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Chapter 1

Introduction

One of the important goals in computer graphics is achieving photographic realism of

synthesized images. Techniques for rendering realistic computer graphics objects and

seamlessly merging them into images of real scenes especially attract a great deal of at-

tention in media industries such as film making, television broadcasting, game making,

advertising, and so on.

For the purpose of synthesizing the realistic appearance of objects, conventional model-

based rendering techniques have been intensively developed. Model-based rendering tech-

niques synthesize the appearance of objects based on empirically or analytically given

reflection models.1 To use these models, the geometric and photometric information

about the scene needs to be provided: the shapes of objects in the scene, their surface

reflectance properties, and the lighting conditions of the scene where those objects are

placed.

Regarding the geometric information of a scene, 3D shapes of objects are often manu-

ally produced by using well-designed CAD modelers. Also, for modeling the more complex

shapes of real objects, a number of approaches have been developed, such as range image

merging techniques and 3D photography techniques. In contrast, providing photometric

information about a scene, such as surface reflectance properties and lighting conditions,

has been a difficult task.

Surface reflectance properties greatly influence the appearance of an object. The ap-

1 Commonly used reflection models in the field of computer vision and computer graphics include the

Lambertian model, the Phong model, the Blinn-Phong model, the Torrance-Sparrow model, the Cook-

Torrance model, the Ward model, and the Lafortune model.

1



Chapter 1. Introduction 2

pearance of a metallic surface is completely different from that of a matted surface even

under the same lighting conditions. In addition, its appearance changes significantly under

different lighting conditions. It is thus important to provide not only appropriate surface

reflectance properties of objects in a scene but also appropriate illumination conditions so

that the realistic appearance of the objects can be synthesized under these illumination

conditions. Nevertheless, photometric information about a scene tends to be manually

provided by a user.

Since it is difficult to imagine the appearance of an object directly from reflectance

parameters, the input process of manually specifying its reflectance properties is normally

non-intuitive and thus time-consuming. The correct appearance of a scene is difficult

to achieve unless we stop relying on our instinct for adjusting reflectance parameters.

As for providing lighting conditions, a scene generally includes both direct and indirect

illumination distributed in a complex way, and it is difficult for a user to manually specify

such complex illumination distribution.

In order to overcome these difficulties in providing photometric information about a

scene, techniques for automatically providing the photometric models of a scene have

been studied in the fields of both computer vision and computer graphics research. In

particular, techniques that use a set of images of a scene provided under different viewing

and/or lighting conditions for determining its geometric and photometric information are

called image-based modeling.

This thesis addresses two issues of image-based modeling for synthesizing the pho-

torealistic appearance of real objects under natural illumination conditions: capturing

real-world illumination, and modeling the complex appearance of real objects for variable

illumination. Regarding the first issue of capturing real-world illumination, both image-

based lighting and inverse lighting approaches are studied. As for the second issue of

modeling the complex appearance of real objects for variable illumination, we carefully in-

vestigate the requirement for input images in image-based rendering in order to correctly

produce the appearance of an object under arbitrary illumination. We present a novel

method for analytically obtaining a set of basis images from input images of the object

taken under a point light source or extended light sources.
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1.1 Image-based Lighting for Measuring Real-World Illumi-

nation

One of the image-based modeling techniques that measures real-world illumination condi-

tions from photographically acquired images of a real scene is called image-based lighting.

Image-based lighting techniques have been developed successfully with practical applica-

tions [17, 12, 7, 29]. However, two difficulties in image-based lighting still remain to be

solved: how to construct a geometric model of the scene, and how to capture a wide field

of view of the scene.

In Chapter 2, we confront these two difficulties and propose an efficient method for

automatically measuring illumination distribution of a real scene by using a set of omni-

directional images of the scene taken by a CCD camera with a fisheye lens. There are three

reasons why we use omni-directional images rather than images taken by a camera with

an ordinary lens. First, because of the wide field of view of a fisheye lens (180 degrees),

we can easily capture illumination from all directions from a far fewer number of omni-

directional images. Second, since a fisheye lens is designed so that an incoming ray from

a particular direction is projected onto a particular point on an imaging plane, we do not

have to concern ourselves with computing directions of incoming rays and considering a

sampling frequency of the incoming rays. Third, we are able to use the directions of the

incoming rays for automatically constructing a geometric model of the scene with the wide

field of view of a fisheye lens.

In our method, based on an omni-directional stereo algorithm, a geometric model of

the scene is first constructed from a pair of omni-directional images taken from different

locations. Then radiance of the scene is computed from a sequence of omni-directional

images taken with different shutter speeds and mapped onto the constructed geometric

model. The construction of this geometric model with radiance, referred to as a radiance

map, is necessary in order to compute the radiance distribution seen from any point in

the scene. In other words, without constructing a radiance map, we can determine only

the radiance distribution seen from the particular point where the omni-directional image

was captured. Once a radiance map is constructed as a triangular mesh, an appropriate

radiance distribution can be used for rendering a virtual object and for generating shadows

cast by the virtual object onto the real scene wherever the virtual object is placed in the
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Figure 1.1: Measured illumination distribution based on the proposed omni-directional

stereo algorithm and synthesized images under the captured illumination distribution.

scene.

Figure 1.1 shows the obtained triangular mesh that represents the radiance distribution

as its color texture and synthesized images under the captured illumination distribution.

In the images synthesized by our method, shading of the virtual object blends well into

the scene. Also, the virtual object casts a shadow with a soft edge on the tabletop in the

same way as do the other objects in the scene.

1.1.1 Image Synthesis under Dynamically Changing Illumination

In Chapter 3, we pursue the possibility of real-time rendering of synthetic objects with

natural shading and cast shadows superimposed onto a real scene whose illumination

condition is dynamically changing.

In general, high computational cost for rendering virtual objects with convincing shad-

ing and shadows, such as interreflections or soft shadows under area light sources, prohibits

real-time synthesis of composite images with superimposed virtual objects. From this lim-

itation, simple rendering algorithms supported by commonly available graphics hardware
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a Camera with a fisheye lens 
(for omni-directional image)

a 3CCD Color Camera
(for input image)

Figure 1.2: Image acquisition system and synthesized images by our method: a color

camera with a fish-eye lens is used for capturing illumination of the scene.

need to be used for the applications that require real-time image synthesis. Computation-

ally expensive rendering algorithms are not usually supported by such graphics hardware,

and this leads to some restrictions on achievable image qualities.

Alternative approaches have been proposed for re-rendering a scene as a linear com-

bination of a set of pre-rendered basis images of the scene [10, 44, 11]. These approaches

are based on the linearity of scene radiance with respect to illumination intensities. Since

this linearity holds for scenes with complex geometry and complex photometric properties

such as interreflections between objects and cast shadows, photo-realistic appearance of a

scene can be synthesized based on this simple linear combination framework.

Most of the previously proposed methods, however, have been developed for the task

of interactive lighting design. Therefore, basis lights under which a set of basis images are

rendered are intentionally positioned at the desired locations, so that a scene under desired
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lighting configurations can be efficiently synthesized. Recently, Debevec et al. introduced

a method for re-rendering a human face based on a linear combination of face images

taken under densely sampled incident illumination directions in [8]. This method further

considered a model of skin reflectance to estimate the appearance of the face seen from

novel viewing directions and under arbitrary illumination.

In this thesis, we generalize the approach based on the linearity of scene radiance

with respect to illumination radiance and present an efficient technique for superimposing

synthetic objects with natural shadings and cast shadows onto a real scene whose illumi-

nation is dynamically changing.2 The main advantage of the proposed method is that

image quality is not affected by the requirement for real-time processing, since reference

images are rendered off-line. This enables us to employ computationally expensive algo-

rithms for providing reference images, and this results in achieving high quality in the

final composite images of the scene.

The image acquisition system and several examples of synthesized images are shown

in Figure 1.2. In those images, the virtual cow casts a shadow with a soft edge on the

grass in the same way as the other objects such as trees in the scene do.

