the consistency of the shape in the volume. Each range image

given as input is then modified so that unobserved parts of the object are filled with appro-

priate depths brought from global geometry. Thus, the shape of the object to be rendered

is modeled as a globally-defined volumetric geometry and a set of locally-defined depth

maps.

On the other hand, photometric information on the object, that is, a set of color images,

also has a difficulty in consistent integration. Hence, the images are represented as view-

dependent textures on the object. Different from other methods of view-dependent texture

mapping, opacity value for each pixel in the color image is automatically estimated and

then interpolated between views.

The scene is then rendered by a set of texture-mapped polygons with hardware accel-
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rough 3D models

view images

local geometry

alpha mattes

global geometry

microfacets

synthetic view

Figure 1.4: The overview of microfacet billboarding proposed in Chapter 4. This system
takes a set of range images and colors images as inputs. The algorithm consists of two
steps: the modeling process and the rendering process. The modeling step usually takes
some time, while the rendering step is interactive.

eration. Based on estimated global geometry, we generate a set of rendering primitives,

onto which the detailed shaped is rendered using local geometry. The details of the ob-

ject’s appearance are then synthesized using color and opacity images using the technique

of view-dependent texture mapping.
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Chapter 2

Unconstrained View-interpolation

2.1 Introduction

In this chapter, the method of rendering based on a sparse set of images without any

geometric model is presented. The proposed technique can be considered as purely image-

based rendering in the sense that it does not reconstruct any geometric model explicitly.

Instead, it synthesizes the virtual views only from the reference images by warping and

blending the images in the image space, that is, in the two-dimensional coordinate system.

The development of purely image-based modeling and rendering has great impact on

both industry and academia since one of the chief problems of rendering scenes based

on the measured data set is that it is difficult to create the geometric model, while the

image of the scene can be easily taken by using digital camera. For instance, geometric

modeling often requires such time-consuming processes as camera calibration, setup of

lighting environment, measurement by a special hardware, integration and simplification

of obtained data set for rendering purpose, etc. It can easily be imagined that most people

are unfamiliar with these techniques and simply do not want to use such a complicated

system. In addition, it is also difficult to measure the accurate shapes of such objects as

transparent, shiny and intricately-shaped surfaces.

When it is hopeless to recover scene geometry from a set of two-dimensional images,

another solution to the problem in realistic view synthesis without aliasing is to interpo-

late the reference view-images using the mapping between the images. This approach is

referred to as view-interpolation [CW93]. Determining the correspondence between two

or more images is one of the most common and well-studied problems in computer vision.

However, even if we take into consideration such constraints on given images as epipo-
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lar geometry, constant reflectance or small changes between images, it is difficult to find

correct correspondences.

In contrast to prior work [CW93, SD96], our method of view-interpolation automati-

cally extracts the plausible, if not physically-valid, mapping between the images without

any assumption on the scene geometry, and then image morphing is applied to synthesize

views that are not included in the given set of images.

The advantage of rendering with image morphing as opposed to rendering by using

geometric information estimated by such methods as stereo reconstruction is that the point

correspondence between views does not need to be accurate geometrically; it is enough

for the correspondences to be plausible in human eyes. The difference is obvious when

the appearance of objects in given images has such view-dependency as specular reflec-

tion. In addition, this method can be further extended to the problem of the interpolation

between unrelated images, such as morphing of face images and feature-based texture

morphing [LLSY02].

The proposed method consists of two parts: determination of the mapping between

reference images, and view-interpolation using image morphing.

In the first step, per-pixel correspondence between two images without depending on

either the camera pose or objects is estimated only from the images. When no geometrical

or physical information on what appears in given images is available, the difficulties in

solving the correspondence problem consist of two parts. One is the selection of features

by which the desirable correspondence between images is defined. Since the correspond-

ing points may differ in their image intensities, it is essential to define the similarities

between the images in a plausible manner. Another difficulty involved is how to prevent

the mapping from being converged into a local minimum without such defects as strong

distortion when the images come with numerous features and distant correspondences.

In the second step, the synthetic virtual views are rendered by applying morphing to

reference view-images with the determined mapping. The morphing technique is com-

posed of warping and blending of images; both of them are effectively implemented with

commodity graphics hardware to achieve interactive rendering.

2.2 Determining Plausible Maping between Images

In this section, the method of determining per-pixel correspondence between two images

only from the images is proposed. As mentioned in the previous section, the key to solving
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this problem is: how to select features by which the desirable correspondence between

images is defined and how to prevent the mapping from being converged into a local

minimum without defects such as strong distortion when the images come with numerous

features and distant correspondences. The algorithm of determining the correspondences

is as shown in Algorithm 2.1.

input: Image Isrc

input: Image Idst

output: Mapping M

local: FilterBank F

local: FeatureVectorField Vsrc

local: FeatureVectorField Vdst

local: CostOfMapping c

1: M ← Identity()

2: F ← SetupFilterBank()

3: Vsrc ← ExtractFeature(Isrc, F)

4: Vdst ← ExtractFeature(Idst, F)

5: repeat

6: c← Cost(M)

7: for all feature vectors vsrc ∈ Vsrc do

8: M ← RefineCorresponce(vsrc, Vdst, M)

9: end for

10: until c < Cost(M)

Algorithm 2.1: Unconstrained image matching

2.2.1 Problem Formulation

Let I : D→ V be an image color distribution, where D is a set of pixel coordinates and V

is the space of pixel values. The problem to be solved is then formulated as the estimate

of optimal mapping m : D → D from images Isrc to Idst in the sense that an appropriate

measure ε2
D which expresses the difference between Isrc(m(·)) and Idst(·) is minimized. We

allow the images to be upsampled, that is, the resolution of D may be higher than that of

pixel grids. In addition, mapping is restricted to a bijection, that is, m−1 is uniquely defined

at any point in D.

Hereafter, mainly the method of matching two dimensional gray images is discussed
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for simplicity, although the proposed framework could be applied to two and three (and

probably more) dimensional color images, as shown in Section 2.4.

2.2.2 Feature Extraction

In order to solve correspondence problems, the algorithm attempts to match features in

one image with corresponding features in the other. The intensity of pixels in an image

should not be used directly since the corresponding pixel may have different intensities in

the concerned problem. Unlike solving other correspondence problems in computer vision

like stereo photogrammetry, we may have to find the correspondence between points on

two unrelated objects. Nevertheless, matching is expected to appear natural to humans.

This observation implies that it is helpful to apply the feature detector actually used in

human vision.

Similar to the method in [MBSL99], we use partial derivative of a Gaussian which

well approximates visual receptive fields in early vision [You85]. When the two dimen-

sional images are matched, we use a set of rotated Gaussian derivative filters Kσ,n,θ defined

as

Kσ,n,θ(x, y) = G(n)
σ (x cos θ − y sin θ) ×G(0)

σ (x cos θ + y sin θ) (2.1)

where G(n)
σ is the n-th derivative of a Gaussian with standard deviation σ.

If some of the filters in a filter bank have linear dependency, filter response may be

redundant. By applying singular value decomposition to the matrix consisting of the vec-

tors of filter kernels, the number of bases required for n-th Gaussian derivative will be

n+ 1 [JM92]. Based on this, we used 20 filters consisting of two first derivatives and three

second derivatives of Gaussian with four different spatial scales, as shown in Figure 2.1.

At the beginning of the image matching, a filter bank F = {Fi}(i = 1, . . . ,Nf ) com-

posed of Kσ,n,θ with Nf different parameter settings is applied to each of the given images,

and then the filter responses are stored in the form of vector fields with the same size as

the original images. We call these vector fields feature vector fields. The correspondences

between images are determined only by the fields.

2.2.3 Composition of Objective Function

Optimal mapping m from Isrc to Idst is estimated by maximizing the similarities between

Isrc(m(·)) and Idst(·) under an appropriate constraint on the regularity of the mapping. This
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Figure 2.1: The filter bank used to generate feature vectors. We used 24 filters composed
of first and second partial derivatives of Gaussian, with 4 scales, in 2 and 3 orientations for
the first and second derivatives respectively. The filters have zero mean and each of them
is divided by its L1 norm for scale invariance.
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problem can be formulated by the objective function concerning the similarity of trans-

formed images and mapping smoothness.

The first criterion refers to the matching quality of the entire region of the images. That

is, the objective function ε2
D for the similarity is defined as

ε2
D =

∫
p∈D

Nf∑
i=1

ρD

(
(Fi ∗ Isrc)(p) − (Fi ∗ Idst)(m(p))

)
(2.2)

where the operator ∗ denotes the convolution and ρD is the M-estimator [HRRS86] which

is robust for the perturbations of feature vectors. In our implementation, Lorentzian func-

tion

ρ(x) = log
(
1 +

1
2

( x
σ

)2)
(2.3)

is used as the M-estimator. ρD is defined by the sum of Equation (2.3) with the scale

σ = σD for all elements of Fi ∗ I.

The second criterion is based on the regularity of the mapping. Although the feature

vectors defined in Section 2.2.2 may have sufficient information for determining the cor-

respondence uniquely, regularization is essential since it is impossible to determine the

mapping where the image intensity is constant. The objective function ε2
S reflecting the

smoothness of the mapping m = (m1, . . . ,mdimD) can be defined as

ε2
S =

∫
p∈D

dimD∑
d=1

ρS

(
∇md(p)

)
(2.4)

where ρS is the robust M-estimator that returns the sum of Lorentzian with scale σS for all

elements of ∇md in our implementation.

By combining Equation (2.2) and Equation (2.4) with the weighting parameter α2, the

objective function ε2 to be minimized is defined as follows.

ε2 = ε2
D + α

2ε2
S (2.5)

The parameter α2 is used to regularize mapping in the region where the color is nearly

constant; hence, α2 can be small. The parameter σS should be sufficiently large since the

difference of the features is the only cue to determining the correspondence in our problem.

The parameter σD is heuristically selected in our experiments, for instance 5% of image

width.
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Figure 2.2: Possible configurations of four vertices which form a square in one image and
are transformed by the estimated mapping. Only pattern (a) is allowed in our method.

2.2.4 Minimization of Objective Function

In general, it is difficult to find the optimal parameter α2 since the difference between

images can be so large that global matching may cause local distortions such as twists

and flips in the mapping which violate our assumption on bijectivity. We prevent the

mapping from being distorted by imposing restrictions for the mapping to preserve its

local convexity.

When the four vertices of a small square in Isrc are mapped into Idst by m, the possible

configurations of these four vertices are as shown in Figure 2.2 since different points are

mapped to different points due to the bijectivity of the mapping. In the determination

of mapping m, we ignore patterns (d) and (e) because bijectivity is broken either inside

or near the quadrilateral. Note that, even if we ignore the mapping in patterns (d) and

(e), it is still feasible to produce the mapping between the images containing occlusions

by accounting for the mapping that shrinks or enlarges the squares. We also prohibit the

mapping in patterns (b) and (c), because once these mappings are generated, the mapping

around the point indicated by 2 is strongly restricted, thereby leading to a local minimum

in the optimization. Consequently, we allow only the mapping consisting of the local

transformation in pattern (a). This condition is called the convexity condition.

In order to determine mapping which satisfies the convexity condition as a whole, each

correspondence in the mapping is determined so that the local convexities are preserved.

This can be achieved by restricting the area where the correspondence is sought as follows.

When a point px,y in Isrc, illustrated by a white point on the left in Figure 2.3, is mapped into

Idst by a mapping m, the convexity of m is maintained as long as m(px,y) is mapped into the

quadrilateral formed by m(px+∆x,y), m(px,y+∆y), m(px−∆x,y) and m(px,y−∆y) as illustrated on

the right in Figure 2.3. Since m(px,y) affects the convexity of only adjacent quadrilaterals,

whole convexity of m is guaranteed by beginning with a convex mapping as an initial

estimation and then modifying it so that the local convexity is maintained.
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Figure 2.3: Search area for single correspondence. The convexity of mapping is main-
tained as long as each point m(px,y) in a source image (a white point on the left) is mapped
into the quadrilateral formed by m(px+∆x,y), m(px,y+∆y), m(px−∆x,y) and m(px,y−∆y) as illus-
trated by a hutched area on the right.

2.2.5 Implementation

The geometrical constraint introduced by the convexity condition makes it difficult to de-

termine all correspondences simultaneously. Instead, we have adopted a sequential method

similar to that used in [SK98b]. For each point p in Isrc, we calculate the cost functions for

all possible correspondences which satisfy the convexity condition, and then choose one

of the correspondences whose cost is the minimum. The point p to be modified is chosen

in a random order to avoid the bias in obtained mapping.

The minimization of the objective function ε2 is carried out in multi-resolutional hier-

archy to reduce the risk of the mapping’s falling into local minima. Before determining

the mapping between images, the feature vector fields generated using the filter bank are

repeatedly down-sampled into half the size of the original; that generates pyramids of fea-

ture vector fields in different resolutions. We start in the lowest resolution and propagate

the calculation toward the highest resolution in turn, using an optimized mapping in a

resolution as an initial estimation in the next.

In each resolution in the pyramid, the mapping is refined iteratively until the minimiza-

tion converges. This iteration is essential in our algorithm to correct erroneous correspon-

dences in lower resolution.

Given image colors as inputs, we apply the filter bank defined in Section 2.2.2 to each

color channel in the images separately, and then concatenate obtained feature vector fields

into a single field. For instance, if the images are RGB color, we generate the feature

— 26/126 —



CHAPTER 2. UNCONSTRAINED VIEW-INTERPOLATION

vector field composed of 60-dimensional vectors, while gray images yield 20-dimensional

vectors.

In our current implementation, the integral in ε2 is discretized and replaced by a sum-

mation for all pixels in source image Isrc. On the other hand, the domain and range of

mapping m is discretized into sub-pixels. In general, the smaller size of sub-pixel yields

the better mapping, but leads to the larger computational cost. We set the size of sub-pixels

to be 0.1 to 0.5.

2.3 Interactive Rendering for Image Morphing

2.3.1 Warping and Blending

Once the correspondence m between the pair of the images Isrc and Idst has been obtained,

intermediate views between them can be synthesized by image morphing. Image morphing

is a technique typically used as an animation tool for smoothly and gradually blending one

image with another. The algorithm of morphing consists of two processes: warping and

blending. The basic idea of warping is to gradually distort Isrc into Wsrc by m and Idst into

Wdst by m−1, such that

Wsrc(p) = Isrc(m
−1(p)) (2.6)

Wdst(p) = Idst(m(p)) (2.7)

where p ∈ D and D is the pixel coordinates in the images. Once the warping of the

images is defined, the warped images are then blended so that they gradually change their

appearance. As the blending proceeds, Isrc is gradually distorted and is faded out, while

Idst starts from Wdst and is faded in. Thus, the early images in the sequence look like Isrc.

The middle image of the sequence is the average of Isrc and Idst. Then the last images in

the sequence are similar to Idst. The morphing is based on the observation that, when the

middle image looks good, then probably the entire sequence is supposed to look good.

Since the blending of two images is a somewhat straightforward task, the major prob-

lem in morphing is how to warp an image. Wolberg [Wol90] formulated the fundamentals

of digital image warping and proposed two-pass algorithm which warps images based us-

ing spline mapping defined in two dimensions grid coordinates. Beier [BN92] proposed

a more general and robust method, field morphing, that warps the image based on sparse

correspondences defined using line segments. Field morphing has several advantages over
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spline-based warping and is suitable for producing morphing sequence based on user spec-

ified correspondence since it can smoothly transform the image with a small number of

sparse correspondences.

Another problem with warping is how to synthesize the warped image. The existing

method of warping an image can be classified into two groups [Wol90]. The first, called

forward mapping, scans through an image pixel by pixel, and copies them to their appro-

priate place in the warped image. The second group, reverse mapping, goes through the

destination image pixel by pixel, and samples the corresponding pixel from the source im-

age. The most important feature of inverse mapping is that every pixel in the destination

image gets set to something appropriate. In the forward mapping case, some pixels in the

destination might not get painted, and would have to be interpolated. Therefore, the image

is deformed by reverse mapping in the proposed system.