1.2 Inverse Lighting for Estimating Real-World Illumina-

tion

There has been another approach called inverse rendering in image-based modeling that

deals with an inverse problem of traditional model-based rendering. As described in model-

based rendering, the image brightness of an object can be computed as the function of

the shape of the object, its surface reflectance properties, and the illumination condition

where the object is located [23, 24]. The relationship among these provides three research

areas in inverse rendering:

• Shape-from-Brightness for recovering the shape of the object from its reflectance

properties and the known illumination condition,

• Reflectance-from-Brightness for recovering the surface reflectance properties of the

object from its shape and the known illumination condition, and
2 We consider that a scene consists of both real objects and synthetic objects with fixed scene geometry

and the scene is viewed from a fixed viewing point under dynamically changing illumination.
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• Illumination-from-Brightness for recovering unknown illumination conditions of the

scene based on the knowledge of the shape and the surface reflectance properties of

the object.

In inverse rendering, the first two kinds of analyses, shape-from-brightness and reflectance-

from-brightness, have been intensively studied using the shape from shading method [25,

27, 26, 50], as well as through reflectance analysis research [28, 45, 22, 1, 32, 37, 57, 71].

In contrast, relatively limited amounts of research have been conducted in the third

area, also known as inverse lighting [49]. One of the main advantages of inverse lighting

over the former image-based lighting is that it does not require additional images for

capturing illumination of a scene, but uses the appearance of objects located in a scene

instead for recovering an illumination distribution of the scene.

In general, real scenes include both direct and indirect illumination distributed in

a complex way, and this makes it difficult to analyze characteristics of the illumination

distribution of the scene from image brightness in inverse lighting. As a consequence, most

of the previously proposed approaches were conducted under very specific illumination

conditions, for example, there were several point light sources in the scene, and those

approaches were difficult to extend to more natural illumination conditions [26, 28, 57, 74,

65]. Or multiple input images taken from different viewing angles were necessary [34, 47].

Pioneering work in the field of inverse lighting for recovering natural illumination con-

ditions of real scenes was proposed by Marschner and Greenberg [39]. This work proposed

to approximate the entire illumination with a set of basis lights located in a scene and esti-

mated their radiance values from shadings of objects observed in that scene. Although this

method had an advantage over the previous methods of not requiring knowledge about the

light locations of the scene, the estimation relies on the changes in appearance observed on

an object surface assumed to be Lambertian, and therefore some restrictions were imposed

on the shape of the object, for example, the object must have a large amount of curvature.

Later, Ramamoorthi and Hanrahan defined the conditions under which condition in-

verse rendering could be done robustly, based on their proposed signal-processing frame-

work that described the reflected light field as a convolution of the lighting and the bidirec-

tional reflectance distribution function (BRDF) [52]. It was shown through their analysis

that changes in appearance observed on Lambertian surfaces were not necessarily suitable

for estimating high frequency components of illumination distribution of a scene.
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image brightness 

inside shadows

Estimate illumination

distribution 

Figure 1.3: An inverse lighting approach for recovering an illumination distribution of a

scene from image brightness inside shadows cast by an object of known shape in the scene.

In Chapter 4 of this thesis, we demonstrate the effectiveness of using occluding infor-

mation of incoming light in estimating an illumination distribution of a scene. Shadows

in a scene are caused by the occlusion of incoming light, and thus contain various pieces

of information about the illumination of the scene. Nevertheless, shadows have been used

for determining the 3D shape and orientation of an object that casts shadows onto the

scene [38, 33, 60, 4], while very few studies have focused on the illuminant information

that shadows could provide. In our method, image brightness inside shadows is effectively

used for providing distinct clues to estimate an illumination distribution.

Chapter 4 further addresses two issues in inverse lighting. First, the method combines

the illumination analysis with an estimation of the reflectance properties of a shadow sur-

face. This makes the method applicable to cases where reflectance properties of a surface

are not known a priori and enlarges the variety of images applicable to the method. Sec-

ond, an adaptive sampling framework for efficient estimation of illumination distribution

is introduced. Using this framework, we are able to avoid unnecessarily dense sampling

of the illumination and can estimate the entire illumination distribution more efficiently

with a smaller number of sampling directions of the illumination distribution.

Later in Chapter 5, we also discuss the amount of the information about the illumi-

nation distribution of the scene obtainable from a given image of a scene. In general, the

amount of information obtainable from an image is determined depending on how much of

the shadow surface is blocked by objects in a scene and how much of the scene is covered

by the field of view of the camera taking the image of the scene. In particular, two main

factors that control the stability of the illumination estimation from shadows are analyzed:

blocked view of shadows and limited sampling resolution for radiance distribution inside
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shadow image real shadows for the comparison purpose

synthesized appearance

Figure 1.4: Synthesized appearance using the estimated illumination distribution.

shadows.

Then, based on the analysis, a robust method is presented. For estimating the illu-

mination distribution of a scene reliably by taking stability issues into considerations, we

propose to change the sampling density of the illumination distribution depending on the

amount of the information obtainable from a shadow image for a particular direction of

the illumination distribution. For using radiance distribution inside the penumbra of the

shadows correctly, we introduce a super-sampling scheme for examining the occlusion of

incoming light from each light source. We also explain the optimal sampling of image pixels

and the selection of illumination distribution samplings for more stable computation.

All of these extensions contribute to improve stability and accuracy of illumination

estimation from shadows, and illumination distribution can be estimated in a reliable

manner with these proposed improvements regardless of types of input images such as the

shape of an occluding object or a camera position.

In the bottom row of Figure 1.4, several synthetic objects were superimposed onto the

surface using the illumination distribution estimated from the input shadow image shown

in this figure. It is worth noting that in this example, a relatively large area of the shadow

surface is occluded by the occluding object, and it is often difficult to provide a correct

estimate of the illumination distribution in such a case.



Chapter 1. Introduction 10

Even in this challenging case, our proposed approach could reliably estimate the illu-

mination distribution of the scene by taking stability issues into consideration. Shadows

cast by those synthetic objects closely resemble those cast by the real objects, and this

shows that the estimated illumination distribution gives a good presentation of that of the

real scene.

Recently, based on the signal-processing framework proposed by Ramamoorthi and

Hanrahan, it was shown that high frequency components of the appearance of an object

surface could retain significant energy by taking the occlusion of incoming light as well

as its bidirectional reflectance distribution function (BRDF) into account in [48]. This

indicates that the use of shadows for illumination estimation has the significant advantage

of providing more clues to the high frequency components of illumination distribution of

a scene.

1.2.1 Obtaining Shading Models of Oil Paintings

As an application for the proposed inverse lighting approach we also present a new tech-

nique for superimposing synthetic objects onto oil paintings with artistic shadings that are

consistent with those originally painted by the artists in Appendix. In a colored medium

such as oil painting, artists often use color shift techniques for adding some artistic tones

to their paintings as well as for enlarging their dynamic ranges.

(a) (b)

Figure 1.5: Superimposing a synthetic chair into the painting by Rembrandt.

In this thesis, we attempt to determine the mechanisms for color shifts performed by

artists and to automate their processes so that we can superimpose onto paintings synthetic
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objects that have consistent shadings. We first study characteristics of shadows observed

both in real scenes and in paintings to discover how intrinsic color shifts were performed

by artists. In particular, we analyze brightness distribution inside shadows observed in a

painting. Then, we adapt the acquired mechanisms so that we can superimpose synthetic

objects with consistent shadings onto oil paintings (Figure 1.5).

1.3 Image-Based Rendering under Novel Lighting Condi-

tions

Inverse rendering carries out the opposite procedures of model-based rendering to provide

object and illumination models of a real scene from photographically available information

of the scene. Once models of a scene are acquired, new images of the scene under novel

lighting and/or viewing conditions can be synthesized by using conventional model-based

rendering techniques.

On the other hand, the approach called image-based rendering directly uses the original

set of input images of a scene for producing new images of the scene under novel condi-

tions [61]. Depending on which scene conditions should be modified, image-based rendering

techniques are classified into three categories: image-based rendering under novel viewing

conditions, image-based rendering under novel lighting conditions, and image-based ren-

dering under novel viewing and novel lighting conditions. In this thesis, we consider the

second category, image-based rendering under novel lighting conditions.

In contrast with model-based rendering techniques, image-based rendering techniques

do not require full radiometric computation to synthesize the photo-realistic appearance

of objects in a scene. This makes the cost to produce new images of the scene independent

of the scene complexity. Also image-based rendering techniques normally do not require

geometric and photometric models of a scene.3 Image-based rendering, however, has

a tendency to require many input images of a scene to synthesize reasonably realistic

appearance of the scene. This results in the requirement for a large amount of both

computer memory and data storage.

While there may seem to be a large variety of possible appearances for a given object,

3 Some image-based rendering techniques make use of geometric models of a scene for better compression

of its appearance.
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it has been demonstrated in previous research that the changes in appearance of an object

for varying illumination can be represented with a linear subspace spanned by a set of

basis images of the object. For instance, in the case of a convex Lambertian object, its

appearance seen under distant illumination without attached and cast shadows can be

described with a 3-D linear subspace spanned from three input images of the object taken

under linearly independent lighting conditions [42, 58, 73]. Even taking into account

attached shadows, most of the image variation of a human face or other object under

varying illumination was shown to be adequately represented by a low-dimensional linear

subspace slightly higher than 3-D [21, 14, 72]. A similar observation was utilized for

object recognition in [18, 19].

A set of basis images spanning such a linear subspace is often provided by applying

principal-component analysis to the input images of an object taken under different lighting

conditions. Since little is known about how to sample the appearance of an object in order

to obtain its basis images correctly, a large number of input images taken by moving a

point light source along a sphere surrounding the object are generally provided.

Recent investigations in frequency-space analysis of reflection have shown that the

appearance of an object under varying complex illumination conditions can be well rep-

resented with a linear subspace spanned by basis images of the object, called harmonic

images, each of which corresponds to an image of the object illuminated under harmonic

lights whose distributions are specified in terms of spherical harmonics [52, 53, 2].4

Hence if harmonic lights can be physically constructed in a real setting, harmonic

images of a real object can be obtained simply as images of the object seen under these

light sources. However, harmonic lights are complex diffuse light sources comprising both

negative and positive radiance and are thus difficult to physically construct in a real

setting. Therefore, most of the previously proposed techniques synthetically compute

harmonic images from the knowledge of an object’s 3-D shape and reflectance properties.

4 Harmonic images have been also used for the purpose of efficient rendering of an object under complex

illumination [54, 62].
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1.3.1 Appearance Sampling for Obtaining a Set of Basis Images for Vari-

able Illumination

This motivated us to develop a method for analytically obtaining a set of basis images for

varying illumination from input images of the object taken under a set of realizable point

light sources. The main contribution of our work is that we show that a set of lighting

directions can be determined for sampling images of an object depending on the spectrum

of the object’s BRDF in the angular frequency domain such that a set of harmonic images

can be obtained analytically based on the sampling theorem on spherical harmonics [13].

Using those sampling directions determined from the sampling theory, we are able to

obtain harmonic images by using a significantly smaller number of input images than other

techniques that do not take into account a relationship between a spectrum of BRDFs and

a sampling density of illumination directions.

In addition, unlike other methods based on spherical harmonics, our method does not

require the shape and reflectance model of an object used for rendering harmonics images

of the object synthetically. Thus, our method can be easily applied to determine a set

of basis images for representing the appearance change of a real object under varying

illumination conditions.

An overview of our hardware setup5 used for obtaining the input images of the objects

is shown in Figure 1.6; an array of light sources is mounted on a turntable. These light

sources are equally spaced in elevation, and the set of light sources is rotated around the

objects in azimuthal. By using this hardware setup, input images of an object are taken

under a point light source positioned at equiangular grid points and used for obtaining a

set of basis images of the object: 36 input images were used for the sheep and the Venus

examples, and 144 input images were used for the fish example.

To demonstrate how well the recovered harmonic images represent the appearance

of those objects under varying illumination, we synthesize their appearance from the re-

covered harmonic images under several natural illumination conditions provided by high-

dynamic range light probe measurements by [7]. In Figure 1.6, synthesized appearance

changes dynamically depending on characteristics of the illumination, and one can say from

this that the proposed method succeeded in providing a set of basis images representing

5 Surface Reflectance Sampler, TechnoDream21 corporation
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Figure 1.6: Hardware setup and synthesized images of objects under natural illumination.

The first row shows illumination maps. The second, third and forth rows show synthesized

appearance of objects under the corresponding illumination map.

appearance of those objects under varying illumination.

1.3.2 Anti-aliasing Framework in Appearance Sampling

Our proposed appearance sampling approach does not require object models such as the

3D shape and the surface reflectance properties of an object, but the information about the

highest frequency that the appearance of an object contains needs to be provided in order

to determine the number of point light sources required to capture its appearance. The

sampling theorem states that the higher the frequency content of an object’s appearance,

the more input images are required to obtain a correct set of basis images. The number of

input images required may become extremely large in the case of highly specular surfaces

containing a large quantity of high frequency components in their reflection.

In this case, insufficient sampling of an object appearance will result in aliasing in the

basis images, and this will lead to undesirable artifacts in the synthesized appearance.

Since the number of input images provided for modeling an object’s appearance is usually

limited, an anti-aliasing framework for obtaining a set of correct basis images from an

insufficient number of object input images is needed. However, this aliasing problem has

not been carefully considered in previous studies.

In Chapter 7, we carefully study this issue of aliasing and extend the method based
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on the sampling theorem further for reducing the artifacts due to aliasing, by substituting

extended light sources (ELS) for a point light source to sample the reflection kernel of

a real object. The use of ELS for modeling the shape and reflectance of an object was

originally introduced in [46]. We extend their analysis further in the angular frequency

domain so that the harmonic images of an object of arbitrary surface materials can be

obtained without suffering from aliasing caused by insufficient sampling of its appearance.

The use of ELS has the following advantages. ELS have a radiance distribution that is

similar to that of the Gaussian function, and this enables extended sources to function as

a low-pass filter when the appearance of an object is sampled under them. This enables us

to obtain a set of basis images of an object for varying illumination without suffering from

aliasing caused by insufficient sampling of its appearance. In addition, ELS can reduce

high contrast in image intensities due to specular and diffuse reflection components. This

helps avoid saturation so that we are able to observe both specular and diffuse reflection

components in the same image taken with a single shutter speed.

Once a set of basis images of an object is obtained, its appearance under natural

illumination conditions can be synthesized simply as a linear combination of these basis

images whose linear coefficients are computed from the given lighting conditions, and

these lighting conditions can be modeled by our proposed image-based or inverse lighting

methods. We describe more details about each method in the following chapters and

present concluding remarks in Chapter 8.



Chapter 2

Acquiring Illumination Based on

Omni-Directional Stereo

Algorithm

Image-based lighting techniques measure real-world illumination conditions from photog-

raphycally acquired images of a real scene. In this chapter, we propose an efficient method

for automatically measuring illumination distribution of a real scene by using a set of omni-

directional images of the scene taken by a CCD camera with a fisheye lens.

2.1 Introduction and Related Works

The seamless integration of virtual objects with an image of a real scene is an important

step toward the long term goal of achieving photographic realism of synthesized images.

Techniques for merging virtual objects with a real scene attract a great deal of attention

in the fields of both computer graphics and computer vision research.

The synthesized world called augmented reality allows us to see the real scene with

virtual objects superimposed onto the scene. In this augmented reality, we are able to

handle phenomena not only in the real world but also in a virtual world, while virtual

reality technologies immerse a user in a fully computer-generated scene.

To enhance the quality of synthesized images in augmented reality, three aspects have

to be taken into account: geometry, illumination, and time. More specifically, the virtual

object has to be positioned at a desired location in the real scene, and the object must

16
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appear at the correct location in the image (consistency of geometry). Also, shading of the

virtual object has to match that of other objects in the scene, and the virtual object must

cast a correct shadow, i.e., a shadow whose characteristics are consistent with those of

shadows in the real scene (consistency of illumination). Lastly, motions of virtual objects

and real objects have to be correctly coordinated (consistency of time).

Pioneering work in this field was proposed by Fournier et al. [17]. Fournier et al.’s

method takes into account not only direct illumination but also indirect illumination by

using the radiosity algorithm, which is commonly used for rendering diffuse interreflec-

tion [5]. This method is effective for modeling subtle indirect illumination from nearby

objects. However, this method requires a user to specify the 3D shapes of all objects in

the scene. This object selection process could be tedious and difficult if a scene were full

of objects. Also, since this method computes global illumination using pixel values of an

input image, it is required that the image have a reasonably wide field of view. Even so,

this method cannot model direct illumination from outside of the input image correctly

unless a user specifies the positions of all lights.