In the proposed system for image-based rendering, a simple grid-based bilinear warp-

ing with inverse mapping followed by linear blending is adopted. It is unnecessary to warp

the images by sophisticated methods such as field morphing since the correspondence de-

termined by the method proposed in previous section is sufficiently dense. Let I src and Idst

be the source and destination image, respectively, m : D→ D be the mapping from Isrc to

Idst, and τ ∈ [0, 1] be the parameter that controls the ratio of warping and blending during

morphing; then, the morphed image M : D → D from Isrc to Idst using the parameter t is

synthesized using trilinear interpolation as

M(p) = (1 − τ) · bilerp(Isrc, p
′) + τ · bilerp(Idst,m(p′)) (2.8)

where p, p′ ∈ D satisfies

p = (1 − τ) · p′ + τ · m(p′) (2.9)

and bilerp(I, p) indicates the bilinear sampling of an image I at the position p. The

parameter values τ = 0 and τ = 1 correspond, respectively, to the beginning and ending

point in the morphing sequence {M|t ∈ [0, 1]} from Isrc to Idst.

2.3.2 Hardware-accelerated Rendering for Interactive Morphing

The image warping based on reverse mapping requires a high computational cost for each

pixel. In order to accelerate the calculation of reverse mapping, the warping is performed

with the aid of graphics hardware. In this approach, the image is represented as a set

of quadrilateral polygons with texture image. The polygons are tiled so that they cover
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the whole image without overlapping. In warping, the corners of the polygons are trans-

formed according to the estimated correspondence. The texture coordinate in the trans-

formed polygon is calculated, and the texture image is smoothly interpolated by graphics

hardware.

The warping of both Isrc and Idst can be effectively implemented based on polygon

rendering and texture mapping with the mapping m from Isrc to Idst without any explicit

calculation of the inverse mapping m−1.

input: Image Isrc

input: Image Idst

input: Mapping M

input: BlendingParamter τ

input: ImageGrid {pgrid}
local: Polygons {�src}
local: Polygons {�dst}

1: {�dst} ← GenerateGrid({m(pgrid)})
2: {�dst} ←Warp({�dst}, τ)
3: {�dst} ←MapTexture({�dst}, Idst)

4: RenderToFrameBuffer({�dst})
5: {�src} ← GenerateGrid({pgrid})
6: {�src} ←Warp({�src}, τ)
7: {�src} ←MapTexture({�src}, Isrc)

8: BlendToFrameBuffer({�src}, τ)
Algorithm 2.2: Hardware-acclerated morphing

The algorithm of the hardware-accelerated morphing is as shown in Algorithm 2.2.

At the beginning of the rendering, the image coordinate D is optionally downsampled

into the coarse set D̂ ⊆ D. The images are then rendered by the set of quadrilateral

polygons composed of four adjacent grid points pgrid ∈ D̂ using the images Isrc and Idst as

texture images. Let vgrid be the warped coordinate of pgrid, and tsrc, tdst ∈ D be the texture

coordinate of vgrid for Isrc, Idst, respectively; then, the warped images with the parameter τ

are rendered by the following parameters.

∀pgrid ∈ D̂ : vgrid = (1 − τ) · pgrid + τ · m(pgrid) (2.10)

tsrc = pgrid (2.11)
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Figure 2.4: Hardware-accelerated image morphing

tdst = m(pgrid) (2.12)

The warped image of Isrc can be rendered by the polygons composed of {vgrid} with texture

image Isrc whose corresponding texture coordinate is {tsrc}. The warping of Idst can also be

rendered similarly using {vgrid}, Idst and tdst.

The blending of these warped images is also accelerated by the graphics hardware.

Since the blending is performed by simple linear interpolation in our system, the morphed

image M can be rendered by alpha-blending two warped images with the blending value τ

on frame buffer. When the system is capable of multi-texture mapping to polygons, it may

be possible to accomplish the rendering twice as fast since the number of issued polygons

becomes half of that used in the algorithm based on alpha blending.

The warping and blending of Isrc and Idst based on polygon rendering are illustrated in

Figure 2.4.
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(a) input (Isrc) (b) input (Idst) (c) determined mapping

Figure 2.5: Example of mapping determined by our algorithm. Given (a) and (b) as inputs,
mapping (c) between them is calculated. The mapping is illustrated by needle diagram.

2.4 Experimental Results

In this section, extensive results of the proposed method for unconstrained image matching

and interactive image morphing are presented. The proposed algorithms are implemented

on a standard PC with Pentium3 1GHz, 768MB main memory and an ATI Radeon 9800

PRO graphics card.

2.4.1 Results of Unconstrained Image Matching

Figure 2.5 shows the results of matching between two images of an object which is slightly

rotated. The resolution of the image is 1282. Figure 2.5 (a) and (b) shows the input

images. Figure 2.5 (c) is the needle diagram for the pixel correspondence determined by

the proposed method. Although no geometric information such as camera poses is used in

the estimation, the rotation of the object is correctly extracted.

In Figure 2.6, robustness of our method to the perturbation of image intensities is

compared. The mapping between Figure 2.5 (a) and 10% brightened (b) was estimated

by using mean filter, CPF [SK98b] and our proposed filters; then, intermediate images are

generated by obtained mappings. Since mean filter and CPF are directly affected by the

change of image intensity, the resultant mappings are totally disrupted, while our method

yields a plausible mapping.

We also compared our proposed method with others in terms of quality of mapping

generated from the images used in Figure 2.5. A comparison of the smoothness of mapping

with [SK98b] is presented in Figure 2.7. Some flips and twists of pixels can be observed
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(a) mean (b) CPF (c) ours

Figure 2.6: Comparison of estimation robustness. The figures present intermediate im-
ages between Figure 2.5 (a) and 10% brightened (b). Mappings between the images are
obtained using (a) mean filters, (b) CPF [SK98b] and (c) our proposed filters.

[SK98b] ours

Figure 2.7: Comparison of the mapping generated by [SK98b] (left) and our proposed
method (right). Flipping and twisting of the local correspondence may be observed in the
circle on the left.
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Table 2.1: Performance comparison of image matching algorithms. The left column in
each cell shows the execution time (seconds) and the right shows the sum of the squared
differences of intensities.

[SK98b] proposed method
data (size) time error time error

boxes (1282) 2.1 6.0 × 106 8.5 5.0 × 106

textures(1282) 2.0 3.8 × 108 10.7 1.6 × 108

faces (2562) 8.2 1.3 × 108 51.3 1.1 × 108

brains (1283) - - 8823 1.2 × 1010

Figure 2.8: Results of view-interpolation for a rotated object. This image sequence is gen-
erated by trilinear interpolation of the images (a) and (b) in Figure 2.5 with automatically
estimated correspondence.

in the mapping calculated by [SK98b], while our mapping maintains local smoothness.

Table 2.1 contains a comparison of the matching speed (measured in seconds) and

matching quality (measured by sum of the squared differences of intensities) with the

method in [SK98b]. The result shows that the quality of mapping has improved, while the

speed of calculation has increased by about five times, which depends on data owing to

iterative minimization.

2.4.2 Results of View-interpolation

Figure 2.8 shows the result of view-interpolation between two images presented in Fig-

ure 2.5 (a) and (b). Although the determined mapping may not be the same as an exact

rigid transformation, the in-between views are synthesized without conspicuous visual er-

rors.

Figure 2.9 shows the result of view-interpolation between two images. The top two

figures indicate the reference images for view-interpolation. The synthesized intermediate

view-image is presented on the left in the middle row. The mapping between the reference
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(a) input (b) input

(c) synthesized intermediate view-image (d) real view-image at the viewpoint of (c)

(e) view-interpolation sequence

Figure 2.9: Result of view-interpolation for Pokeḿons. (a) and (b) are two input images.
(c) is the intermediate image synthesized from (a) and (b) by the proposed method of
unconstrained view-interpolation. (d) is a real view-image taken at the viewpoints halfway
between those of the inputs and unused in the process of the view-interpolation. (e) is the
view-interpolation sequence between (a) and (b).
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(a) input (b) input

(c) synthesized intermediate view-image (d) real view-image at the viewpoint of (c)

(e) close-up of (c) (f) close-up of (c) with grids

Figure 2.10: Results of view-interpolation for Tsukuba sequence. (a) and (b) indicate
two input images. (c) is the intermediate image synthesized from (a) and (b) by the pro-
posed method of unconstrained view-interpolation. (d) is a real view-image taken at the
viewpoints halfway between those of the inputs and unused in the process of the view-
interpolation. (e) and (f) are close-up view of the synthesized image. Owing to the occlu-
sion of objects, some parts of mapping is estimated incorrectly.
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images is estimated in the resolution of 256 × 256. The right in the middle is the real

view-image taken at the position in the middle of the reference viewpoints. Most parts of

the synthesized image look quite similar to those of the real image, but small rubber-band

effects are observed between green and red toys in the synthesized image. This is caused

by interpolating the points which are visible in one of the reference view and invisible in

the other due to occlusion. The bottom row presents the sequence of view-interpolation

between the given reference view-images.

Figure 2.10 shows the result of view-interpolation for another scene. This scene has

many objects occluding one another; hence, is difficult to estimate accurate mapping. Us-

ing the top two images as reference views, the intermediate view-image is synthesized as

shown on the left in the middle row. The mapping used to interpolate the views is in the

resolution of 256 × 256. A view-image taken at the same viewpoint is presented on the

right in the middle row for comparison. Owing to the large occlusions and the narrow

objects, some parts of the scene correspond to incorrect parts, as shown in the close-up of

the synthesized image. The black cable on the orange lamp is doubly observed in the syn-

thetic view as a result of incorrect image correspondences. This effect may be reducible

by increasing the resolution of mapping at the cost of the computation time.

The unconstrained view-interpolation between the views of a translucent and specular

object is presented in Figure 2.11. Since the view images are rectangular, they were trans-

formed into squares before determining the correspondences. The mapping between the

original images were generated by converting the estimated mapping to that in the original

size. It is extremely difficult to reconstruct the accurate geometry of the object, because

the change of specular reflection causes the mis-estimation of the correct geometric cor-

respondences between the images. Although the translucency and absence of texture also

disturb the estimation, the unconstrained view-interpolation of the reference view-images

enables the system to yield natural synthetic views without any explicit geometric recon-

struction.

Note that neither camera poses nor camera intrinsic parametes was estimated in these

experiments.

2.4.3 Applications of Image Morphing

Although the primary goal of this research is to synthesize an images sequence between

the different views of a static scene, the proposed method of image matching is applicable

to the morphing between the images of different objects.
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Figure 2.11: Results of view-interpolation for a translucent and specular object. The
left-most and right-most images are the reference views and the center is the intermediate
image.

In Figure 2.12, the results of automatic morphing of three different persons are shown.

The resolution of the images is 2563. The mappings between (a), (c) and (c), (e) are cal-

culated separately. Although the middle person wears the glasses, the robust M-estimator

successfully ignore the image features which cannot correspond to any parts in the coun-

terparts.

Our algorithm was applied to texture metamorphosis as shown in Figure 2.13. The

size of the texture images is 2563. The result is similar in quality to those generated by

the semi-automatic method proposed by Liu et al. [LLSY02], while ours are automatically

generated.

Another application is the images registration. We have extended our algorithm to the

registration of three dimensional images (volumes). The filters used to extract features are

partial derivatives of three dimensional Gaussian functions, and the mapping is calculated

so that the small hexahedron shaped by adjacent eight points remains convex. Figure 2.14

shows the result of registration for the brain. In the figure, (a) and (b) are the volumes

of human heads in 1283 resolution obtained by magnetic resonance imaging (MRI). The

correspondences between the volumes are calculated by our proposed method, and then

the volume (a) is transformed into (c) by trilinear transformation, without blending (a) and

(b). The volume is visualized by isosurface rendering with an appropriate isovalue and

lighting.
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(a) input (b) (a)+(c) (c) input (d) (c)+(e) (e) input

Figure 2.12: Blending of human faces. (a), (c) and (e) are inputs. (b) and (d) are generated
from adjacent images.

Figure 2.13: Texture metamorphosis sequence is automatically generated from left to
right.

(a) input (b) input (c) registered

Figure 2.14: Registration of MRI images of human heads. Volumes are visualized by
isosurface rendering. (a) and (b) are the volumes of the heads of two different persons. (c)
is the volume (a) registered into (b) by the mapping determined by proposed method.
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Chapter 3

Pop-up Light Field

3.1 Introduction

Central to many image-based rendering (IBR) systems is the goal of interpolating accu-

rately between the sample images in order to generate novel views. In IBR, rendering

a desired pixel is often equivalent to interpolating intensity values of some input pixels.

Such an interpolation, however, depends on the correspondences between the rendered

pixel and those pixels from the input sample images. Accurate correspondence between

these pixels can be obtained if we have a large number of input images or an accurate

geometric model of the scene.

The issue of realistic rendering using dense image samples in IBR has been very well

explored in the forms of Light Field [LH96] and Lumigraph [GGSC96]. In light field

rendering, a simple focal plane is sufficient to establish accurate correspondence between

interpolating pixels. When sampling is sparse, however, conventional light field rendering

could cause aliasing because of erroneous correspondence. On the other hand, the Facade

system [DTM96] shows that, from only a few photographs, realistic rendering of buildings

architecture can be achieved because the reconstructed geometry model provides accurate

correspondence for view-dependent texture mapping. A formal analysis of the tradeoff

between the number of images and the amount of geometry (in terms of the number of

depth layers associated with each pixel) is presented in [CTCS00].

Many IBR systems have proposed different geometric proxies [BBM01b] to alleviate

the problem introduced by under-sampled light fields. In practice, however, acquiring an

approximate yet “continuous” proxy model is a challenging task. A continuous proxy

model is needed for these IBR systems because every desired ray must intersect a point on
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the geometric proxy in order to establish the correspondence between interpolating pixels.

This explains why most IBR systems today have used a very simple geometric proxy (e.g.,

a focal plane in a dynamically re-parameterized light field [IMG00]) for a complex scene,

but can construct a relatively complex proxy for a single object (e.g., the lion model in

Lumigraph [GGSC96] or the car model in unstructured Lumigraph [BBM01b]). The

image-based visual hull [MBR+00b] is another geometry proxy that can be constructed

and updated in real-time from silhouettes of a single object. If a single global geometric

proxy is not sufficient, local geometric proxies can also be used to improve rendering

quality, for example, the view-dependent geometry [Rad99] used in impostors [Sch95]

and Microfacet Billboarding [YSK+02]. These local geometric proxies are mostly for

single objects as well.

The problem to be tackled in this chapter is: Can we use a relatively sparse set of

images of a complex scene and still produce photorealistic virtual views free of alias-

ing? A straightforward approach would be to perform stereo reconstruction or to establish

correspondence between all pixels of the input images. The geometric proxy is a depth

map for each input image. Unfortunately, state-of-the-art automatic stereo algorithms are

inadequate for producing sufficiently accurate depth information for realistic rendering.

Typically, the areas around occlusion boundaries [KZ02, KSC01] in the scene give the

least desirable results, because it is very hard for stereo algorithms to handle occlusions

without prior knowledge of the scene.

3.2 Approach

We approach this problem by suggesting that it is not necessary to reconstruct accurate 3D

information for each pixel in the input light field. Our solution is to construct a pop-up

light field by segmenting the input sparse light field into multiple coherent layers. The

pop-up light field approach differs from other layered modeling and rendering approaches

(e.g., [LS97, SGwHS98, BSA98]) in a number of ways. First, the number of layers needed

in a pop-up light field is not pre-determined. Rather, it is decided interactively by the user.

Second, the user specifies the layer boundaries in key frames. The layer boundaries are

then propagated to the remaining frames automatically. Third, our representation is sim-

ple. Each layer is represented by a planar surface without the need for per-pixel depth.