Drettakis et al. [12] extended Fourier et al.’s work. Drettakis et al.’s method made

the creation of the 3D model much easier using computer vision techniques. They also

introduced the use of a panoramic image built by image mosaicing to enlarge the field-of-

view of the input image, and the use of hierarchical radiosity for efficient computation of

global illumination. However, this method still requires a user to define the vertices and

topology of all objects in the scene, and it is often the case that the achieved field-of-view

is not wide enough to cover all surfaces in the scene. This causes the same limitation on

direct illumination outside the input image as in Fournier et al.’s method.

Later, Debevec [7] introduced a framework of constructing a light-based model of a

real scene and using it for superimposing virtual objects into the scene with consistent

shadings. A light-based model is a radiometric representation of a scene that is constructed

by mapping reflections on a spherical mirror placed in the scene onto a geometric model

of the scene.1

Although this method succeeded in superimposing virtual objects onto an image of a

real scene with convincing shadings, it still requires a user’s efforts to construct a light-

base model: specifying a geometric model of the distant scene, selecting viewing points for

1 State et al. previously introduced the use of a steel ball to capture the reflections at a single point [63].
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observing the mirror so that the reflections on the mirror can cover the entire geometric

model of the scene. Also, a sampling frequency of the reflected light differs depending on

the 3D geometry of the surface points on the mirror and the camera’s viewing directions.

This might cause poor sampling of the reflected light in some portions of the constructed

light-base model.

To summarise, the previously proposed methods suffered from two difficulties: how

to construct a geometric model of the scene, and how to capture a wide field of view of

the scene. With regard to the first difficulty, no simple solution has yet been proposed,

and its construction still requires user’s efforts. With regard to the second difficulty,

special equipment such as a spherical mirror or a panoramic image built by mosaicing was

proposed. However, multiple images taken from different viewing angles are still necessary

to capture the radiance of the entire scene, and therefore the image registration process is

also required.

2.2 Overview of Proposed Method

As a solution to these problems, an efficient method for automatically measuring a radiance

distribution of a real scene and using it for superimposing virtual objects appropriately

onto a real scene is proposed in this chapter.

Our proposed method automatically measures a radiance distribution of a real scene

by using a set of omni-directional images taken by a CCD camera with a fisheye lens.

There are three reasons why we use omni-directional images rather than images taken by

a camera with an ordinary lens. First, because of fisheye lens’ wide field of view, e.g.,

180 degrees, we can easily capture illumination from all directions from far less number of

omni-directional images. Second, since a fisheye lens is designed so that an incoming ray

from a particular direction is projected onto a particular point on an imaging plane, we do

not have to concern ourselves with computing directions of incoming rays and considering

a sampling frequency of the incoming rays. Third, we are also able to use the directions

of the incoming rays for automatically constructing a geometric model of the scene with

fisheye lens’ wide field of view. By using omni-directional images, we are able to overcome

the two difficulties that the previously proposed method encountered

Using an omni-directional stereo algorithm, the proposed method first constructs a
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geometric model of the scene from a pair of omni-directional images taken from different

locations. Then radiance of the scene is computed from a sequence of omni-directional

images taken with different shutter speeds and mapped onto the constructed geometric

model. We refer to this geometric model with the radiance as a radiance map. The

construction of a radiance map is necessary in order to compute a radiance distribution

seen from any point in the scene. In other words, without constructing a radiance map,

we can determine only the radiance distribution seen from the particular point where the

omni-directional image was captured. To overcome this limitation, our method measures

the radiance distribution of the scene as a triangular mesh. Once a radiance map is

constructed as a triangular mesh, an appropriate radiance distribution can be used for

rendering a virtual object and for generating shadows cast by the virtual object onto the

real scene wherever the virtual object is placed in the scene.

In this work, we are not concerned with the consistency of time, and only static scenes

are considered. We assume that there is no moving object in an image of the real scene,

and therefore we do not have to coordinate virtual object motions and real object motions.

The rest of this chapter is organized as follows. Section 2.3 explains how to determine

the transformation between the world coordinate system and the image coordinate system.

Section 2.4 describes how to measure a radiance distribution of the real scene by using a

pair of omni-directional images. Section 2.5 explains how to superimpose virtual objects

onto the real scene by using the world-to-image transformation and the measured radiance

distribution. Section 2.6 shows experimental results of the proposed method applied to

real images of both indoor and outdoor environments. Section 2.7 presents concluding

remarks.

2.3 Consistency of Geometry

In this section, we describe how to define the world coordinate system in the real scene, and

how to determine the transformation between the 3D coordinate system of the real scene

and the 2D coordinate system of an image onto which virtual objects are superimposed.
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2.3.1 Definition of World Coordinate System

We take an image of the real scene by using a color CCD camera. Virtual objects are later

superimposed onto the input image. Then we place a calibration board with regularly

spaced dots, e.g., 81 dots in our experiments, in the scene. Without changing the camera

setting, we take another image of the scene so that all dots on the calibration board appear

in the calibration image. (For instance, see Figure 2.5 (b).)

Using the calibration board, the world coordinate system is defined in the real scene

such that a) the calibration board becomes a plane of z = 0, b) the center dot on the

calibration board becomes the origin of the world coordinate system, and c) two edges

of the calibration board are parallel to the x-axis and the y-axis of the world coordinate

system. Once the world coordinate system is defined, we can place virtual objects at

arbitrary locations.

2.3.2 Transformation between the World Coordinate System and the

Image Coordinate System

After defining the world coordinate system in the real scene, we estimate the transfor-

mation between the world coordinate system and the image coordinate system. For this

estimation, we use the camera calibration algorithm proposed by Tsai [68], which is known

to be able to estimate camera parameters reliably by taking into account various effects

causing image distortion, e.g., radial distortion, displacement of the image center, and

mismatching between camera and frame-grabber scanning rate.

Tsai’s camera model gives a transformation between a 3D world coordinate system

and a 2D image coordinate system, e.g., the projection of a 3D point in the scene onto the

input image, generating a 3D ray extending from the camera projection center through

an image pixel.

Using the transformation between the world coordinate system and the image coordi-

nate system, we can compute where a virtual object appears in the input image once the

object is placed in the real scene.
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2.4 Consistency of Illumination

In the following subsections, we explain how to measure a radiance distribution of a real

scene; this distribution will then be used for rendering virtual objects superimposed onto

the real scene.

In Section 2.4.1, we describe an omni-directional stereo algorithm for determining

the 3D location of distinct features in the scene such as a fluorescent lamp on a ceiling.

After the 3D locations of distinct features are obtained, the whole shape of the scene is

approximated as a 3D triangular mesh whose vertices are the obtained features (Section

2.4.2). In Section 2.4.3, we describe how to estimate a scene radiance from an irradiance

measured as the brightness of the omni-directional image. Then the brightness of the

omni-directional image is used for determining the radiance distribution of the scene whose

shape is obtained as a triangular mesh.

2.4.1 Locations of Distinct Features from Omni-directional Stereo

A CCD camera with a fisheye lens2 is used to take omni-directional images of the real

scene. The camera is placed at two known locations in the scene to capture two omni-

directional images from different locations.

The imaging system used in our method is illustrated in Figure 2.1. C1 and C2 are

the camera projection centers at each of the two locations. These two locations, C1 and

C2, are known a priori as a user places the camera at these locations. In the following,

we denote the omni-directional image taken at C1 as FEV 1, and the other one taken at

C2 as FEV 2.

A real scene contains a very wide range of radiance. Therefore, due to the limited

dynamic range of a CCD camera, pixel values of an image taken with one shutter speed

cannot measure radiance in the scene accurately. To avoid this problem, multiple images

taken with different shutter speeds are combined to produce each omni-directional image

with a virtually extended dynamic range [9].