Fourth, and most importantly, our layers are coherent so that anti-aliased rendering us-

ing these coherent layers is achieved. Each coherent layer must have sufficiently small
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depth variation so that anti-aliased rendering of the coherent layer itself becomes possible.

Moreover, to render each coherent layer with its background layers, not only is accurate

layer segmentation required on every image, but also segmentation across all images must

be consistent as well.

To segment the layers, the user interface is key. A good user interface can enable the

user to intuitively manipulate the structure of a pop-up light field so that virtual views with

the desired level of fidelity can be produced. By having a “human-in-the-loop” for pop-up

field construction, the user can specify where aliasing occurs in the rendered image. Then,

corresponding layers are refined accordingly. More layers are popped up, refined and

propagated across all images in the light field until the user is satisfied with the rendering

quality (i.e., no aliasing is perceived).

This work was inspired by the real-time 3D model acquisition system of [RHHL02],

in which the user specifies areas that need to be modeled depending on the current merged

model from multiple scans. Though the goal and methodology are very different, the key

concept in our system is similar: our user is in the modeling loop and specifies, through a

real-time pop-up light field renderer, where aliasing occurs and how the scene should be

further modeled.

Another motivation stems from our frustration of not being able to get accurate per-

pixel depth using stereo or other vision techniques. Pop-up light field is an image-based

modeling technique that does not rely on accurate 3D depth/surface reconstruction. Rather,

it is based on accurate layer extraction/segmentation in the light field images. In a way, we

trade a difficult correspondence problem in 3D reconstruction for another equally difficult

segmentation problem. However, for a user, it is much easier to specify accurate contours

in images than accurate depth for each pixel.

3.3 Pop-up Light Field Representation

3.3.1 An Example

When a light field is under-sampled, conventional light field rendering [LH96] results in

aliasing. The top row of Figure 3.1 shows the rendering of a sparse light field with 5x5

Tsukuba images. The top right image is rendered with the 5x5 sparse light field by setting

a single focal plane in the scene [IMG00]. Double images can be easily observed on the

front objects.

The bottom row of Figure 3.1 shows that anti-aliased rendering can be achieved using
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Sparse Light Field (5 × 5) Pop-up Light Field, 2 LayersPop-up Light Field, 4 Layers

Popping-up Layers

Conventional Sparse Light Field Rendering Pop-up Light Field Rendering with 4 Layers

Figure 3.1: An example of rendering with pop-up light fields. Rendering using the 5x5
Tsukuba light field data set is shown in the top left. Aliasing is clearly visible near front
objects in the bottom left image because the input light field is sparse. The top row shows
that the pop-up light field splits the scene gradually into 4 coherent layers, and achieves
anti-aliased rendering as shown in the bottom right image.
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four layers, each of which employs a simple planar surface as its geometric proxy. Splitting

the scene into multiple layers causes the depth variation in each layer to become much

smaller than that in the original sparse light field.

The pop-up light field is represented by a collection of coherent layers. A key obser-

vation in our pop-up light field representation is that the number of coherent layers that

should be modeled or “popped up” depends on the complexity of the scene and how under-

sampled the input light field is. For a sparser light field, more layers need to be popped up

for anti-aliased rendering.

3.3.2 Coherent Layers

We represent a coherent layer Lj by a collection of corresponding layered image regions

Ri
j in the light field images Ii. These regions are modeled by a simple geometric proxy

without the need for accurate per-pixel depth. For example, a global planar surface (P j) is

used as the geometric proxy for each layer Lj in the example shown in Figure 3.2. To deal

with complicated scenes and camera motions, we can also use a local planar surface Pi
j to

model the layer in every image i of the light field.

A layer in the pop-up light field is considered to be “coherent” if the layer can be

rendered free of aliasing by using a simple planar geometric proxy (global or local). Anti-

aliased rendering occurs at two levels when

1. the layer itself is rendered; and

2. the layer is rendered with its background layers.

Therefore, to satisfy the first requirement, the depth variation in each layer must be

sufficiently small, as suggested in [CTCS00]. Moreover, the planar surface can be adjusted

interactively to achieve the best rendering effect. This effect of moving the focal plane has

been shown in [IMG00, CTCS00].

However, to meet the second requirement, accurate layer boundaries must be main-

tained across all the frames to construct the coherent layers. A natural approach to en-

suring segmentation coherence across all frames is to propagate the segmented regions on

one or more key frames to all the remaining frames [SGwHS98, ZWGS02]. Sub-pixel

precision segmentation may be obtained on the key frames by meticulously zooming in on

the images and tracing the boundaries. Propagation from key frames to other frames, how-

ever, causes inevitable under-segmentation or over-segmentation of a foreground layer.

Typically, over-segmentation of a foreground layer leads to the inclusion of background
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P1

P2

L1

L2

I1

I2

Frame 1
Frame 2

R1
1

R2
1

R1
2

R2
2

Figure 3.2: A light field (with images I1 and I2) can be represented by a set of coherent
layers (L1 and L2). A coherent layer is a collection of layered images in the light field. For
instance, L1 is represented by a layered image R1

1 (from I1) and R1
2 (from I2). Each layered

image has an alpha matte associated with its boundary. Part of the scene corresponding to
each layer (e.g., L1) is simply modeled as a plane (e.g., P1).
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pixels, thereby introducing ghosting along the occlusion boundaries in the rendered im-

age. A possible example of foreground over-segmentation is exhibited in Figure 4(g) of

[SGwHS98] where black pixels on the front object’s boundary can be observed. To alle-

viate the rendering artifacts caused by over-segmentation or under-segmentation of layers,

we need to refine the layer boundary with alpha matting [PD84].

Figure 3.2 illustrates coherent layers of a pop-up light field. All the pixels at each

coherent layer have consistent depth values (to be exact, within a depth bound), but may

have different fractional alpha values along the boundary.

To produce fractional alpha mattes for all the regions in a coherent layer, a straightfor-

ward solution is to apply video matting [CCSS01]. The video matting problem is formu-

lated as a maximum a posterior (MAP) estimation as in Bayesian matting [CCSS01],

argmax
F,B,α

P(F, B, α|C) (3.1)

= argmax
F,B,α

L(C |F, B, α) + L(F) + L(B) + L(α) (3.2)

where L(·) = logP(·) is log likelihood, C is the observed color for a pixel, and F, B and

α are foreground color, background color and alpha value to be estimated, respectively.

For color image, C, F and B are vectors in RGB space. In Bayesian matting and video

matting, the log likelihood for the alpha L(α) is assumed to be constant so that L(α) is

dropped from Equation (3.2).

In video matting, the optical flow is applied to the trimap (the map of foreground,

background and uncertain regions), but not to the output matte. The output foreground

matte is produced by Bayesian matting on the current frame, based on the propagated

trimap. Video matting works well if we simply replay the foreground mattes against a

different background. However, these foreground mattes may not have the in-between

frame coherence that is needed for generating novel views.

3.3.3 Coherence Matting

We propose a novel approach, called coherence matting, to construct the alpha mattes in

a coherent layer that have in-between frame coherence. The workflow of our approach is

similar to video matting and is illustrated in Figure 3.3. First, the user-specified bound-

aries are propagated across frames. Second, the uncertain region along the boundary is

determined. Third, the under-segmented background regions from multiple images are

combined to construct a sufficient background image. Fourth, the alpha matte for the fore-
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Figure 3.3: Illustration of major steps in coherence matting. (a) The user specifies an ap-
proximate segmentation. (b) An uncertain region is added in between foreground and
background. (c) A background mosaic is constructed from multiple under-segmented
background images. (d) A coherent foreground layer is then constructed using coherent
matting.

ground image (in the uncertain region) is estimated. The key to our approach is at the

fourth step in Figure 3.3(d) where we introduce a coherent feathering function across the

corresponding layer boundaries. Note that, for a given layer, a separate foreground matte is

estimated independently for each frame in the light field, and the coherence across frames

is maintained by foreground boundary consistency.

L(B) in Equation (3.2) can be dropped since we can explicitly estimate the background

(see Section 3.4.4). By incorporating a coherence prior on the alpha channel L(α) across

frames, coherence matting can be formulated as

L(F, B, α|C) = L(C |F, B, α) + L(F) + L(α) (3.3)

where the log likelihood for the alpha L(α) is modelled as:

L(α) = −(α − α0)2/σ2
a (3.4)

where α0 = f (d) is a feathering function of d and σ2
a is the standard deviation. d is the

distance from the pixel to the layer boundary. The feathering function f (d) defines the α

value for surrounding pixels of a boundary. In the current implementation, the feathering

function is set as f (d) = (d/w) ∗ 0.5 + 0.5, where w is feathering width, as illustrated in

Figure 3.4.

Assume that the observed color distribution P(C) and sampled foreground color distri-
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α

d

w

1.0

0.5

0.0

f (d)

Figure 3.4: Feathering function used in coherence matting

bution P(F) (from a set of neighboring foreground pixels) are all of Gaussian distribution:

L(C |F, B, α) = −||C − αF − (1 − α)B||2/σ2
C , (3.5)

L(F) = −(F − F)TΣ−1
F (F − F) (3.6)

where σC is the standard deviation of the observed color C, F is the weighted average of

foreground pixels, and ΣF is the weighted covariance matrix. Taking the partial derivatives

of Equation (3.3) with respect to F and α and forcing them equal to zero results in the

following equations:

F =
Σ−1

F F + Cα/σ2
C − Bα(1 − α)/σ2

C

Σ−1
F + Iα2/σ2

C

(3.7)

α =
(C − B) · (F − B) + α0 · σ2

C/σ
2
a

||F − B||2 + σ2
C/σ

2
a

(3.8)

α and F are solved alternatively by using Equation (3.7) and Equation (3.8). Initially, α is

set to α0.
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Figure 3.5: Comparison between video matting and coherence matting. (a) is a small
window on one frame in the Plaza data (Figure 3.16). (b) and (c) are two alpha epipolar
plane images (α-EPI) corresponding to the red line in (a), using the algorithm of video
matting and coherence matting, respectively. (d) and (e) are the alpha curves of two ad-
jacent columns, which are marked as blue and red lines in (b) and (c). (d) corresponds to
video matting, and shows a large jump at i = 13, which causes an accidental transparency
within the face. (e) corresponds to coherence matting, which provides a more reasonable
result.
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3.3.4 Rendering with Coherent Matting

Bayesian matting [CCSS01] and video matting [CAC+02] solve the matting from the equa-

tion

α =
(C − B) · (F − B)
||F − B||2 , (3.9)

which works well in general but becomes unstable when F ≈ B. In comparison, the coher-

ence matting of Equation (3.8) can be solved more stably, because applying the coherence

prior on α results in a non-zero denominator. The coherence prior behaves similar to the

smoothness constraint commonly used in visual reconstruction (e.g., shape from shading

[HB89]).

The spatial inconsistency of the alpha matte from video matting can be observed in

Figure 3.5. We plot the alpha epipolar plane image (α-EPI) of a video matting result.

Similar to the conventional EPI [BB89], for a short segment of scanline from the Plaza

sequence, we stack the alpha values along this segment for all of the 16 frames ((b) and

(c)). The alpha values along 2 lines (solid and dotted) in the α-EPI are plotted in (d) and

(e). Each line represents the alpha values of the corresponding pixels across 16 frames. A

close inspection of (b) around frame i = 13(video matting method), shows that the alpha

value changes from about 126 to 0, then to 180 (the range of alpha is from 0 to 255),

indicating a small part of the face accidently becomes transparent.

The temporal incoherence of the alpha matte from video matting can be more prob-

lematic during rendering. The fluctuation of alpha values along both dotted and solid

lines will generate incoherent alpha values and thus cause rendering artifacts as we change

viewpoints (along axis i). This phenomenon can be more clearly observed in the accom-

panying videotape. Figure 3.5 (e) shows the same solid and dotted lines with coherent

matting results. Both lines have much less fluctuation between neighboring pixels, and

appear temporally smoother than their counterparts in Figure 3.5(d).

3.4 Pop-up Light Field Construction

To construct a pop-up light field, we have designed an easy-to-use user interface (UI).

The user can easily specify, refine and propagate layer boundaries, and indicate rendering

artifacts. More layers can be popped up and refined until the user is satisfied with the

rendering quality.
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3.4.1 UI Operators

Figure 3.6 summarizes the operations in the pop-up light field construction UI. The key

is that a human is in the loop. The user supplies the information needed for layer seg-

mentation, background construction and foreground refinement. By visually inspecting

the rendering image from the pop-up light field, the user also indicates where aliasing

occurs and thus which layer needs to be further refined. The user input or feedback is

automatically propagated across all the frames in the pop-up light field. The four steps of

operations in the UI are summarized in the following four sub-sections.

Layer pop-up This step segments layers and specifies their geometries. To start, the user

selects a key frame in the input light field, specifies regions that need to be popped

up, and assigns the layer’s geometry by either a constant depth or a plane equation.

This step results in a coarse segmentation represented by a polygon. The polygon

region and geometry configuration can be automatically propagated across frames.

Layers should be popped up in order of front to back. More details of layer pop-up

are shown in Section 3.4.3.

Background construction This step obtains background mosaics that are needed to es-

timate the alpha mattes of foreground layers. Note that the background mosaic is

useful only for the pixels around the foreground boundaries, i.e., in the uncertain re-

gion as shown in Figure 3.3. More details of background construction are discussed

in Section 3.4.4.

Foreground refinement Based on the constructed background layers, this step refines the

alpha matte of the foreground layer by applying the coherence matting algorithm

described in Section 3.3.3. Unlike layer pop-up in step 1, foreground refinement in

this step should be performed in back-to-front order.

Rendering feedback Any modification to the above steps will update the underlying pop-

up light field data. The rendering window will be refreshed with the changes as well.

By continuously changing the viewpoint the user can inspect for rendering artifacts.

The user can mark any rendering artifacts such as ghosting areas by brushing directly

on the rendering window. The corresponding frame and layer will then be selected

for further refinement.
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3.4.2 UI Design

Figure 3.7 shows the appearance of our UI, including five workspaces where the user

interacts with a frame and a layer in the pop-up light field. These workspaces and their

functionalities are explained as follows.

Lower middle The user chooses an active frame by clicking on the frame navigator,

shown at the lower middle part of Figure 3.7. The active frame appears in the editing

frame view, shown at the upper left in Figure 3.7.

Upper left In the editing frame view, the user can create or select an active layer and edit

its polygon region. This active layer is displayed in blue polygons with crosses for

each editable vertex. The information of the active layer is available in the layer

navigator, shown at the lower right of Figure 3.7.

Lower right From the layer navigator, the user can obtain the active layer’s information.

The user can select, add, or delete layers in the list. By selecting the layer in the

check box, the user can turn on/off a layer’s display in the editing frame view, refer-

ence frame view (shown at the upper right of Figure 3.7), and the rendering window.

The plane equation of the active layer is displayed and can be modified through key-

board input. Layer equations can also be set through adjusting the rendering quality

in the rendering window.

Upper right The reference frame view is used to display another frame in the light field.

This workspace is useful for a number of operations where correspondences between

the reference frame view and the editing frame view need to be considered, such as

specifying plane equations.

Lower left To fine tune the polygon location for the active layer, the boundary monitor

(lower left of Figure 3.7) shows close-up views of multiple frames in the light field.

The first row shows the close-up around the moving vertex. The second and third

rows show the foreground and background of the active layer composed with a fixed

background selected by the user. For instance, using mono fuchsia color in Fig-

ure 3.7 as the background makes it easy for the user to observe over-segmentation

or under-segmentation of the foreground across multiple frames simultaneously.

Others Not shown in the figure is the rendering window on which the user can render

any novel view in real time and can inspect the rendering quality. The user can also
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specify the frontal plane’s equation for an active layer by sliding the plane depth

back and forth until the best rendering quality (i.e., minimum ghosting) is achieved.

If the ghosting cannot be completely eliminated at the occlusion boundaries, the

layer’s polygon must be fine tuned. The user can brush on the ghosting regions, and

the system can automatically select the affected frame and layer for modification.

The affected layer is front-most and closest to the specified ghosting region.

To specify the slant plane equation for a layer, the user needs to select at least four

pairs of corresponding points on the editing frame view and the reference frame view.

The plane equation can be automatically computed and then used for rendering.

Also not shown in the above figure is a dialog box where the user can specify the

feathering function. Specifying a feathering curve is useful for the coherence mat-

ting algorithm described in Section 3.3.3.

3.4.3 Layer Pop-up

To pop up a layer, the user needs to segment and specify the geometry of the layer for

all frames in the light field. In this section, we discuss the operations by which the user

interacts with the system and the underlying algorithms.

Layer initialization

We use polygons to represent layer boundaries, since the correspondence between poly-

gons can be maintained well in all frames by the corresponding vertices. The user can

specify the layer’s boundary with a polygon (e.g., using the polygon lasso tool in Adobe

Photoshop) and edit the polygon by dragging the vertices. The editing will be immediately

reflected in the boundary monitor window and in the rendering window (Section 3.4.2).

First of all, the user needs to inspect the rendering window by changing the viewpoint

and decide which region is going to be popped up (usually the front-most non-ghosting

object). The user then selects a proper key frame to work with and draws a polygon on the

frame.

Then, the user needs to specify the layer’s geometry. For a frontal plane, the layer

depth is the one that achieves the best rendering quality which can be observed on the

rendering window by the user. For a slant plane, the user specifies at least four pairs of

corresponding points on at least two frames to estimate the plane equation.
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Once the layer geometry is decided, the polygon on the first key frame can be prop-

agated to all other frames by back-projecting its vertices, thereby resulting in a coarse

segmentation of the layer on all frames in the light field. All vertices on the key frame are

marked as key points. At this stage, the layer has a global geometry which is shared across

all the frames. An accurate polygon boundary for layer initialization is not necessary.

Because of occlusions and viewpoint changes, propagated polygon boundaries inevitably

need to be refined.

Layer refinement

The following aspects need to be considered in layer refinement.

Boundary refinement in a key frame All vertices on any frame can be added, deleted

and moved. Once a vertex has been modified, it is marked as a key point. The

position of the modified vertex will be propagated across frames at once and the

layer region will be updated in several UI workspaces. To adjust a vertex position,

the user can observe how well foreground and background colors are separated in

the boundary monitor window, or how much the ghosting effect is removed in the

rendering window.

Boundary propagation across multiple frames For a specific vertex on the layer bound-

ary, if there is a non-key point on frame IP, we want to interpolate its image coor-

dinate from the corresponding key points in other frames. If there is only one key

point in other frames, we compute the coordinate by back projecting the intersection

point of layer plane and the viewing ray from key point. Otherwise, we select two

or three “neighboring” frames that contain the key points. Then, we compute the

coordinate by back projecting the 3D point which has minimal sum of distances to

the viewing rays from key points in these frames.

For a 1D camera array, we select the two frames closest to the left and right of

the frame IP that contain key points. For a 2D camera array, we first compute the

Delaunay triangulation in the camera plane using all frames containing key points. If

frame IP is in the interior of a triangle, the three frames one the triangle vertices are

“neighboring” frames. For example in Figure 3.8, A, B and D are the “neighboring”

frames of frame b. If frame IP is in the exterior of all triangles, we select two frames

I0 and I1 that maximize the angle ∠I0IPI1 in camera plane. For example, A and D are

the “neighboring” frames of frame a, as shown in Figure 3.8.
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Note that the key points are those that have been modified by the user. They do not

necessarily exist on key frames.

Coherence matting It is difficult to accurately describe a layer boundary simply by using

polygons. It is hard for the user to manually adjust to sub pixel accuracy a boundary

with subtle micro geometry. A pixel is often blended with colors from both fore-

ground and background due to the camera’s point spread function. Therefore, we

choose not to require the user to specify very accurate sub-pixel boundary positions.

Instead, a coherence matting algorithm is applied to further refine the layer bound-

ary. Polygon editing (in a frame and across frames) and coherence matting can be

alternatively performed with assistance from the user.

Local geometry When the viewpoint changes significantly, a single planar geometry may

not be sufficient to achieve anti-aliased rendering, such as cameras C1 and C2 in

Figure 3.9. Therefore, we introduce a local geometry representation in our system

which allows each frame to have its own planar equation L1 and L2 as illustrated in

Figure 3.9.

Using the same UI as in Section 3.4.3, the plane equation can be estimated for each

frame. Our system allows the user to specify only a few key frames’ geometry, and

interpolates the plane equations for frames in between. Similar to the “neighboring”

frames selection algorithm in the boundary propagation step, we can select two (for

1D camera array) or three (for 2D camera array) key frames for interpolation. For

the frontal plane model, we interpolate the depth of the plane. For the 3D plane

model, we interpolate the plane orientation while keeping the intersecting line if

using two key frames, or the intersecting point if using three key frames. Once the

plane equation has been estimated for each frame, the same rendering algorithm can

be applied as in using global geometry.

3.4.4 Constructing the Background

The algorithm of coherence matting in Section 3.3.3 assumes that the background for

the uncertain regions (where matting is estimated) is known. A key observation is that,

because the uncertain regions are located around foreground boundaries, they can appear

only on neighboring frames in the light field where these regions are dis-occluded. Our

background reconstruction algorithm fills the disoccluded region using (warped) pixels

from neighboring frames.
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Once the foreground has been popped up, we obtain the background image by remov-

ing the foreground image, as shown in Figure 3.10(a). Moreover, the background bound-

ary is eroded by a few pixels (typically two pixels) before constructing the background

mosaic because a possible under-segmentation of the foreground may leave some mixed

foreground pixels on the background around boundaries.

An automatic algorithm has been designed to construct the background, by warping the

neighboring images to fill the holes using the background layer’s geometry. This method

works well if the background is well approximated by plane, e.g., in Figure 3.1.

However, when the background contains objects with relatively large depth variation,

we need to further subdivide the background layer into sub layers, each of which can be

represented as one plane. As shown in Figure 3.10(a), a background layer is segmented

manually into four sub layers using polygons. This time, the location of the polygon is

not critical. Instead, the criterion here is to group the background boundaries into a better

planar approximation.

The sub layers are propagated from the key frame, where the user specifies the divi-

sion, to all other frames using the existing background layer geometry. This propagation

requires less accuracy as long as it covers the same group of boundaries. The relative

motion of the sub layer across frames is estimated hierarchically, starting from transla-

tion to affine, and from affine to perspective transform [SS97]. Only the pixels visible in

both frames are used to estimate parameters. Figure 3.10(b) shows the resulting mosaic.

Note that we need not create a hole-free mosaic, as a few pixels surrounding the occlusion

boundaries are adequate for coherence matting.

3.5 Real-time Rendering of Pop-up Light Field

An integral part of our UI is the real-time pop-up light field renderer which provides the

user instant feedback on the rendering quality. Based on previous light field and Lumi-

graph rendering systems [GGSC96, IMG00, BBM01b], we have developed a real-time

pop-up light field renderer. Our rendering algorithm includes three steps: (1) splitting a

light field into layers, (2) rendering layers in back-to-front order, and (3) combining the

layers.

3.5.1 Data Structure

The data structure used in our rendering algorithm is shown below.
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struct PopupLightField {

Array<CameraParameter> cameras;

Array<Layer> layers;

};

struct Layer {

Array<Plane> equations;

Array<Image> images;

};

struct Image {

BoundingBox box;

Array2D<RGBA> pixels;

};

The pop-up light field keeps the camera parameters associated with all the input frames.

Each layer in the pop-up light field has corresponding layered images, one for each frame.

Each layered image has a corresponding plane equation, so as to represent the local geom-

etry. If global geometry is applied to a layer, all equations are the same for images in this

layer.

Since these corresponding layered images vary their shapes in different views, they

are stored as an array of images on each layer. Layers can be overlapping in the pop-up

light field and each layered image is modified independently by mosaicing and coherent

matting. Therefore it is necessary to keep both color and opacity of images for each layer

separately. Each layered image is stored as an RGBA texture image of the foreground

colors with its opacity map, and a bounding box as well. The opacity (alpha value) of the

pixel is zero when this pixel is out of the foreground.

3.5.2 Layered Rendering Algorithm

The scene is rendered layer by layer using texture-mapped triangles in back-to-front order.

Then the layers are sequentially combined by alpha blending. Our rendering scheme is

based on [HKP+99, BBM01b], but is extended to multiple layers. The pseudo code of our

rendering algorithm is shown below.

After initializing a frame buffer, we generate a set of triangular polygons on which

the original images are blended and drawn. We first project the camera positions onto the

image plane and triangulate these projection points together with the image plane’s four

corner points into a set of triangles.
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Background
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Layer
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Foreground
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Sparse
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Figure 3.6: Flowchart of pop-up light field construction UI

input: CoherentLayers L

local: RenderingPrimitives T

1: ClearFrameBuffer()

2: T ← CreateRenderingPrimitives()

3: for all layers l ∈ L from back to front do

4: for all triangles � ∈ T do

5: SetupProjectiveTextureMapping(�)

6: Render(�)

7: BlendToFrameBuffer(�)

8: end for

9: end for
Algorithm 3.1: Popup light field rendering
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Key point marker Editing frame

Close-up
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Background

Neighbor frames

Editing frame view Reference frame view

Layer navigatorFrame navigator

Plane equaiton

Boundary monitor

Figure 3.7: User interface for Pop-up light field construction
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A

B

CD

a

b

Figure 3.8: “Neighboring” frames selection for 2D camera array. The solid (yellow) dots
are frames including key point and hollow (red) dots are frames to be interpolated.

C1
C2

L1
L2

Object

Figure 3.9: Local geometry
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(a)

(b)

Figure 3.10: (a) The background mosaic operator uses the polygon lasso operator to seg-
ment the layer into regions. (b) The resulting background mosaic fills in many missing
pixels in (a). Although (b) still has many missing pixels, it is enough for coherence mat-
ting of the foreground.
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Figure 3.11: Setup of projective texture mapping
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Then we assign a trio of texture images {Ii}3i=1 to each triangle, which are blended across

the triangle when rendering. The blending ratio {wk
i }3k=1(0 ≤ wk

i ≤ 1,
∑3

k=1 w
k
i = 1) for the

three images is also assigned to each of the three vertices, and linearly interpolated across

the triangle. The exact blending ratio based on ray angles is not necessarily distributed

linearly on the screen. If the size of a triangle is not small enough with respect to the

screen size, we subdivide the triangle into four triangles iteratively. On the vertex which

is the projection of a Ii’s camera, the blending ratio wk
i is calculated by using the following

equation.

wk
i = 1 if camera i is projected onto the k-th vertex (3.10)

= 0 otherwise (3.11)

For the vertex which is not the projection of a camera, the weights are calculated using the

angle between the ray through the camera and the ray through the vertex [BBM01b].

Then, each layer is rendered by blending texture images {Ii} using blending ratios {wk
i }.

At a point other than the vertices on the triangle, the blending ratios {ṽ i} are calculated by

interpolating {wk
i }3k=1. Using {Ii} and {ṽi}, the pixels on the triangle are drawn in the color∑3

i=1 ṽiIi.

The texture images are mapped onto each triangle projectively as illustrated in Fig-

ure 3.11. Let Pview be the projection matrix for the rendering camera (to produce the novel

view), Pi be the projection matrix for the camera corresponding to Ii, and Hlayer be a planar

homography from the triangle to the layer plane. Then, the texture image Ii is mapped onto

the triangle using a projection matrix PiHlayer.

3.5.3 Hardware Implementation

Light field rendering can be accelerated by using graphics hardware. Although several

hardware-accelerated light field rendering approaches have been proposed [GGSC96, IMG00,

HKP+99, BBM01b], we cannot use them directly for pop-up light field rendering. In these

previous approaches, texture images are blended by multi-pass rendering of triangles and

alpha-blending them in the frame buffer. In a layered rendering algorithm, we must alpha-

blend layers using alpha values assigned in texture images, which means that each layer

must be rendered onto the frame buffer in a single pass.

One straightforward way is to copy the frame buffer into memory and composite each

layer after rendering. We have implemented this method, and found that it is too slow for
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Table 3.1: Performance of rendering

Data Resolution Size of Original LF Size of Pop-up LF FPS
(w × h × #cameras) (MB) (MB/#layers)

Tsukuba 384 × 288 × 25 8.3 19.4 / 5 62.5
Plaza 640 × 486 × 16 14.9 38.3 / 16 58.8

Pokemon 512 × 384 × 81 47.8 117.8 / 5 31.3
Fur 1136 × 852 × 23 66.8 140.4 / 5 46.9

Statuette 1136 × 852 × 43 124.8 161.2 / 4 37.1

interactive usage. Instead, we have developed a single pass rendering method that uses

multitexture mapping and programmable texture blending which are available on modern

graphics hardware.

In order to blend all textures on a single triangle, we first bind three different textures

assigned to each triangle, then assign three blending ratios {w1, w2, w3} as the primary

color { R,G,B } on each vertex. The primary color is smoothly interpolated on the triangle.

Hence the interpolated blending ratios {ṽi} are obtained simply by referring to the primary

color at an arbitrary point on the triangle. Then the texture images on the triangle can

be blended using the blending equation programmed in the pixel shader in the graphics

hardware.

The layers can be composed simply by alpha-blending each triangle on the frame buffer

when it is rendered because the triangles are arranged without overlap in a layer and each

triangle is drawn in a single pass.

Our rendering system has been implemented using OpenGL and its extensions for

multi-texturing and per-pixel shading, and tested on a PC (CPU 660 MHz, memory 768

MB) equipped with an NVidia GeForce4 or ATI Radeon9700 graphics card with 128MB

of graphics memory. The performance of rendering is shown in Table 3.1.

3.6 Experimental Results

We have constructed several pop-up light fields from several real scenes. The Tsukuba data

set and the Plaza sequence are courtesy of Prof. Ohta of the University of Tsukuba, and

Dayton Taylor, respectively. Pokemon data is captured by a computer-controlled vertical

X-Y table shown in Figure 3.12. Data sets of Statuette (with unstructured camera motion)

and Furry rabbit (with the camera moving along a line) are captured by a Canon G2 Digital
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Camera.

As shown in Table 3.1, rendering of all the pop-up light fields can be done in real-time

(with a frame rate greater than 30). Table 3.2 summarizes the amount of work required to

construct these pop-up light fields. For most scenes in our experiments, it took a couple

of hours for a graphics graduate student in our lab to interactively model the pop-up light

field. It, however, took the student 5 hours to construct the pop-up light field from the

Plaza sequence where 16 layers are segmented.

Tsukuba Some rendering results of the Tsukuba 5×5 light field are shown in Figure 3.1.

It is demonstrated that, with 4 layers, anti-aliased rendering can be achieved. In our exper-

iment, we have found that the same rendering quality can be achieved with 7 layers if the

light field is down-sampled to 3 × 3.

Pokemon Figure 3.13 again demonstrates the progressive improvement of visual quality

when more layers are popped up. With 5 layers, anti-aliased rendering of pop-up light

fields (Pokemon 9 × 9) is achieved. The four layers that model the three toys and the

background use frontal-parallel planes while the table plane is slanted.

Statuette For complicated scenes, instead of using a global planar surface defined in the

world coordinate system, local geometry should be used. Figure 3.14 shows the rendering

result from a sequence of 42 images taken with unstructured camera motion. If a global

planar surface is set as a frontal-parallel plane in the frame (Figure 3.14(a)), rendering at

a very different viewpoint will have noticeable artifacts, as shown in Figure 3.14(b). Fig-

ure 3.14(c) shows a good rendering result using view-dependent geometry. Specifically,

we have changed the plane orientations for different views.

Furry rabbit To show the efficacy of our coherence matting methodology, we use a

sparse light field that captures 23 images of a Furry rabbit with the camera path along a

line. Figure 3.15 compares the results with video matting and with coherence matting.