The fisheye lens used in the image acquisition system is designed so that an incoming

2 3CCD color camera (Victor KYF-57) and fisheye lens (Fit Corporation FI-19 with field of view of 180

degrees)
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Figure 2.1: Omni-directional image acquisition system: The fisheye lens used in our system

is designed so that an incoming ray to the lens is projected onto a particular location in

an imaging plane.

ray to the lens is projected onto an imaging plane as

r = fθ (2.1)

where f is the focal length of the lens, r is the distance between the image center and the

projection of the ray, and θ is an incident angle of the ray (Figure 2.1).

Using this projection model, the incident angle of the ray is given as θ = r/f , where r is

determined from the image coordinate of the point corresponding to the ray. For instance,

if a direct light source appears as a point in the omni-directional image, the direction from

the camera projection center to the light source is determined from the image coordinate

of the point in the image.

Most of the incoming light energy in a real scene comes from direct light sources such

as a fluorescent lamp or a window to the outside, while the rest of the incoming light

energy comes from indirect illumination such as reflection from a wall. For this reason,

it is important to know the accurate locations of direct light sources to represent an

illumination distribution of a real scene.

Fortunately, direct light sources usually appear as significantly bright points in an

omni-directional image. Therefore, it should be relatively easy to identify direct light
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sources in the image. In our method, we extract feature points with high contrast in the

two omni-directional images FEV 1 and FEV 2 by using the feature extraction algorithm

proposed by Tomasi and Kanade [66]. In the algorithm, an image pixel with high gradient

values in two orthogonal directions, e.g., a corner point, is extracted as a feature point.

After feature points are extracted in FEV 1 and FEV 2, 3D coordinates of points in

the real scene corresponding to the extracted feature points are determined by using a

stereo algorithm [15].

Consider a 3D line that extends from the camera projection center through the ex-

tracted feature point on the image plane. The 3D line is given as

L1i(t) = C1 + tiTi , (2.2)

L2j(s) = C2 + sjSj , (i , j = 1 , 2 , · · · ,N ) (2.3)

where N is the number of the extracted feature points, C1 and C2 are the camera projec-

tion centers, Ti and Sj are the directional vectors of the 3D line, and ti and sj are scalar

values of the line for FEV 1 and FEV 2, respectively.

As described in the beginning of this section, C1 and C2 are known a priori, and Ti

and Sj are given as

Ti = [sin θT i cos φT i, sin θT i sinφT i, cos θT i], (2.4)

　 Sj = [sin θSj cos φSj , sin θSj sin φSj, cos θSj].

Hence, the two lines L1i(t) and L2j(s) are defined uniquely for the extracted feature

points.

Once we have obtained 3D lines corresponding to the extracted feature points in FEV 1

and FEV 2, we establish correspondence of the 3D lines between FEV 1 and FEV 2. If a

feature point i in FEV 1 and a feature point j in FEV 2 correspond to the same 3D point

in the scene, the 3D lines obtained from the two feature points L1(ti) and L2(sj) must

intersect. Then a coordinate of the 3D point is determined from the intersection of the

two lines.

However, due to various kinds of errors such as an error in C1 and C2, and an error

in Ti and Sj, the two lines may not intersect. Therefore, we consider that the two lines

intersect if the distance between the two lines is sufficiently short. The distance between
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the two 3D lines is given by substituting ti and sj from the following equations into (2.2)

and (2.3) [20].

ti =
det{(C2 − C1),Sj,Ti × Sj}

|Ti × Sj|2 (2.5)

sj =
det{(C2 − C1),Ti,Ti × Sj}

|Ti × Sj|2 (2.6)

If a 3D line from one omni-directional image, e.g., FEV 1, has multiple candidates for

a matching line from the other omni-directional image, e.g., FEV 2, we select a matching

line in FEV 2, so that the feature point in FEV 2 has a pixel coordinate closest to that of

the feature point in FEV 1.

2.4.2 The Entire Shape of the Scene

In the previous section, we described how to determine 3D coordinates of distinct points

in the real scene such as a fluorescent lamp on a ceiling and a window to the outside.

However, 3D coordinates of the remaining part of the real scene cannot be determined in

the same manner. This part includes a wall, a ceiling, and other object surfaces that act

as indirect light sources and therefore do not appear as distinct points in omni-directional

images.

In our method, 3D coordinates for that part are approximated by using the 3D coor-

dinates of distinct features in the scene. In particular, we generate a 3D triangular mesh

by using the distinct feature points. First, we construct a 2D triangular mesh by applying

2D Delaunay triangulation to the extracted feature points in FEV 1. That determines the

connectivity of a 3D triangular mesh whose vertices are the 3D points corresponding to

the feature points in FEV 1. Then, using the connectivity, a 3D triangular mesh is created

from the 3D feature points. The obtained triangular mesh approximates an entire shape

of the real scene, e.g., the ceiling and walls of a room, which act as direct or indirect light

sources.

Note that the fisheye lens we used in our experiments has a field of view of 180 degrees,

and therefore we can obtain only the upper half of the scene model from a pair of the omni-

directional images. Thus, a horizontal ground plane is assumed and added to the model

as a lower half of the model in our experiments. However, if it is necessary, we are able
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to obtain the lower half of the model by using another omni-directional image pair which

captures the left part of the scene.

2.4.3 Radiance Distribution of the Scene

After the shape of the real scene is obtained as a triangular mesh, the radiance of the

scene is estimated by using the brightness of the omni-directional images.

First, we explain the relationship between the radiance at a point on an object and

the irradiance at the corresponding point in an omni-directional image. The radiance L

of a small patch in the real scene (δO in Figure 2.2) can be computed from the irradiance

Ec at a small patch on the imaging plane δI. This irradiance on the imaging plane is

measured as a pixel brightness in FEV 1 or FEV 2.

As shown in Figure 2.2, consider a small patch on a real object surface δO that acts as

a light source, and a small patch δI on an imaging plane. In Figure 2.2, d is the diameter

of the fisheye lens, f is the distance from δI to the lens, z is the distance from the lens

to δO, α is the angle between the surface normal at δO and the ray from δO to the lens

center, θ is the angle between the lens optical axis and the ray from δO to the lens center,

and β is the angle between the lens optical axis and the ray from δI to the lens center.

The apparent area of the patch δI as seen from the center of the lens is δI cos β, while

the distance of this patch from the center of the lens is f/ cos β. Thus, the solid angle

subtended by the patch δI is δI cos β/(f/ cos β)2.

Similarly, the solid angle of the patch δO as seen from the center of the lens is

δO cos α/(z/ cos θ)2.

Since the ratio of the two solid angles is (dβ
dθ )2, we must have

δI cos β

(f/ cos β)2
= (

dβ

dθ
)2

δO cos α

(z/ cos θ)2
(2.7)

From the projection model of the fisheye lens, we have β = tan−1 θ and dβ
dθ = d tan−1(θ)

dθ =
1

1+θ2 . (2.7) becomes
δO

δI
=

cos3(tan−1 θ)
cos α cos2 θ

(
z

f
)2(1 + θ2)2. (2.8)

Next, we need to determine how much of the light emitted by the surface makes its

way through the lens. The solid angle subtended by the lens, as seen from the patch δO,

is

Ω =
π

4
d2 cos θ

(z/ cos θ)2
=

π

4
(
d

z
)2 cos3 θ. (2.9)
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Figure 2.2: Scene radiance and image irradiance.

Thus, the power of the light originating on the patch and passing through the lens is

δP = LδO cos αΩ = LδO cos α
π

4
(
d

z
)2 cos3 θ, (2.10)

where L is the radiance of the surface in the direction toward the lens.

Since no light from other areas in the scene reaches the patch δI, we have

Ec =
δP

δI
= L

δO

δI

π

4
(
d

z
)2 cos3 θ cos α. (2.11)

Substituting (2.8) into (2.11), we finally obtain the equation that represents the re-

lationship between the irradiance on the imaging plane and the radiance on the object

surface in the scene:

Ec = L
π

4
(
d

f
)2(1 + θ2)2 cos3(tan−1 θ) cos θ. (2.12)

However, this equation cannot be used to measure irradiance values in the unit of

Wm−2 because the equation does not take into account other factors such as D/A and

A/D conversions in a CCD camera and a frame grabber. By compensating for (1 +

θ2)2 cos3(tan−1 θ) cos θ, we can measure values proportional to real irradiance. The scaling

factor can be determined by measuring brightness of the same light source, using both a

CCD camera and a photometer, a task which was not performed in this work.
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Next, we project the omni-directional image FEV 1 onto the 3D triangular mesh to

assign color texture to the mesh. The assigned color texture at a point on the triangular

mesh represents the irradiance of the corresponding point in FEV 1. Therefore, by con-

verting values of the assigned color texture into the radiance L using ( 2.12), we finally

obtain the radiance distribution of the scene.