The zoomed up views of the left ear demonstrate that coherence matting obtains a more

consistent matte than video matting does. We refer reviewers to the accompanying video

for the rendering results using video matting and coherence matting.

Plaza Figure 3.16 shows an aliasing-free novel view we rendered using the pop-up light

field constructed from the Plaza sequence, which is a collection of only 16 images. The
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Figure 3.12: System setup for capturing light field. The system is composed of one video
camera with 640 × 480 pixel resolution; the camera is mounted on a computer-controlled
support which is enabled to slide on a plane with two degrees of freedom.

one focal plane in the front one focal plane at the back 5 layers are popped up

Figure 3.13: Results on Pokemon 9 × 9: comparison of conventional light field rendering
and pop-up light field rendering.
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(a) (b) (c)

Figure 3.14: Results on sparse images taken from unstructured camera positions. (a) The
global planar surface is set as a frontal-parallel plane in this view, (b) rendering result
from another view with the global plane, (c) rendering result from the same view of (b)
with local geometry.

Figure 3.15: Comparison of results on a Furry rabbit, with video matting (middle im-
age) and with coherence matting (right image). The alpha matte from coherent matting
is smoother that that from video matting in the rendering image. This effect can be more
clearly observed in the accompanying video.
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Table 3.2: User Interaction

Data Tsukuba Plaza Pokemon Fur Statuette

# frame 25 16 81 23 43
# layer 4 16 5 5 4

points/frame 129 379 90 167 47
key points/frame 6.3 62.4 8.6 16.1 12.3

Time (hours) ≈ 0.5 ≈ 4 ≈ 1 ≈ 1 ≈ 1.5

sequence was captured by a series of “time-frozen cameras” arranged along a line or curve.

Because the scene is very complex, stereo reconstruction is very difficult. Note that nearly

perfect matting is achieved for the papers floating in the air. The boundaries for the fore-

ground characters are visually acceptable, made possible mainly by the coherent layers

produced by coherence matting.
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Figure 3.16: Result of pop-up light field rendering of the Plaza sequence rendered from
a novel viewpoint (in the position midway between the 11th and 12th frames). The input
consists of only 16 images. We have used 16 layers to model the pop-up light field.
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Microfacet Billboarding

4.1 Introduction

Recently, several researchers [LPC+00, ISN+00] have developed methods for modeling

real-world objects based on a measured data set obtained by high-quality optic sensors.

However, they are mainly concerned with surface reflectance models and rigid geometry

rather than with intricate and soft geometry, such as a cluster of leaves or fur. A natural

scene usually contains many objects which have intricate shapes or soft geometry com-

pared with the sensor resolution. It is significantly difficult to render these objects because

it is hard to model their complete geometry. As a result, impractically large amounts of

view images are required to achieve realistic rendering of real-world scenes.

Consider the case of capturing fur; because the size of individual fur hair is thinner than

0.1mm, no photometric-based scanners such as laser range finders or digital cameras used

in light stripe range finders, can capture every hair of the fur. It is also difficult to capture a

tree which has clusters of leaves. Since leaves are cluttered, much of their surfaces appear

as occluded areas from a scan; thus, many scans are necessary to cover the whole tree.

Moreover, it may be almost impossible to capture the interior part of a cluster of leaves. It

is not reasonably cost-effective to acquire the complete geometry of a cluttered object.

In this chapter, we deal with the issue of how to synthesize photo-realistic virtual views

of objects, especially when their geometry cannot be completely acquired. Hereafter, we

mainly consider the scenario in which the geometric model is created from a set of range

images acquired through scanning by a laser range finder, while the view-images are taken

by digital cameras. We also assume that the geometric model and view-images are aligned

in three-dimensional space. Although the use of laser range finders is the best choice
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among various methods in terms of the accuracy and the robustness, the obtained range

images are supposed to have a considerable amount of noise, our method is designed to

synthesize virtual views mainly from reference images with the aid of roughly approxi-

mated geometry.

The central idea of our proposed method is based on the following observation: while

objects with intricate and soft geometry cannot be acquired accurately by the convention-

ally used methods of modeling, such as stereo reconstruction [Fau93], visual hull mod-

eling [Lau94, MPN+02] or scanning by laser range finders, they can usually be imaged

clearly by using charge-coupled devices (CCD) sensors; such images can be efficiently

used to increase the reality of images synthesized by image-based rendering.

The problem to be solved in this rendering framework can be separated into three parts.

Among them are: how to integrate and represent the noisy geometric model, how to reduce

the visual artifacts caused by the geometrical noise, and how to reduce the visual artifacts

caused by limited resolution of concerning optic sensors.

The first difficulty is tackled by introducing a two-level representation of object ge-

ometry, that is, “global” and “local” geometry. The global geometry is a volumetric data

structure created from acquired geometric models to approximate the object shape con-

sistently between views. The detail of the geometric model is then modeled as a set of

local geometry represented as a view-dependent depth map. This view-dependent repre-

sentation enables the system to solve the second issue by applying a technique of image

processing to each reference view-image. In order to overcome the third difficulty, an

opacity map is extracted for each reference image and used to increase the photo-reality in

the synthetic images.

The remainder of this chapter is organized as follows. In Section 4.2, we first explain

the basic framework for the modeling and rendering of objects using view-dependent ge-

ometry and view-dependent texture mapping. In Section 4.3, we then propose a novel

method for automatically extracting the opacity maps that are required in the rendering.

After describing the details of implementation in Section 4.4, the results of rendering for

various data sets are presented in Section 4.5

4.2 Modeling and Rendering by Microfacet

In this section, the basic framework for the modeling and rendering of real-world objects

is proposed. For modeling, a volumetric data structure is created from given range images
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singular direction

viewpoint

object surface

polygon rendering microfacet rendering

Figure 4.1: Concept of microfacet billboarding. (left) It is difficult to use existing methods
which use such fixed geometric primitives as polygons to represent intricate geometry,
particularly on occluding boundaries. (right) The facets used in our proposed method are
kept perpendicular to the direction of view. When viewed from another point, the facets
are again perpendicular.
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in order to represent “global” geometry which approximates the object shape consistently

between views. The detail of the geometric model is then modeled as a set of “local”

geometry in the form of a view-dependent depth map for each view. For rendering, we

combine a view-dependent geometry and a view-dependent texture technique to synthesize

a realistic image in real time using graphics hardware accelerators. The view-dependent

model is represented by a set of discontinuous primitives which we call microfacets, and

rendered by the method referred as Microfacet Billboarding.

The modeling process may take some time; hence, it is assumed to not be accom-

plished in real time. On the other hand, once the model has been prepared, our proposed

method can render the object in real time by taking advantage of acceleration by graphics

hardware. The details of the processes are described in the following sections.

The concept of our method is shown in Figure 4.1. The surface of the object is approx-

imated by a set of microfacets onto which the texture images of the object are mapped. All

microfacets are aligned perpendicular to the viewing direction even when the viewpoint or

the viewing direction1 changes. The texture image mapped to each microfacet is generated

from acquired view images, estimated alpha matte and view-dependent depth map.

4.2.1 Modeling by Discrete Geometry

output: GlobalGeometricModel M

output: LocalGeometricModels {Gv}
output: ColorImages {Cv}
output: AlphaMattes {Av}
local: TemporaryGeometricModel M′

1: M′ ← AcquireGeometry()

2: {Cv} ← AcquireColorImage()

3: M ← GenerateGlobalGeometry(M′)
4: for all viewpoints v of the images {Cv} do

5: Gv ← GenerateLocalGeometry(M, v)

6: Av ← EstimateAlphaMatte(Gv, Cv)

7: Gv ← RefineLocalGeometry(Gv, Av)

8: end for
Algorithm 4.1: Microfacet modeling

1In the rest of this thesis, the term viewpoint implies both the point and the direction of the viewer.
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The outline of the modeling process is shown in Algorithm 4.1. First the geometric

model and color images of the object are acquired. The geometric model is represented

as a volume in the resolution where the volume is consistent for each view. This volume

is referred to as global geometry of the object. The global geometry is then projected to

color images so that the depth map is assigned for each color image. Since this initial

depth map is supposed to be noisy, it is refined with the aid of the alpha matte extracted

from the corresponding color image.

Acquisition of Geometry and Color Images

First, the geometry and color images of the object are acquired. As described in Chap-

ter 1, one of the most important issues in the process of image synthesis is how to model

the scene without time-consuming manual operations by the user. In order to create both

geometric and photometric models automatically, we designed the system shown in Fig-

ure 4.2. The system is composed of five commercial digital cameras in 1024× 768 pixel

resolutions; six Halogen lamps with parabolic reflectors which approximate distant lights

at infinity; one laser range finder (Minolta VIVID 900); and one rotating turntable placed

at the center. The cameras and lamps are mounted on arms with equal spaces along the

elevation angle of the hemisphere. The arm mounting light rotates along the axis of the

rotating turntable, while the arm mounting cameras is fixed. The digital cameras, Halogen

lamps, the arm for lights, rotating table, and laser range finder are all computer-controlled.

For geometric modeling, the camera poses of partial geometric models are determined.

This process can be done automatically after the system is calibrated. We used the range

images measured by the scanner in this system since our first objective in starting this

research was realistic rendering of intricately shaped objects by making the best use of

incomplete geometry acquired using a laser range scanner. However, our method is also

applicable to models obtained by other methods of modeling, such as stereo- or visual hull

modeling. For photometric modeling, we take a set of color images of the object from

several viewpoints. It is also assumed that the camera poses are calibrated; hence, the

color images are already aligned with the geometric model.

Generation of Global Geometry

Since the obtained geometric model is supposed to have a considerable amount of noise,

it is necessary to process the model so that it is consistent between views. Thus, the

geometric model is approximated as a single static model, which we call the global model.
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digital cameras
lamps

rotary table

laser range finder

Figure 4.2: System setup for geometric and photometric modeling. The system is com-
posed of five commercial digital cameras in 1024× 768 pixel resolutions, six Halogen
lamps with parabolic reflectors, which approximate distant lights at infinity, one laser
range finder (Minolta VIVID 900), and one rotating turntable placed at the center. The
cameras and lamps are mounted on arms with equal spaces along the elevation angle of
the hemisphere. The arm mounting light rotates along the axis of the rotating turntable,
while the arm mounting cameras is fixed. The digital cameras, Halogen lamps, the arm for
lights, rotating table, laser range finder are all computer-controlled. In this figure, a blue
screen is used for robust alpha matting, which is optional.
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(a) (b)

(c) (d)

Figure 4.3: Example of the geometric integration for intricately-shaped objects. 36 range
images are captured around a stuffed toy using the system shown in Figure 4.2. (a) and
(b) are parts of the range images and corresponding view images. The set of range im-
ages is converted to a volumetric representation using signed distance transformation and
integrated into a single volume by a consensus surface algorithm [WSI98], which is de-
signed for merging noisy range images. (c) is the volume visualized by the technique of
volume rending with red and yellow colors for the voxels outside and inside the surface,
respectively. By applying a polygonization method such as Marching Cubes [LC87] to
the volume, the polygonized model of the object is obtained as shown in (d). In the result
of polygon rendering, red and blue polygons indicate front and back surface. Since the
object geometry is highly intricate, most of the detailed features on the surface cannot be
modeled correctly.
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One common method of generating a global model is to integrate range images taking a

consensus between the partial geometry [WSI98] with the aid of volumetric representation.

This method works effectively to reject outliers in the data set if every part of the object

surface is covered by a sufficient number of range images. One of the potential problems

with this method is that a large number of range images is required to create a reliable

geometric model when the acquired geometry is highly unreliable, since the accuracy of

the method depends on the statistical stability of given data. Unfortunately, it is practically

impossible to acquire such intricately-shaped geometry as fur into a single model owing

to the limited resolution of optic sensors, as shown in Figure 4.3.

input: TemporaryGeometricModel M′

output: GlobalGeometricModel M

local: VolumeResolution L

local: MaxVolumeResolution Lmax : pre-defined

local: ConsistencyRatio τ : pre-defined

1: L ← Lmax

2: repeat

3: M ← SampleToVolume(M, L)

4: L ← L − 1

5: Nm ← number of voxels in M

6: w← size of voxels in M

7: Ni = 0

8: for all voxel v in M do

9: if not Consistent(v) then

10: Ni ← Ni + 1

11: end if

12: end for

13: until Ni
Nm
≤ τ

Algorithm 4.2: Generation of global geometry

Instead of integrating the partial geometric models, we estimate the maximum resolu-

tion of the geometric model in which the data is reliable. Similar to the first approach, the

acquired geometric models are resampled into a volume using the signed distance trans-

formation, that is, each voxel is assigned the distance to the closest surface with a positive

sign when the voxel is in front of the surface; otherwise with a negative sign. Then the
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Figure 4.4: Determination of optimal sampling width

maximum resolution in which the geometric model is sufficiently consistent is determined

by repeatedly downscaling the volume as shown in Figure 4.4. The algorithm for estimat-

ing optimal resolution of the volume is shown in Algorithm 4.2.

The function Consistent(v) in Algorithm 4.2 tests whether the voxel can be consistent

between views. We implement this function such that

Consistent(v) =

⎧⎪⎪⎨⎪⎪⎩
true if (difference of signed distance) ≤ αw
false otherwise

(4.1)

where α ≥ 1 is the parameter which controls the tolerance for the consistency and the dif-

ference of signed distance indicates the maximum absolute difference between the signed

distance values assigned to the voxel and the adjacencies. The left side in Equation (4.1)

can be regarded as the ratio of the voxels whose values are unreliable due to the sensor

noises in acquired geometric model. In the current implementation, Lmax is set to 256. α

and τ are selected for each object wished to be rendered, and set as α = 1.5 and τ = 0.01

for the stuffed cow shown in Figure 4.3.

Generation of Local Geomtry

As is mentioned in Section 4.1, the global geometry of the model is approximated by a set

of flat primitives which quantizes the depth of the object into the value corresponding to

the depth of the facet in the rendering process. If the size of the primitive is sufficiently

large, the flatness of the facets becomes apparent, thereby causing visual artifacts when
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view image range image clipped range image

Figure 4.5: (left) One of the color images. (center) Range image from the same viewpoint.
(right) Clipped result of the range image.

the viewpoint moves.

One approach to removing these artifacts is to clip the texture according to the depth of

the object. In order to determine the depth of the object for each texel in the texture, range

images with the same resolution as the corresponding color images are generated from the

global geometric model for each color image. Since we assume that we have acquired

color images from various viewpoints aligned with the global model, we can generate the

range image of the model from the viewpoint where each color image was taken. When

we render a microfacet of depth D from the viewpoint of a color image, a pixel of the color

image which has depth d is rendered by

⎧⎪⎪⎨⎪⎪⎩
opaque color if |d − D| < w2
transparent color otherwise

(4.2)

where w is the width of the space of which the facet takes charge. Figure 4.5 shows an

example of a result of clipping. Nearby pixels are bright while ones farther away are dark

in the range images. In the clipped image, black pixels are clipped and not mapped to

microfacets.

It is worth noting that, although we use range images acquired using a laser range

scanner to build the surface model, the generation of range images described in this section

is still necessary because the positions where color images are taken are generally not the

same as those where range images used to build the surface model are taken.
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(a) (b)

Figure 4.6: (a) Originally captured object. (b) Extracted alpha matte.

Generation of Alpha Matte

In order to reduce the visual artifacts caused by limited resolution of concerning optic sen-

sors, the opacity of the pixels in the image is estimated from reference images and used to

increase the photo-reality in the synthetic images. The set of opacity values corresponding

to the image is referred as alpha matte. To automatically and robustly generate alpha matte

from a single image, a novel method of alpha estimation using Bayesian framework is pro-

posed in Section 4.3. In this section, the detailed explanation of the method is skipped and

the outline is presented.

As is reviewed in Section 4.3.1, most methods need to know the boundary between

the foreground and the background to estimate the alpha value. Some of them are done

by chromakey and some of them are employed manually. This time, we already have the

depth data of the object which is matched to the image, which enables us to detect the

boundary region in the color images.

In our algorithm, the SUSAN filter [SB97] is applied to detect the boundary region in

a range image. Based on the segmentation, we generate the segmentation, called trimap,

composed of foreground, background and boundary regions. Then the alpha matte of

a color image is extracted by the proposed method of automatic alpha estimation with

the trimap as an initial segmentation. Figure 4.6 shows an example of the alpha matte

automatically generated from the corresponding range image.
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Refinement of Local Geometry

The local geometry generated from the global geometry is supposed to have a considerable

amount of errors since the global geometry is an approximation of the actual geometric

model and is generated from highly unreliable range images. As a result of noise in range

images, the range images generated by projecting the obtained surface model can have

holes and missing parts which cause undesired deletion of the texture by texture clipping.

Therefore, we apply a morphological filter to the obtained range image in order to remove

the holes.

The detection of missing depth is detected based on the comparison between the range

image and the corresponding alpha matte estimated in Section 4.2.1. First, the foreground

pixels which should have their depth in the range image are detected by thresholding al-

pha matte. When the depth is not defined in the range image at the foreground pixel, a

morphological filter is applied to fill the depth of the pixel from the surrounding depth

values.

The filter is based on a fixed size of the window. For each pixel in the image, we

assign a certain size of window whose center is the pixel. Then the value of each pixel

is iteratively modified according to the values of the pixels within the window. In our

adopted filter, the value of the pixel is replaced by the median of the values of the non-hole

pixels within the window if the modified pixel is detected as a hole.

In our experiments, we use a 3 × 3 pixel window and the threshold is set to 5 pixels.

An example of filtering range images is shown in Figure 4.7.

4.2.2 Rendering by Microfacet Billboarding

The outline of the rendering process is shown in Algorithm 4.3. The object is rendered

by a set of microfacets with color texture. First, view-dependent microfacets are generated,

and then the color image, alpha matte and depth map are generated and mapped onto each

of them. The texture image mapped onto the facet is dynamically clipped according to the

distance to the object in the rendering pipeline of graphics hardware.

Generation of Microfacets

A microfacet is defined as a slice which intersects the voxel and is aligned perpendicular

to the viewing direction with a constant interval. Each microfacet represents the approxi-

mated surface inside the voxel occupied by an object. The interval is a tuning parameter
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Figure 4.7: The holes in a range image can be removed by applying a morphological filter.
(left) Original range image. (right) Filtered range image.

input: GlobalGeometricModel M

input: LocalGeometricModels {Gv}
input: ColorImages {Cv}
input: AlphaMattes {Av}
input: Viewpoint V

local: Microfacets F

local: RGBATexture T

local: DepthTexture G

1: F ← GenerateMicrofacets(M, V)

2: ClearFrameBuffer()

3: for all microfacet f in F do

4: T ← GenerateRGBATexture({Cv}, {Av}, m, V)

5: G ← GenerateDepthTexture({Gv}, m, V)

6: RenderMicrofacet(m, T , G, V)

7: end for
Algorithm 4.3: Microfacet rendering
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microfacet

voxel

viewpoint

w

Figure 4.8: A microfacet is defined as a slice which intersects the voxel and is aligned
perpendicular to the viewing direction with a constant interval.

that controls the speed and quality of rendering. The optimal interval is evaluated in Sec-

tion 4.2.3.

The choice of the shape used to represent a microfacet can have a significant effect on

the quality of the final image. With regard to the analogy of splatting techniques [RL00b],

a square or an ellipse is possible. In our method, a square is chosen because a quadrilateral

polygon is simple enough to render and to map a texture efficiently using standard graphics

hardware. The width of the square is defined by the size of the voxel (see Figure 4.8).

Namely, if the size of a voxel is w, the microfacet of
√

3w will cover the voxel.

The quadrilateral facet is usually rendered as a group of small triangles since a small

region of the texture image is mapped onto them. It, however, can be rendered as a point

with a single color if the size of the facet is sufficiently small compared with the width of

texture sampling. We implemented the renderer using triangles and that using points, and

we compare their performance in Section 4.5.3.

— 82/126 —



CHAPTER 4. MICROFACET BILLBOARDING

Selection of Texture

The texture mapped onto a microfacet is selected or generated from input images according

to the angle formed by the viewing direction for rendering and the camera direction of

input images. The simplest way to generate texture is to select the image whose camera

direction is “nearest” to the current viewing direction. The distance between directions is

defined by the angles they form. Let a unit vector parallel to the current viewing direction

be v and a unit vector parallel to the i-th camera direction be ci; then the distance di

between the directions is defined as

di = cos−1(v · ci). (4.3)

With every change of viewing direction, distance di for each i is calculated; then, the

camera position i which has minimum di is selected and the i-th camera image is mapped

to the facet.

A better way to generate texture is interpolation. For every change of viewpoint, the

distance between viewing direction and each camera direction is calculated. The param-

eters used for interpolating images are determined by the distances for all images; then,

some or all of the images are blended according to the values. For smooth rendering,

blending parameters should change continuously between 0 and 1. Let di be the angle

formed by the viewing direction and the direction of i-th camera and n be the number of

the selected cameras, then the blending ratio wi for the i-th camera image can be deter-

mined as

wi = 1 − di

maxi=1,...,n{di} . (4.4)

For the simplicity of calculation, the weights are then normalized into w̃ i so that they sum

up to one.

w̃i =
wi∑

i=1,...,n wi
(4.5)

If the camera positions are distributed spherically around the object, blending the three

nearest camera images can accomplish smooth rendering. If the cameras are distributed

uniformly in three-dimensional space, selecting the four nearest camera images can en-

able smooth blending. Generally, since it is not necessarily feasible to position the cam-

eras uniformly in space, optimal selection of the camera images can involve complicated

problems, as discussed in [BBM+01c].

The method of interpolation takes account of only blending, and not warping; there-
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fore, coarse input images can result in such artifacts as ghost images. Adopting a more

sophisticated interpolation technique such as view morphing [SD96] or the method pro-

posed in Chapter 2 may produce a smoother and more accurate result.

Mapping of Texture Images

The selected camera images are mapped onto the facets by perspective projection. When

an image is mapped, we post-process it by clipping the area which should be on the facet,

using the range image described in Section 4.2.1. For every texel in the texture image, the

depth d to the object is fetched from the corresponding range image; then, d is compared

with the distance D to the point to which the texel is mapped on the microfacet. If Equa-

tion (4.2) is satisfied, the texel is mapped with an opaque color; otherwise, the point on the

facet is rendered as transparent.

Assume that the viewpoint is on the line of view of a selected camera; then, the distance

to the microfacet is equal for every point on the facet. In this case, texture can be clipped

by comparing range data with fixed D for each facet. The distance D for a single facet,

however, can vary since microfacets rotate according to the viewpoints. Consequently D

must be changed for every point, even on a facet. In addition, d is defined in the camera

direction, and not in the viewing direction; therefore, D must be calculated as the distance

from the camera to the facet, instead of that from the viewpoint to the facet.

4.2.3 Analyses of Visual Artifacts

Microfacets are rendered with projective texture mapping; hence, the rendered view is

photo-realistic in the sense that it is exactly the same as one of the input photograph when

the scene is rendered at the position of the camera. As the viewpoint for rendering moves

and goes off from the camera position, the synthetic view tends to be distorted due to the

error in the underlying geometric model. This is the fundamental nature in the methods

of image-based rendering, and is quantatively analyzed in the plenoptic sampling the-

ory [CTCS00].

Apart from the inevitable error divined by the sampling theory, another type of vi-

sual artifacts, discontinuity or simply holes in synthetic images, can be observed due to

the discontinuity of geometry representation by microfacets. The degree of possible dis-

continuity depends on the viewpoint for rendering since the geometric model changes

view-dependently. In this section, the possible discontinuity observed in virtual views

synthesized by the proposed method is estimated, and then the optimal interval between
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Figure 4.9: Visual discontinuity observed when a single camera image is projected onto
two separate microfacets

microfacets mentioned in Section 4.2.2 is determined to accomplish the rendering of the

highest quality with the lowest computational cost.

Let two adjacent microfacets be fa and fb, the interval between the microfacets be

l, the index of currently selected camera be c1, the angle formed by viewing direction

and camera direction be φ, and the angle formed by viewing direction and the normal of

microfacets be δ, as shown in Figure 4.2.3. It is also assumed that φ, δ ∈ (−π/2, π/2) holds.

For simplification, the size of microfacets is supposed to be sufficiently smaller than the

distance between microfacets and viewpoint, hence the orthographic camera projection is

assumed.

First of all, the interval of adjacent microfacets measured in the camera direction must

be less than the voxel width w in order to generate at least one microfacet for each voxel.

l
cos(φ + δ)

≤ w (4.6)

Chosen one of the pixels observed in the image indicated c1 whose associated depth is

at the middle point s between fa and fb, its projection to fa and fb are denoted by p1 and

q1 respectively. Then, the interval p1q1 is observed on the rendering screen in the size of

e1 = l
sinφ

cos(φ + δ)
. (4.7)
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Figure 4.10: Comparison of visual discontinuities observed when two divergent camera
images are projected onto two microfacets

This e1 can be regarded as the discontinuity observed on the rendering screen as the side

effect of approximating continuous geometry by a set of discrete microfacets.

As long as only the camera denoted by c1 is concerned, the observable error e1 is

minimized when cos(φ + δ) = 1 holds, that is, δ = −φ is satisfied from Equation (4.7). In

practice, however, it is necessary to synthesize the texture images using multiple camera

images, where a set of chosen cameras depends on the viewpoint for rendering. In order to

keep the observable error small at all viewing points, it is desirable that the discontinuity

in rendering is distributed among the views so that the largest discontinuity in all possible

views is set to the smallest.

Consider the situation where the index of the camera whose direction is the nearest to

current viewing direction changes from c1 to c2, as shown in Figure 4.2.3. The symbols in

the figure are the same as those defined in Figure 4.2.3, and the point s projected to fa and

fb in the direction of camera c2 are denoted as p2 and q2 respectively. The angles formed

by the viewing direction and the direction of camera c1, c2 are both equal to φ; hence, the

interval p2q2 is observed on the rendering screen in the size of

e2 = l
sinφ

cos(φ − δ) . (4.8)
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Then the absolute difference between the discontinuities observed in the camera images is

|e1 − e2| =
∣∣∣∣l sinφ

cos(φ + δ)
− l

sinφ
cos(φ − δ)

∣∣∣∣
= 2lsin2φ

∣∣∣∣ sinδ
cos(φ + δ)cos(φ − δ)

∣∣∣∣ (4.9)

Equation (4.9) takes the minimum value 0 for all φ when

δ = 0 (4.10)

holds. This means that the microfacets perpendicular to the viewing direction yield the

smallest errors concerning the discontinuity when the viewpoint moves. The discontinuity

e on the rendering screen observed when the a set of selected camera changes is calculated

as

e = ltanφ, (4.11)

where the error depends on the viewpoint. Let the largest allowable error of discontinuity

be E; then, the observed error e can be kept smaller than E by satisfying

ltanφ ≤ E. (4.12)

Combining Equation (4.6), Equation (4.10) and Equation (4.12), the condition e ≤ E can

be satisfied for all viewpoints by setting the interval l of microfacets so that

l ≤ min(
E

tanφ
, wcosφ) (4.13)

holds.

4.2.4 Controlling Visual Artifacts

The dominant factor that decides the speed of rendering is the number of rendering prim-

itives, that is, microfacets. It is possible to increase the speed of drawing by reducing the

number, which will decrease the quality in the synthetic views. To deal with the trade-off

relationship, so-called the level of details (LOD) is introduced to control the quality of ren-

dering according to the quality required at resolution. That is, the number of microfacets

is changed, depending on the size of the object on the rendering screen.

The number of rendered microfacet can be changed by changing the level of volume
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Figure 4.11: Level-of-detail control of microfacet generation
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subdivision or by controlling the interval between microfacets. According to the observa-

tion on the interval, the interval larger than the maximum value in Equation (4.13) leads

to visual artifacts observed as discontinuity of texture or holes in the synthesized images.

The LOD control of microfacet billboarding can be applied by changing the interval

of microfacets together with the volume resolution, depending on the required resolution

for the rendering without discontinuity. Let the voxel width be w i when the size of volume

by which microfacets are generated is i× i× i; then, the rendering without discontinuity is

achieved by voxel size wi and by setting the interval l of microfacet so that

l ∈
(1
2
wicosφ, wicosφ

]
(4.14)

holds. The volumes in all possible resolutions less than the maximum value Lopt are gen-

erated before rendering, and used one of them according to the change of the interval of

microfacets.

When a virtual view of an object is synthesized with a certain viewpoint, the level of

detail required at the resolution can be determined by Equation (4.11). Once the viewpoint

and the size of rendering screen is fixed, it is desirable to set l to the maximum value such

that the error e observed on rendering screen is within a predefined tolerance. Figure 4.2.4

shows an example of LOD control according to the change of rendering viewpoint. The

predefined tolerance is set to eight pixels in the synthetic images.

4.3 Automatic Alpha Estimation

4.3.1 Introduction

The texture images used to render the object are taken using an ordinary camera; the im-

ages include background which should be removed before or when rendering. If the object

has rigid geometry such as a smooth surface, it is unnecessary to remove the background

because it is removed by texture clipping using depth information. However, since we

focus on rendering intricately shaped objects, background can be removed not by clipping

but rather, by alpha estimation.

Alpha estimation is the process of extracting a foreground element from a background

in an image by estimating foreground and background colors and opacity of the foreground

at each pixel. The opacity value at each pixel is called alpha, and a set of opacity values

corresponding to the whole image is referred to as the alpha matte. Once the alpha matte
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of an image is obtained, the foreground element in the image can be overlaid into other

background scenes seamlessly. This operation is essential in photo-realistic image synthe-

ses, such as 3D photography of intricately-shaped objects [MPN+02] or sparse light field

rendering using rough geometric proxy [SSY+ar], as well as in such fields as publishing,

television and film production.

The basic concept of alpha was first introduced by Porter and Duff [PD84] for purposes

of image synthesis in computer graphics. The fundamental equation between pixel colors

and alpha value can be described by the following compositing equation

C = αF + (1 − α)B (4.15)

where C is the composite color observed in an image, F and B are respectively the colors

of the foreground element and background scene at the pixel, and α is the opacity of the

foreground. In this thesis, F, B and α are referred to as matting parameters.

Smith and Blinn [SB96] demonstrated that estimating matting parameters from given

images, called the matting problem, provides a unique solution if two images with different

background colors are given. Consequently, existing methods for the matting problem with

a single image allow such assumptions on an input as follows, implicitly or explicitly.

1. A priori segmentation: Matting parameters in a part of a given image are a priori.

2. Locality: Nearby pixels are supposed to have similar colors.

3. Distinguishability: Foreground and background colors for each pixel are fairly sep-

arated in color space.

As for the first assumption, existing methods require the user to indicate the image areas

which are definitely foreground, definitely background or to be alpha-estimated unless the

algorithm can assume such an additional constraint as constant color background. The seg-

mentation is called trimap, which is composed of foreground, background and unknown

regions, as shown in Figure 4.3.1. Given an image and corresponding trimap, the system

estimates potential matting parameters for all pixels in the unknown regions.

Based on the above-mentioned assumptions, the Corel’s Knockout software [Cor] es-

timates foreground and background by a weighted sum of nearby pixels to solve under-

constrained problems. Ruzon and Tomasi [RT00] introduced a statistical view to the mat-

ting problem and modeled observed colors by spherical Gaussian distribution where the

covariance matrix is a scalar multiple of the identity matrix. As the approximation by
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input image accurate trimap inaccurate trimap

Figure 4.12: Color image and corresponding trimap given as input. Foreground, back-
ground and unknown regions are painted in red, green and blue respectively.

spherical Gaussian is inaccurate for natural images, Hillman et al. [HHR01] applied prin-

cipal component analysis to find the centers of color distribution. On the other hand,

Chuang et al. [CCSS01] represented the distribution by oriented Gaussians and proposed

the Bayesian estimation where the most likely parameters are estimated by maximizing a

posterior of foreground, background and alpha values.