2.5 Superimposing Virtual Objects onto a Real Scene

In the previous sections, we described how to determine the transformation between the

world coordinate system and the image coordinate system (consistency of geometry in

Section 2.3), and how to measure a radiance distribution of the real scene (consistency of

illumination in Section 2.4). In this section, we explain how to superimpose virtual objects

onto the real scene by using the transformation and the measured radiance distribution.

First, we describe how to use the radiance map to compute the total irradiance at a

point on a virtual object surface or a point on a real object surface. Then, we explain how

to compute the color of a virtual object surface and how to generate the shadow cast by

a virtual object using the computed irradiance.

It should be noted that superimposing virtual objects without knowing the shapes and

reflectance properties of all nearby objects results in the fact that we cannot model the

interreflections between the real objects and the virtual objects. To take the interreflections

into account, we need to compute the global illumination in the same manner as in Fournier

et al.’s method [17]. However, it is required to define or estimate shapes and reflectance

properties of all nearby objects in order to do so. Rather, in this work, we make the

rendering process simple, and we consider only the emitted light from the radiance map.

2.5.1 Total Irradiance from Real Illumination

For rendering a surface of a virtual object and for generating the shadow cast by a virtual

object, a total irradiance at the surface from the radiance map has to be obtained.

Consider an infinitesimal patch of the extended light source, of size δθi in polar angle

and δφi in azimuth (Figure 2.3). Seen from the center point A, this patch subtends a

solid angle δω = sin θiδθiδφi. If we let L(θi, φi) be the radiance per unit solid angle

coming from the direction (θi, φi), then the radiance from the patch under consideration
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Figure 2.3: (a) the direction of incident and emitted light rays (b) infinitesimal patch of

an extended light source

is L(θi, φi) sin θiδθiδφi, and the total irradiance of the surface is

E =
∫ π

−π

∫ π
2

0
L(θi, φi) cos θi sin θidθidφi (2.13)

where the radiance L is measured as shown in (2.12) [23].

To compute the irradiance E, the double integral in (2.13) needs to be approximated by

discrete sampling over the entire hemisphere. In our method, nodes of a geodesic dome [3]

are used for the discrete sampling. For each of the nodes, the radiance of a corresponding

point in the real scene is used as the radiance of the node. Consider a ray from a point

on a virtual object surface to the node. A color texture at an intersection of the ray and

the 3D triangular mesh described in Section 2.4.2 is obtained as the radiance.

Nodes of a geodesic dome are uniformly distributed over the surface of a sphere. There-

fore, by using N nodes of a geodesic dome in a northern hemisphere as a sampling di-

rection, the double integral in (2.13) can be approximated as a sampling at equal solid

angle δω = 2π/N. The number of the nodes N can be adjusted by changing the sampling

frequency of a geodesic dome.

Using the discrete sampling, (2.13) can be approximated as

E =
N∑

i=0

2π
N

L(θi, φi) cos θi. (2.14)

Note that a radiance does not depend on the distance between a viewpoint and a light

source. Therefore, the distance from the point on the virtual object to the real scene does
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not affect the radiance. Also, we assume that the real scene reflects or emits light as a

perfect Lambertian plane. That is to say, at each surface point in the scene, light energy

is emitted equally in all directions. Due to this assumption, we do not consider directional

light sources such as spotlights in our method. However, by combining multiple omni-

directional images taken from different locations, our method could be extended to model

changes of a radiance, depending on viewing directions.

2.5.2 Ray Casting for Superimposing Virtual Objects

For superimposing virtual objects onto an input image of a real scene, the ray casting

algorithm is used as follows.

1. For each pixel in the input image of the real scene, a ray extending from the camera

projection center through the pixel is generated by using the transformation between

the world coordinate system and the image coordinate system. Then it is determined

whether a ray intersects a virtual object or a real object in the scene, e.g., a tabletop.

2. If the ray intersects a virtual object, we consider that the pixel corresponds to a

point on the virtual object surface. Then we compute a color to be observed at

the surface point under the measured radiance distribution of the real scene using a

reflection model. The computed color is stored in the pixel as the surface color of

the virtual object at the pixel.

3. Otherwise, we consider that the pixel corresponds to a point on a real object surface.

Then we modify an observed color at the point on the real object surface, so that a

shadow cast by the virtual object onto the real object is generated.

We are not concerned here with the problem of occlusion because it is beyond the scope

of this study to measure accurate 3D shapes of real objects.3 We assume that a virtual

object always exists between the camera projection center and real objects in the scene.

In other words, seen from the camera projection center, a virtual object exists only in

front of real objects, and a real object never occludes the view of the virtual object. If a

more dense 3D depth map is obtainable from the process of constructing a radiance map,

we can make full use of the depth map for the problem of occlusion.
3 Techniques for determining correct occlusion between virtual and real objects using the shapes of the

real objects are called Z-key. For instance, see [30].
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2.5.3 Rendering Virtual Object Surface

As described in the previous section, if a ray through an image pixel intersects a virtual

object, the color at the intersection under the measured radiance distribution is computed,

and the color is stored at the image pixel as the color of the virtual object surface.

For computing the color on the virtual object surface, a simplified Torrance-Sparrow

reflection model [45], [67] was used in our method. The reflection model for the radiance

distribution shown in (2.14) is represented as

Im = Kd,m

N∑
i=0

Lm(θi, φi)S(θi, φi) cos θi (2.15)

+ Ks,m

N∑
i=0

Lm(θi, φi)S(θi, φi)
1

cos θr
e

−γ(θi,φi)
2

2σ2

m = R, G, B

where θi is the angle between the surface normal and the direction to each point light

source, θr is the angle between the surface normal and the viewing direction, γ(θi, φi) is

the angle between the surface normal and the bisector of the light source direction and

the viewing direction, S(θi, φi) are shadow coefficients where S(θi, φi) = 0 if other surface

point on the virtual object occludes L(θi, φi), and S(θi, φi) = 1 otherwise. Kd,m and Ks,m

are constants for the diffuse and specular reflection components, and σ is the standard

deviation of a facet slope of the Torrance-Sparrow reflection model. Kd,m and Ks,m are

simply given for virtual objects, or they can be determined for real objects by using Sato

et al.’s method [57]. Also, the constant 2π/N in (2.14) is included in the constants Kd,m

and Ks,m in (2.15).

2.5.4 Soft Shadow Cast by a Virtual Object

If a ray through an image pixel does not intersect with a virtual object, the image pixel

corresponds to a point on a real object surface. The virtual object may occlude some of

incoming light to the point on the object surface. Thus, the color of the image pixel needs

to be modified, so that a shadow cast by the virtual object is created on the real object

surface.

A shadow cast by a virtual object is created as follows:

1. Obtain a 3D coordinate of a point on a real object surface where a ray through an

image pixel intersects the real object. We know the shape of the plane onto which a
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virtual object is placed, because a plane of z = 0 is defined on the plane as explained

in Section 2.3.1. Hence, we compute an intersection between the ray and the plane

of z = 0, and generate shadows cast on the plane. In this work, we do not deal with

shadows cast by virtual objects onto real objects other than the plane. However,

our method can be easily extended to handle other real objects if their shapes are

obtained from the process of constructing a radiance map or by other means.

2. Compute a total irradiance E1 at the surface point from the radiance distribution

of the real scene. In this case, a virtual object does not occlude incoming light at

the surface point (Figure 2.4.a). As described in Section 2.5.1, the total irradiance

E1 can be computed using (2.14).