One of the practical problems in all these techniques is that they assume that the trimap

is sufficiently accurate; otherwise, the estimation goes wrong on account of errors in statis-

tics calculated according to the trimap. Since existing methods for automatic image seg-

mentation are not always reliable, especially in the case where the image includes such

complex effects as color blending and motion blur, it is necessary for the user to specify

the trimap carefully before the process. This limitation is crucial in such applications as

some image-based rendering systems (for example, opacity hull [MPN+02] or microfacet

billboarding [YSK+02]) or video matting [CCSS01], where the number of images to be

processed tends to be huge. If the algorithm is sufficiently robust to errors in a given

trimap, it is potentially possible to automatically extract an alpha matte from a given im-

age by using the rough trimap generated by certain appropriate methods like color-based

segmentation.

In this thesis, we propose a novel method of natural image matting that is robust to er-

rors in an initial trimap. Given an input image and corresponding trimap, foreground color,

background color and alpha value are simultaneously estimated by maximizing a posterior

for matting parameters like the Bayesian matting [CCSS01]. Our method, however, takes

into account that the initial trimap may have errors, by penalizing the pixels that violate
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the distinguishability assumption. The penalty is naturally formulated in the framework of

Bayesian estimation using joint probability concerning matting parameters and their con-

straints. In addition, the distribution of pixel colors is modeled by the Gaussian Mixture

Models (GMM) which can represent such complex effects as blending of colors. When an

error in a trimap is detected, our method refines the trimap, and then solves the matting

problem for each pixel iteratively until all unknown pixels have been processed.

4.3.2 Bayesian Matting

Our method is based on the Bayesian matting proposed by Chuang et al. [CCSS01], which

appears to yield the best estimation among existing methods described in Section 4.3.1.

In Bayesian matting, the matting parameters F, B and α are determined through the maxi-

mization of a posterior (MAP)

argmax
F,B,α

P(F, B, α|C) (4.16)

= argmax
F,B,α

P(C|F, B, α)P(F)P(B)P(α)/P(C) (4.17)

= argmax
F,B,α

P(C|F, B, α)P(F)P(B), (4.18)

where P indicates probability regarded as likelihood in the estimation. In Equation (4.17),

P(C) is eliminated since C does not affect maximization, and P(α) is dropped because no

information on α is available without additional information on the object in the image.

Owing to the locality assumption on input, P(F) and P(B) in Equation (4.18) can

be calculated as the weighted sum of colors of nearby pixels which are already known.

Suppose each probability distribution P can be modeled by a Gaussian, the logarithm of

the likelihood in Equation (4.18) comes down to second order polynomials composed of F,

B and α, which can be maximized by finding such parameters that make the first derivative

zero. The MAP estimation is applied for all unknown pixels sequentially from the inner

and outer boundaries of unknown regions until all unknown pixels are processed.

4.3.3 Constrained Maximization of A Posterior

Thanks to the assumption on local coherence of pixel colors, the distribution of pixel col-

ors around the pixel to be alpha-estimated is supposed to form clusters. When a trimap

is sufficiently accurate that the colors of the true foreground Ftrue and true background

Btrue lie only in the foreground and background regions respectively, the color distribution
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Figure 4.13: Color distribution of pixels in (left) accurate and (right) inaccurate trimap to
estimate matting parameters at pixel

is expected to form two separated sets of clusters, namely foreground clusters and back-

ground clusters (Figure 4.3.3 left). However, when the trimap is inaccurate, the foreground

clusters may include background colors, and vice versa. Moreover, both clusters include

a considerable number of interpolated colors, thus making it difficult to estimate Ftrue and

Btrue through the MAP estimation because all Fs and Bs along the line between Ftrue and

Btrue provide great likelihood in the estimation of Equation (4.18) (Figure 4.3.3 right).

In order to avoid misestimating parameters owing to the mixture of color clusters, we

introduce another constraint concerning the distance between Ftrue and Btrue by regarding

the distinguishability assumption described in Section 4.3.1 as a constraint to be satisfied.

Let the additional condition be denoted by F � B; then, the Constrained MAP (CMAP) es-

timation can be formulated as the maximization of a joint posterior probability of matting

parameters and the additional condition as follows.

argmax
F,B,α

P(F, B, α, F � B|C) (4.19)

= argmax
F,B,α

P(C|F, B, α)P(F � B|F, B)P(F)P(B) (4.20)

In Equation (4.20), P(C) and P(F � B) are assumed to be independent of F � B and α,

respectively.

The desirable property of the probability density function P(F � B) is that the density

should be small if F = B, and it should asymptotically approach its maximum as |F − B|
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Figure 4.14: Probability density function of P(F � B)

becomes larger. Based on the observation, P(F � B) can be modeled heuristically as

P(F � B|F, B) ∝
⎧⎪⎪⎨⎪⎪⎩

1 − exp(−η|F − B|2), if |F − B| < ρB

0, otherwise
(4.21)

where ρB > 0 is an upper bound of |F−B|. η > 0 is a parameter that controls the acceptable

distance between Ftrue and Btrue. Note that the lower case in Equation (4.21) is considered

so that the infinite integral satisfies
∫∫

P(F � B|F, B)dFdB = 1, but has no effect on

maximization. The probability density function P(F � B) is illustrated in Figure 4.3.3.

4.3.4 Likelihood Models

While Ruzon and Tomasi [RT00] and Chuang et al. [CCSS01] approximated color distri-

butions by the Gaussian model, it is inaccurate for natural images. As pointed out by Hill-

man et al. [HHR01], the shape of color clusters tends to be elongated due to such effects

as illumination, even if the distribution forms a single cluster. With an erroneous trimap,

however, the distribution can be composed of many clusters overlapping one another, ow-

ing to such effects as anti-aliasing, color blending and other noises in measurement as well

as illumination.

In order to approximate complex shape of the distribution, we adopted the Gaussian
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Figure 4.15: Maximizing a posterior estimation using Gaussian models (left) and Gaus-
sian mixture models (right).

Mixture Models (GMM), which is represented as

GMM(x) =
M∑

m=1

w(m) N(µ(m),Σ(m))(x) (4.22)

where M is the number of Gaussian components, w(m) is the weight for m-th component,

and N(µ(m),Σ(m)) is a Gaussian distribution centered at µ(m) with covariance matrix Σ(m).

The weight w(m) satisfies
∑M

m=1 w
(m) = 1. The comparison between Gaussian models and

Gaussian mixture model is illustrated in Figure 4.3.4.

If the number of Gaussian components is known, the parameters {w(m), µ(m),Σ(m)} in

the GMM which most likely reproduce a given data set can be estimated by Expectation

Maximization (EM) method [Moo96]. The number of components, however, is unknown

in our case, hence we adopted two step estimation; First, M is determined by subtractive

clustering method [Chi94], and {w(m), µ(m),Σ(m)} are then estimated by EM method. The

EM estimation in this algorithm converges very quickly, typically within a few iterations,

since the centers of clusters estimated in the first step can be used as initial {µ(m)} in the

second step.

Using GMM, the probability density function for P(F) and P(B) can be written as
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follows.

P(F) =
MF∑
m=1

w(m)
F N(µ(m)

F ,Σ
(m)
F )(F) (4.23)

P(B) =
MB∑
m=1

w(m)
B N(µ(m)

B ,Σ
(m)
B )(B) (4.24)

As for the probability density function for P(C|F, B, α), we used the same function as the

Bayesian matting, that is,

P(C|F, B, α) = N(αF + (1 − α)B, σ2
CI)(C) (4.25)

where σ2
C is the variance of observed colors.

4.3.5 Numerical Maximization

Since the function to be maximized in Equation (4.20) is supposed to be non-monotonic,

special effort must be made toward stable calculation from the view of both algorithm and

implementation.

First, we adopted iterative methods to maximize the objective function using its gra-

dient, since it is difficult to solve the problem in a closed form. In order to accelerate

the convergence, we used conjugate gradient method, which guarantees that the calcula-

tion falls into a local maximum within the same number of iterations as the dimension

of parameters if the function is in quadratic form. Although our function is not exactly

quadratic, this method works very well and converges to a maximum within two iterations

on average.

Second, the maximization algorithm must be designed so that the algorithm can find

the global optimum. Broadly speaking, each distribution of GMM has local maxima less

than, or equal to, the number of Gaussian components. In addition, it is supposed that at

least one of the mean µ(m) in a GMM is reachable to the global maximum monotonically.

This observation implies that the iterative method can reach the global maximum by lo-

cally maximizing the objective function starting from all combinations of mean values in

P(F) and P(B). In our algorithm, the CMAP estimation is repeated in MF ×MB times with

every pair of µ(m)
F and µ(m)

B as the initial estimation for F and B, respectively. Initial α is set

to be the weighted mean of α at neighbor pixels as with the original Bayesian matting.

Third, parameters estimated by iterative optimization can be outside their domain due
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Figure 4.16: Probability density function of P(x ∈ Dx)

to noise or incorrect assumption on the locality of colors; in particular, it often occurs that

estimated α is less than zero or more than one, which is unacceptable from the definition

of opacity. In order to avoid such invalid values, the constraints on the range of valid

parameters are also taken into account in CMAP estimation. Let these conditions be F ∈
DF, B ∈ DB and α ∈ Dα, then CMAP estimation in Equation (4.20) is modified to

argmax
F,B,α

P(F, B, α, F � B, F ∈ DF, B ∈ DB, α ∈ Dα|C)

= argmax
F,B,α

P(C|F, B, α)P(F � B|F, B)P(F)P(B)×
P(F ∈ DF)P(B ∈ DB)P(α ∈ Dα)

, (4.26)

where Dx = [xl, xu] is the domain of the parameter x. The likelihood of the additional

constraints can be modeled as

P(x ∈ Dx) ∝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp(−ρD(x − xl)2) if x < xl

1 if xl ≤ x ≤ xu

exp(−ρD(x − xu)2) if x > xu

(4.27)

where ρD > 0 is a huge number. x denotes either a color channel in F or B, or α. The

probability density function P(x ∈ Dx) is illustrated in Figure 4.3.3.

Fourth, we also devoted considerable care to the implementation of function evalua-

tion. Since the exponential functions can easily overflow or underflow the IEEE 64-bit

floating point number (namely, double in C language), it is necessary to take very small
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or large numbers into account in the evaluation of exponentials and logarithms. We dealt

with the problem in two ways; one is by incorporating arbitrary precision arithmetic, for

example, by using GMP library [GMP]. The other is simply by ignoring values smaller

than a certain threshold. The former is better in quality and slow, while the latter may

suffer from severe round-off errors in compensation for fast calculation achieved by float-

ing point arithmetic hardware. In our experiments, the latter method was used since the

difference in quality was very small.

Last, we took the logarithm of the function in Equation (4.20) for computational sta-

bility before maximization, though it cannot be decomposed into such simple forms as

polynomial.

4.3.6 Trimap Correction

While the matting parameters in the area which is specified as an unknown region in

initial trimap can be determined by the proposed robust estimation, the parameters for

the pixels are incorrectly specified as either foreground or background even though they

have medium alpha values. In order to obtain an accurate alpha matte as a whole, it is

desirable to estimate correct alpha values in such region.

If the trimap is accurate, the distribution of foreground and background colors provides

two sets of clusters, while clusters overlap one another when the trimap is inaccurate as

described in Section 4.3.3. Based on the observation, the wrongly classified pixels are

likely to be positioned in either foreground color in background clusters, background color

in foreground clusters, or interpolated color of foreground and background colors. Since it

is difficult to determine which color cluster is classified into foreground or background, or

which area can be regarded as interpolated colors, we adopted the following conservative

method.

After each iteration in the CMAP estimation, pixels satisfying the following condi-

tions are regarded as unreliable pixels which need to be relabeled as unknown and alpha-

estimated later.

• Foreground color in the intermediate region and not in the cluster of Ftrue

• Background color in the intermediate region and not in the cluster of Btrue

The unreliable pixels are determined using the Mahalanobis metric with covariance ma-

trix σ2
CI in color space. The distance dline between a pixel and an intermediate region is

measured by the Mahalanobis distance between the color and the line of FtrueBtrue. The
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Figure 4.17: Trimap correction and estimated alpha matte. While both algorithms are
initialized with the trimap shown on top-left, our method yielded better alpha matte by
correcting errors in the initial trimap.
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distances dcluster to the clusters of Ftrue or Btrue are calculated in the same manner. In our

experiments, the thresholds for dline and dcluster are set to 3.0 and 1.0, respectively. The

result of trimap correction is shown in Figure 4.3.6.

4.4 Implementation Details

The rendering by microfacet billboarding can be effectively implemented by commonly

used graphics library such the OpenGL and the Microsoft Direct 3D library. Microfacets

are rendered by polygons with multitextures, taking advantage of the fast and flexible tex-

ture synthesizer called pixel shader. In this section, we explain the detail of the hardware-

accelerated implementation for a texel-wise operation which is necessary to perform the

texture clipping described in Section 4.2.2.

In order to map the obtained images to microfacets during the run time, all color im-

ages, view-dependent depth maps, and alpha mattes are loaded into the graphics memory

before rendering. In rendering a polygon representing a single microfacet, some trios of

the color image, depth map and alpha matte are selected according to the camera selection

described in Section 4.2.2. To avoid the color blending between foreground and back-

ground, the alpha mattes are first applied to the corresponding color images. The textures

are then blended according to the weights w̃i determined by the angles formed by the cur-

rent viewing direction and the direction of cameras. Once a polygon representing a single

microfacet has been rasterized into a set of pixels and the corresponding texels have been

generated, the interpolated depth of the pixel is then compared with the depth of the micro-

facet, and then passed to the following process if the pixel is within the voxel represented

by the microfacet, otherwise it is discarded. If the pixel passes the texture-based depth

test, the pixel is rendered into a frame buffer using alpha blending.

This texture-based depth test and alpha blending is implemented as a pixel shading

program and performed within the rendering pipeline of graphics hardware using a pixel

shader when microfacets are rendered. In our current implementation, the High Level

Shader Language (HLSL) for the Microsoft Direct 3D version 9 is used to program the

functions, although it can also be implemented using the OpenGL library with the aid

of other programming languages such as NVidia Cg. The color images, view-dependent

depth maps and alpha mattes are loaded as 2D textures, and the depth of microfacets and

other parameters related to the viewing direction are loaded into the registers in the pixel

shader.
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Table 4.1: Performance comparison. Figures indicated are seconds elapsed in the alpha
estimation for the image and trimap presented in Figure 4.3.1.

Bayesian Ours
Accurate trimap 44.893 44.979

Inaccurate trimap 45.350 44.861
Trimap correction 118.228 118.535

4.5 Experimental Results

We implemented a microfacet billboarding renderer on a standard PC equipped with ATI

Radeon 9800 Pro GPU. Microfacets were rendered as squares of texture-mapped polygons

using the Microsoft Direct 3D version 9 graphics library and its pixel shading functions,

taking advantage of the rendering acceleration of graphics hardware.

4.5.1 Automatic Alpha Estimation

The performance of the methods is presented in Table 4.1. For all constraints on color dis-

tribution and range of variables, our algorithm is as fast as the original Bayesian matting.

Although the conjugate gradient method for CMAP estimation in our algorithm is more

complicated than the alternative minimization used in the Bayesian matting, the number

of iterations is considerably smaller in our method. The average number of iterations in

conjugate gradient method for each single pixel is about two, while the alternative mini-

mization requires 10 to 20 iterations on average. When trimap correction is enabled, the

number of pixels to be alpha-estimated increases and the algorithm slows down.

The examples of automatic digital matting are shown in Figure 4.5.1. Robust alpha

estimation enables the user to utilize rough segmentation obtained by any method such as

initial trimap. The alpha images shown at the bottom are generated without any manual

segmentation. We generated initial trimaps by applying the SUSAN filter [SB97] to a

range image captured by a laser range finder, a disparity map obtained by binocular stereo,

and a simple color-based segmentation. The width of unknown regions in the trimap is

determined by manually adjusting the filter parameters. The a priori parameters like σC

or η are also determined empirically, while similar scenes can be processed using similar

parameters.
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Figure 4.18: Example of automatic alpha estimation. Each row shows input images, rough
segmentation used to generate initial trimaps, generated trimaps, and obtained alpha matte
from top to bottom. The trimaps are generated by applying the SUSAN filter to a range
image taken by a laser range finder in the left column, and a disparity map obtained by a
stereo method in the right column.
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4.5.2 Rendering Objects by Microfacet Billboarding

A stuffed cow with soft and intricate geometries was modeled and then rendered, as shown

in Figure 4.19. The model is furry over a large part of its surface and it is difficult to

measure and to represent its geometry completely.

In our experiment, the geometry and texture of the object were acquired at the same

time, in the form of a sequence of range images and texture images, using the VIVID 900

laser range scanner. The number of images captured for the model was 36. Although our

method has no limitation on the position of cameras, we assume that the cameras were

placed along a circle because a turning lathe was used to create the model in this exper-

iment. This circular camera position confined the area in which the viewpoint could be

positioned to a two-dimensional plane which contained the circle of the camera positions.

However, the information on the geometry of the object expanded this two-dimensional

plane to three-dimensional space with the distortion estimated in Section 4.2.3.

Figure 4.19 shows the intermediate and final results of microfacet billboarding render-

ing. The objects to be rendered are the stuffed toys of a bear and a cow. The acquired

geometry and texture were composed of 36 range images and color images taken around

the objects. The resolution of the range image and color image is 640 × 480. The reso-

lution of global geometry is 64 × 64 × 64. The top row in Figure 4.19 shows the global

geometries rendered by the technique of volume rendering with red and green colors for

the voxels outside and inside surfaces, respectively. The middle row shows the result of

microfacet rendering with texture clipping, and the bottom row displays the final result of

the rendering.

The result of background substitution is demonstrated in Figure 4.20. The synthetic

view image rendered by microfacet billboarding is shown on the left. The right image

is an unused reference view taken at the same viewpoint. Compared with the reference,

synthetic image is a little blurred. This can be regarded as the artifacts caused by the error

in the geometric approximation.

4.5.3 Performance Analysis

The speed of rendering is mainly dependent on the number of microfacets to be generated

in the resolution. An object was rendered in various resolutions by using (a) quadrilateral

polygons with view-dependent textures, (b) points with view-dependent colors, and (c)

quadrilateral polygons with accelerated view-independent textures, as shown in Table 4.2.
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Figure 4.19: Images of stuffed toys rendered by microfacet billboarding rendering. (top)
Voxelized geometry visualized by volume rendering. Green cells indicate the voxels
placed at the position of object surface. (middle) Virtual views synthesizsed by micro-
facet billboarding. (bottom) Results of rendering without facet border.
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synthetic view-image unused reference view-image

Figure 4.20: Results of alpha composition

Table 4.2: Example of rendering performance. The top two rows indicate the size of
the data. The bottom rows show the number of frames rendered per second (FPS) when
microfacets are represented by (a) quadrilateral polygons with view-dependent textures,
(b) points with view-dependent colors, and (c) quadrilateral polygons with accelerated
view-dependent textures.

Size of volume 323 643 1283 2563

# of facets 2460 11207 50560 208289
(a) 100.1 69.8 18.2 5.2
(b) 113.3 72.4 20.5 6.4
(c) 187.6 162.3 46.3 20.1
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Contrary to our expectation, a comparison of (a) and (b) in Table 4.2 indicates that the

shape of microfacets has little effect on the rendering performance. The reason is that

the bottleneck of the rendering process is not the rasterization of microfacets in graphics

hardware but rather, the camera selection for view-dependent texture. The calculation for

camera selection can be accelerated by limiting the number of candidates for the selection.

With every change of viewpoint, we generate a cone which includes all possible directions

from the viewpoint to microfacets; then, some texture images are selected as the candidates

for camera selection using the cone. This simple technique can increase the performance

of rendering, as shown in row (c) in Table 4.2. Since our current implementation has not

been optimized for performance, the adoption of more sophisticated techniques of camera

selection or other processes may accelerate the performance. Further improvement of

performance is not discussed in this thesis.

The depth in the range images is quantized as integer in [0, 255] due to the limitation

of the graphics hardware. Therefore, microfacets finer than those generated from a volume

of more than 2563 have the same quality of texture. This limitation can be overcome by

using floating point texture map available in the latest hardware.

The required memory size for microfacet billboarding depends on both the number

of facets and the number of cameras. For geometry, one microfacet requires three 32-bit

floating points to represent its position in space. The normal and rotation of a microfacet

are determined dynamically when it is rendered. Therefore, the required memory size

for geometry is roughly estimated as 24 × {number of facets} for each resolution of the

volumes. For texture, one texture image requires w × h pixels which have 5 channels

(RGB, depth and alpha) in 8-bit precision. Therefore, the required memory size for texture

is roughly estimated to be 5 × w × h × {number of images}.

4.5.4 Comparison with the Surface Model

It is common for models with clear and static surfaces to be rendered by methods using

polygons with texture; hence, we should compare our method with such methods. One of

the most suitable techniques for rendering objects with intricate geometry is the combina-

tion of visual hull modeling and view-dependent/independent texture mapping. The visual

hull algorithm can generate a model of the approximate geometry of the object indepen-

dently of the intricacy of the surface of the object, because this algorithm utilizes only

the silhouette line of the object. However, the detail of an object which has an intricate

silhouette cannot be modeled correctly.
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unused image polygon + texture microfacet billboarding

Figure 4.21: The texture mapped to a microfacet is interpolated when viewed from a lo-
cation between camera positions. (left) An image which is not used for rendering. (center)
The image synthesized by texture-mapped surface rendering at the position of the image
on left. (right) The image synthesized by microfacet billboarding, which successfully re-
produced intricately shaped needles of the plant.

Figure 4.21 shows a result of the comparison. Several images of a potted plant were

captured, and one of them is shown on the left. First, the geometry of the object was gen-

erated using a consensus surface algorithm [WSI98], and represented by a polygonal mesh

(center) and microfacets (right). Then, both models were rendered using view-dependent

texture mapping. Although the quality of both models is poor, microfacet billboarding

reproduced the real view much better than did the surface-based algorithm.
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Conclusion

5.1 Summary

In this dissertation, three different techniques for photorealistic image synthesis based on

measured data sets have been proposed. The motivation of this research is that, owing

to some fundamental or practical reasons concerning measurement, it is often difficult to

model real-world scenes accurately enough to achieve photo-realistic rendering.

Image-based Rendering from Sparse Images

When the knowledge on the scene geometry is completely unavailable and it is difficult

to extract geometric constraints from given reference images, the existing methods cannot

yield photo-realistic views without a huge amount of reference view images as inputs. In

this dissertation, two different solutions to this issue are proposed. One is a fully automatic

method based on automatic image morphing. The other solution is an interactive system

for image-based modeling and rendering.

In the automatic method for photo-realistic rendering based only on images, the vir-

tual view of the scene is synthesized by interpolating the images using the possibly non-

physically based correspondence between the images. We have proposed a method of

automatically determining dense and smooth mapping between two images without a pri-

ori information on either the camera pose or the objects. In order to determine plausible

correspondences even between different images, features of images are extracted by lin-

ear filters similar to those used in early vision. We have applied our method to various

data sets and showed that our method works better than existing methods when intensity
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changes or the difference between images is large.

Interactive system for image-based modeling and rendering

The development of an interactive system for modeling and rendering, which we call Pop-

up Light Field, is another solution to the problem of photo-realistic rendering from a sparse

set of images. As a basic model of the scene, we introduced coherent layers representation

which is a collection of corresponding planar regions in the light field images. A coher-

ent layer can be rendered free of aliasing, all by itself or against other background layers.

To construct coherent layers, we introduce a Bayesian approach, coherence matting, to

estimate alpha matting around segmented layer boundaries by incorporating a coherence

prior to maintain coherence across images. In this system, the user specifies how many

coherent layers should be modeled or popped up according to the scene complexity. We

have developed an intuitive and easy-to-use user interface (UI) to facilitate pop-up light

field construction. The key to our UI is the concept of human-in-the-loop, in which the

user specifies where aliasing occurs in the rendered image. The user input is reflected in

the input light field images where pop-up layers can be modified. The user feedback is

instantaneous through a hardware-accelerated real-time pop-up light field renderer. Ex-

perimental results demonstrate that our system is capable of rendering anti-aliased novel

views from a sparse light field.

Image-based Rendering based on Incomplete Geometry

When the objects that we wish to render have such elaborate details as hairs and pine nee-

dles, acquired geometry may suffer from considerable noise and view-images are wrongly

affected due to the limited resolution of optic sensors. With the goal of synthesizing

the photo-realistic views of such intricately-shaped objects, we have proposed a novel

method, called microfacet billboarding, that approximates intricate geometry by using

view-dependent geometric primitive, and renders the objects by using view-dependent

texture mapping. We described the basic algorithm and an effective implementation on

commodity graphics hardware. We also told how we estimate artifacts generated by the

use of discrete facets, and how we analyze the optimal parameter settings that yield the

best rendering performance without losing the quality. The comparison with the view syn-

thesized by conventional surface-based method proves that the proposed method is highly

advantageous for rendering intricately shaped geometry.
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Within the algorithm of microfacet rendering, a robust method for estimating alpha

matte from a single image is also presented. Different from prior work, the proposed

method enables us to correct the error in an initial segmentation called trimap; hence, au-

tomatic estimation of alpha matte is achieved based on a rough initial segmentation gener-

ated from rough geometric model of the scene. Based on the Bayesian matting technique,

the robust estimation is formulated as the maximization of a joint posterior probability of

matting parameters and the additional condition, which can be solved by the conjugate

gradient method without conspicuous loss in computational efficiency. In addition, we

introduced the Gaussian Mixture Model (GMM) for representing complicated distribution

of image colors especially when a given initial trimap has considerable errors, and demon-

strated that the proposed method enables automatic digital matting which is essential in

applications requiring many images to be alpha-estimated.

5.2 Contribution

The contributions of this dissertation are summarized as follows.

• Proposed is a new framework to achieve view-interpolation from sparse images; this

framework is based on the techniques of automatic image matching and hardware-

accelerated image morphing. As opposed to prior methods of automatic image

matching, the proposed method does not rely on any assumption of what appears

in the images. To avoid the difficulty in the geometric reconstruction of the scene

wished to be rendered, the problem is reduced to finding plausible mapping between

the images. To solve the problem, the correspondence between given images is de-

termined by matching the image features extracted by the filters similar to those used

in human vision system.

• Also proposed is a new framework for interactive modeling and rendering using

sparse light field. The scene wished to be rendered is decomposed into a set of

coherent layers to achieve alias-free rendering. To construct coherent layers, the

technique which we call coherence matting is introduced to estimate alpha matting

around segmented layer boundaries by incorporating a coherence prior to maintain

coherence across images. To facilitate the layer construction, an intuitive and easy-

to-use UI was designed so that the rendering quality can be improved as much as the

user wants with little manual operation.
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• Also proposed is a new framework to create the geometric model of the objects

whose surfaces have such elaborate features as needles of pine trees, hairs, and

fur. The key idea is to introduce view-dependency in both modeling and render-

ing. Due to the limited resolution of optic sensors, it is difficult to consistently

create a static model from an acquired data set between views. Instead of resolv-

ing the inconsistency, the geometric model is represented as a combination of static

and view-dependent data structures, and the texture images are generated using the

corresponding alpha matte.

• In addition to these three fundamental methods of photo-realistic rendering, also

proposed is a robust method of alpha matting based on the Bayesian framework. By

extending the MAP estimation to consider the constraints on the color distribution,

the method makes it possible to extract an alpha matte from a single natural image

by the use of a rough trimap. Although this work is a by-product developed in the

course of designing the microfacet billboarding, it helps the alpha matting performed

in the conventional context, such as image editing in publishing.

5.3 Discussion and Future Work

We conclude with a discussion of open problems and future improvements which we our-

selves are interested in pursuing and would like to see pursued by other researchers.

Combination of view-dependent rendering and image morphing

The view-dependent modeling of an object allows the system to deal with a globally in-

consistent representation of the geometry. In this fuzzy approach, we can effectively avoid

such problems as that a part of acquired data set is excessively eliminated due to some

“robust” modeling, which occurs in the visual hull modeling [Lau94, MPN+02]. But the

view-dependency is useless for reducing such visual artifacts as double imaging caused by

the deficiency of sampling [CTCS00] since it is the fundamental limitation of image-based

rendering as explained in Chapter 1.

One possible approach to this problem is to incorporate the method with the rendering

techniques based on a sparse images, such as that proposed in Chapter 2 and 3.

In the algorithm of the microfacet billboarding, the process of synthesizing view-

dependent textures by linear interpolation can be replaced with image morphing based
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on automatic image matching. To accomplish the combination, the matching algorithm

proposed in Section 2.2 has to be extended in two ways. First, it is desirable for the

matching algorithm to use the geometric model as the initial estimation of the image cor-

respondence, even if it is unreliable. Second, it is necessary to extend the matching and

morphing algorithms so that they can appropriately handle the correspondence problem

between more than two images.

On the other hand, in the system of the pop-up light field system, the knowledge of

the scene geometry can be used to aid in the initialization and verification of the coherent

layer construction. For example, when the rough depth map for the scene to be rendered is

obtained by applying stereo reconstruction to the light field images, the image segmenta-

tion based on the depth map can be utilized as the initial boundary of the coherent layers.

It is likely easier to improve the initial boundaries rather than to create them from scratch.

Once a layer has been popped up, it can be determined whether the layered object can

be approximated using simple planar geometry by verifying that the variance of the pixel

depths within the layer is sufficiently small.

Compression of created model

One of the problems in modeling and rendering from a measured data set is that the total

size of the created model tends to become huge. Although all of the proposed methods

aim to render scenes from relatively sparse or under-sampled data sets, the size of data can

easily explode when additional dimensions in data space, such as motions and illumination

changes, are taken into account.

From the analogies to the methods for the appearance compression [NSI01, WAA+00],

it may also be possible to compress the size of texture images in microfacet billboarding,

since the texture images mapped on a microfacet are supposed to have coherency between

views to some extent. In contrast to above referred methods, our geometric model can be

fairly inaccurate, which makes it difficult to reduce the dimension of texture images by

applying the principal component analysis (PCA) in texture space. Thus, it is interesting

to analyze the trade-off relationship between the accuracy of the geometric model and the

compressibility of photometric model.

It is also interesting to utilize the image correspondence estimated by the method pro-

posed in Chapter 2 for compressing the size of reference images in the same manner as

is done in the block matching technique for compressing video sequences. A part of the

pixels in reference images can be reduced by propagating the pixels in the nearby view-
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images using the per-pixel correspondence. In addition, it is also interesting to develop

a technique that would reduce the resolution of the mapping with the least loss of visual

quality in the interpolated sequences, since the per-pixel correspondence between images

may be unnecessary for rendering purposes and inappropriate for compression,

Various extension of the Pop-up Light Field

Since our pop-up light field takes on a sparse light field as input, the application has several

limitations, which are as follows. It cannot handle specular highlights and other significant

appearance changes. It also assumes that each layer itself can be rendered correctly by the

sparse light field. Our method cannot be guaranteed alias-free if the layer boundaries are

too complicated for the user to segment accurately, or a single object violates plenoptic

sampling criterion. Our layer-based approach does not handle topological changes prop-

erly. Moreover, coherent matting does not work well for semi-transparent surfaces and

long hair because the prior L(α) used in our formulation is approximately modeled as a

point spread function. The solutions to all these problems remain as future work.
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