3. With a virtual object placed in the real scene, compute a total irradiance E2 at the

surface point that is not occluded by the virtual object. In this case, the virtual

object occludes some of the irradiance from the real scene (Figure 2.4.b) . As a

result, the total irradiance E2 becomes smaller than the total irradiance E1. The

total irradiance E2 can be obtained as

E2,m =
N∑

i=0

2π
N

S(θi, φi)Lm(θi, φi) cos θi, m = R,G,B, (2.16)

where S(θi, φi) = 0 if the virtual object occludes L(θi, φi), and S(θi, φi) = 1 otherwise.4

4. Compute the ratio of the total radiance E2 to the total radiance E1. Then multiply

the ratio E2/E1 to the color at the intersection between the ray and the plane of

z = 0. The ratio represents how much of the irradiance at the intersection would

still be preserved if the virtual object were placed in the scene. By multiplying the

ratio E2/E1 to the observed color of the image pixel Im, we obtain the color I ′m that

would be the color of the image pixel if there were a virtual object:

I ′m = Im
E2,m

E1,m
, m = R,G,B. (2.17)

A similar discussion can be found also in [17].

4 Alternatively, instead of just blocking the radiance L(θi, φi), the scene radiance of the blocking surface

point could be used as a secondary light source with it’s own radiance.
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Figure 2.4: Total irradiance (a)without virtual objects (b)with virtual objects

2.6 Experimental Results

We have tested the proposed method by using real images taken in both indoor and

outdoor environments. First, we described experimental results for an indoor environment

in Section 2.6.1, and then in Section 2.6.2 we presented experimental results for an outdoor

environment.

2.6.1 Experimental Results for an Indoor Scene

An image of a tabletop and miscellaneous objects on the tabletop in our laboratory was

taken. From the same camera position, another image of the tabletop with a calibration

board was taken. The input image and the calibration image are shown in Figure 2.5 (a)

and (b).

First, regularly spaced dots on the calibration board were extracted in the calibration

image to determine their 2D image coordinates. From pairs of the 2D image coordinates

and the 3D world coordinates that were given a priori, the transformation between the

world coordinate system and the image coordinate system was estimated by using the

camera calibration algorithm as described in Section 2.3.

By using the imaging system illustrated in Figure 2.1, two omni-directional images of

the scene, e.g., the ceiling of the laboratory in this experiment, were taken. Figure 2.5 (c)

shows the two omni-directional images.

First, feature points were extracted from each of the omni-directional images as de-

scribed in Section 2.4.1. Then pairs of corresponding feature points in the two omni-

directional images were found to determine 3D coordinates of the feature points. Finally,
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a triangular mesh was constructed from the feature points to represent the radiance dis-

tribution of the scene as explained in Section 2.4.2. However, due to the lack of distinct

feature points along the floor in the scene, the obtained triangular mesh did not include

vertices along the floor. Therefore, vertices representing the floor were automatically

added afterward based on the assumption that the size of the floor was approximately the

same as the size of the reconstructed ceiling.

Figure 2.6 shows the obtained triangular mesh that represents the radiance distribution

as its color texture, called a radiance map. The reconstructed scene model shows the size

of the room within an error of 8 percent. Using the world-to-image transformation and the

radiance distribution of the scene, a virtual object was superimposed onto the input image

of the scene as explained in Section 2.5. To generate the images in Figure 2.7, 1048 nodes

of a geodesic dome were used for sampling the radiance distribution from the scene.5

In the images synthesized by our method, shading of the virtual object blends well

into the scene. Also, the virtual object casts a shadow with a soft edge on the tabletop in

the same way as do the other objects in the scene.

To demonstrate the effectiveness of constructing a radiance map as a geometric model

of the scene with its radiance value, we superimposed a metallic hemisphere at three

different locations on the tabletop. The synthesized results are shown in Figure 2.8. Using

the geometric information of the radiance map, an appropriate radiance distribution is

computed at each location of the object and is used for superimposing the object, along

with correct shadings, onto the scene . As a consequence, appearance changes are observed

on the object surface as it moves on the tabletop.

2.6.2 Experimental Results for an Outdoor Scene

We also applied our method to real images taken in an outdoor environment. The input

images used in this experiment are shown in Figure 2.9.

In the same way as with the indoor images, the transformation between the world

coordinate system and the image coordinate system was estimated by using the calibration

image. Then, the two omni-directional images of the outdoor scene were used to compute

the radiance distribution of the scene. The obtained radiance distribution is shown as a

color-textured triangular mesh in Figure 2.10.

5 The model of the mug used in the images was created by using the method proposed by Sato et al.[57].
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From this figure, we can see that the shape of the outdoor scene was captured reason-

ably well. In the radiance distribution as a color-textured mesh, the sky is represented as

a planar region extending between the tops of the surrounding buildings because the sky

did not contain any distinct feature points to be used as vertices of the triangular mesh.

Using the radiance distribution of the outdoor scene, several virtual objects were super-

imposed onto the input image of the scene. Figure 2.11 shows the superimposed images.

The virtual objects that we used in this experiment are a shiny metallic sphere, a rough

metallic dodecahedron, and a yellow matte cube, all of which are floating at the same

location in the outdoor scene. We can see that shadings and shadows are represented

appropriately in the synthesized images by using our method. In particular. the reflection

of the surrounding buildings appears appropriately on the metallic sphere. Unless the real

radiance distribution of the scene is used as in our method, a convincing reflection on a

virtual object as shown in this figure cannot be created.

2.7 Conclusions

In this chapter we proposed a new method for superimposing virtual objects onto an

image of a real scene by taking into account the radiance distribution of the scene. In our

method, a camera calibration algorithm is used for matching geometry between virtual

objects and the real scene. For matching illumination, the radiance distribution of the

real scene is measured by using two omni-directional images of the scene.

Unlike the previously proposed methods, our method can automatically measure an

entire radiance distribution of the scene by using multiple omni-directional images. As a

result, our method can superimpose virtual objects with convincing shadings and shadows

onto the real scene. In addition, we obtain the radiance distribution as a triangular mesh

representing the approximate shape of the scene. Therefore, a correct radiance distribution

can be used for rendering virtual objects and generating shadows cast by the virtual objects

wherever the objects are placed in the real scene.
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input image(a) calibration image(b)

(c)FEV1 FEV2

Figure 2.5: (a) input image (b) calibration image (c) omni-directional images

Figure 2.6: Measured radiance distribution.
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Figure 2.7: Images synthesized with our method.

Figure 2.8: Images synthesized with our method: appearance changes observed on a

metallic hemisphere.
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(c)

input image(a) calibration image(b)

FEV1 FEV2

Figure 2.9: (a) input image (b) calibration image (c) omni-directional images

Figure 2.10: Measured radiance distribution.
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Figure 2.11: Images synthesized with our method.



Chapter 3

Image Synthesis under

Dynamically Changing

Illumination

In this chapter, we pursue the possibility of real-time image synthesis of virtual objects

with natural shading and cast shadows superimposed onto a real scene whose illumination

condition is dynamically changing. In general, high computational cost for rendering vir-

tual objects with convincing shading and shadows, such as interreflections or soft shadows

under area light sources, prohibits real-time integration of virtual objects into real images.

In order to efficiently re-render a synthetic scene when some aspects of the scene,

such as scene geometry and illumination of the scene, is modified, several incremental

techniques have been proposed in the field of computer graphics. However, depending

on the complexity of a scene, these techniques are still not fast enough to be used for

the applications that require real-time image synthesis. As a result, simple rendering

algorithms supported by commonly available graphics hardware need to be used for re-

rendering the scene in this case, while high qualities in the synthesized images are hardly

to be expected.

Alternative approaches have been proposed for re-rendering a scene as a linear com-

bination of a set of pre-rendered basis images of the scene [10, 44, 11]. These approaches

are based on the linearity of scene radiance with respect to illumination intensities. Since

this linearity holds for scenes with complex geometry and complex photometric properties

39
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such as interreflections between objects and cast shadows, photo-realistic appearance of a

scene can be synthesized based on this simple linear combination operation.

Most of the previously proposed methods, however, have been developed for the task

of interactive lighting design. Therefore, basis lights under which a set of basis images

are rendered are intentionally positioned at the desired locations, so that a scene under

desired lighting configurations can be efficiently synthesized.

We generalize the approach based on the linearity of scene radiance with respect to il-

lumination radiance and present an efficient technique for superimposing synthetic objects

with natural shadings and cast shadows onto a real scene whose illumination is dynami-

cally changing: we consider that a scene consists of both real objects and synthetic objects

with fixed scene geometry, and we synthesize the image of a scene viewed from a fixed

viewing point under dynamically changing illumination.

Although additional steps for measuring real-world illumination and taking images of a

real scene is required in our case, our method succeeded in superimposing synthetic objects

with natural shadings rendered under dynamically changing real-world illumination into

a real scene at the frame rate of approximately 3 to 4 frames per second.

3.1 Linearity Between Scene Radiance and Illumination Ir-

radiance

Let us first describe the linearity of the relationship between change of brightness observed

on an object surface and change of illumination radiance in a scene in this section.

Consider one case where a light source L1 illuminates an object (Figure 3.1. (a)) and

another case where another light source L2 placed at a different location illuminates the

same object (Figure 3.1. (b)). If we let I1 be the image observed in the first case and I2

be the image observed in the second case from the same view point, a novel image I, for

which both light sources L1 and L2 illuminate the object, can then be synthesized as the

sum of I1 and I2:

I = I1 + I2. (3.1)

Similarly, we can obtain an image I ′, which should be observed when the radiance values

of the light sources L1 and L2 change by considering a linear combination of I1 and I2 as

I ′ = r1I1 + r2I2 (3.2)
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r2r1

r r

Figure 3.1: Linearity between illumination radiance and scene radiance.

where r1 and r2 are scaling factors representing the changes of the radiance values of L1

and L2, respectively. For instance, if the radiance of L1 decreases by half, then r1 is set

to 0.5. It should be noted that this linearity holds not only for direct illumination from

lights but also for indirect illumination such as interreflections between or among objects.

Here distant illumination of the scene is assumed; light sources in the scene are suf-

ficiently distant from the objects, and thus all light sources project parallel rays onto

the object surface. Namely, the distances from the objects to the light sources are not

considered.

3.2 Overview of Proposed Approach

Taking advantage of this linear relationship between brightness observed on an object

surface and radiance values of light sources in a scene, the proposed method synthesizes a

new image for novel lighting conditions as described in the following steps.
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Step1: The entire illumination of a scene is approximated as a collection of area sources

Li(i = 1, 2, · · · , n) which are equally distributed in the scene. In our current implemen-

tation of the proposed method, a set of triangular patches of a geodesic dome are used

as a collection of area light sources that approximate the entire illumination distribution

(Figure 3.2.1). A set of patches of a geodesic dome are uniformly distributed over the

spherical surface, and the number of the patches n can be controlled by changing the

sampling frequency of that geodesic dome.

Step2: Two images which are referred to as reference images are rendered under each

area light source: one with a virtual object superimposed onto the scene Oi, and the other

without the object Si (Figure 3.2.2).

Step3: Scaling factors of the light source radiance values ri (i = 1, 2, · · · , n) are measured

by using an omni-directional image of the scene taken by a camera with a fisheye lens

(Figure 3.2.3).

Step4: New images Io
′ and Is

′, which should be observed under the current illumination

condition, are obtained as a linear combination of Oi’s and Si’s with the measured scaling

factors ri’s, respectively (Figure 3.2.4).

Step5: Using Io
′ and Is

′, the virtual object is superimposed onto the image of the scene

along with natural shading and shadows that are consistent with those of real objects

(Figure 3.2.5). The ray casing algorithm is imposed here; if an image pixel corresponds

to the virtual object surface, the color of the corresponding pixels in Io
′ is assigned as the

value of the pixel. Otherwise, the effects on the real objects caused by the virtual object,

i.e., shadows and secondary reflection, are added by multiplying the pixel value by the

ratio of Io
′ to Is

′(Figure 3.2.5).

The main advantage of the proposed method is that composite images are synthe-

sized by simple linear operations based on reference images pre-rendered as an off-line

process. From this the quality of output images is not affected by the real-time processing

requirement on-the-fly. In the following, section 3.3 explains how to prepare the reference

images, and section 3.4 describes a method for measuring an illumination distribution of
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1. Approximate the illumination 
    distribution of the scene

2. Render n reference images under each light source L

3. Measure the illumination distribution of the scene 
    using omni-directional Images
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Figure 3.2: Basic steps of the proposed method.

a real scene to determine the radiance scaling factor ri’s. Then Section 3.5 explains the

entire process of superimposing a virtual object onto the real scene by using our proposed

method.
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3.3 Rendering Reference Images

a Camera with a fisheye lens 
(for omni-directional image)

a 3CCD Color Camera
(for input image)

Figure 3.3: Image acquisition system: A 3CCD color camera is used for taking an image of

the scene, and another color camera with a fish-eye lens is used for capturing illumination

of the scene.

The image acquisition system used in our experiment is shown in Figure 3.3.1 A

3CCD color camera (Camera A) is used for taking an image of a real scene onto which

a virtual object is superimposed. In addition, another color camera with a fish-eye lens

(Camera B) is used for taking an onmi-directional image of the scene which is then used

for determining the illumination distribution of the scene.

First, we estimate the camera parameters of Camera A by using Tsai’s camera calibra-

tion method [68] in the same manner described in Section 2.3.2. This camera calibration

is necessary for making virtual objects appear at a desired position in final composite

images, i.e., consistency of geometry.

Then reference images are rendered using the rendering software called Radiance, which

can accurately simulate reflections of lights based on physical models of lights [76]. Using

Radiance, the following two reference images are rendered off-line for each area light source

Li.

1 A similar image acquisition set-up was used in [35] to superimpose synthetic objects onto a real scene

under real-world illumination.
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Figure 3.4: Reference image: (a)shadow image, (b) surface image, (c)mask image

1. Object image Oi are images of a scene that contains a virtual object (Figure 3.4.a).

2. Surface image Si are images of the same scene without the virtual object (Fig-

ure 3.4.b).

For rendering those reference images, we need to know geometric and photometric

models of the real scene, i.e., shape and reflectance properties of real objects near a virtual

object. The recovery of geometric and photometric model of a real object is not an easy

task, and it has been intensively studied in the past. Since geometric and photometric

modeling of a real object is not the main focus of our study, those models used for our

proposed method are manually specified by a user.

In addition to the object image and the surface image, another image which we call the

mask image is prepared. The mask image is used for determining whether a ray extending

from the camera projection center Camera A through each image pixel intersects a virtual

object or a real object in the scene.

3.4 Measuring Illumination Distribution

Next, we describe how to measure radiance scaling factors ri which represent an illumina-

tion distribution of a scene by using an omni-directional image taken by a camera with a

fisheye lens shown in Figure 3.3. The same camera as used in Section 3.4 (3 CCD color

camera Victor KYF-57 and fisheye lens (Fit Corporation FI-19 with field of view of 180

degree) is reused here for measuring scaling factors ri.

The fisheye lens used in our system is designed in such a way that an incoming ray to

the lens is projected onto a certain location in an omni-directional image according to a



Chapter 3. Image Synthesis under Dynamically Changing Illumination 46

desired projection model. Therefore, for each area light source, projection of three vertices

of the area light source patch can be determined based on this projection model of the

lens. Then the radiance scaling factor for the area light source is computed by using the

average pixel values inside the projection of the area light source in the omni-directional

image.

Note that we also need to determine an additional scaling factor between a unit ra-

diance value used for rendering the reference images and radiance scaling factor ri that

are measured from the omni-directional image as described above. In our experiment in

Section 3.6, this scaling factor is manually specified so that surface color of a virtual object

which is rendered using measured radiance scaling factors becomes a certain value.

In order to automatically determine this scaling factor, it is necessary to perform a

photometric calibration between unit radiance value used for rendering reference images

and illumination radiance measured from an omni-directional image.

3.5 Superimposing Virtual Objects onto a Real Scene

After the radiance scaling factors ri are determined, the virtual object is superimposed

onto the real scene with consistent shading under the captured illumination condition.

Note that each of the three color bands (R, G, B) of a composite image is separately

synthesized using the corresponding band of the reference images and the scaling factor

ri’s. For simplicity of discussion, we do not describe color bands explicitly in this section.

First, a new object image and a new surface image that should be observed in the mea-

sured illumination condition are synthesized as a linear combination of the corresponding

reference images Oi’s and Si’s, respectively. Let the new object image be Io
′ and the new

surface image be Is
′; then those images are obtained as

Io
′ =

n∑
i=1

riOi (3.3)

Is
′ =

n∑
i=1

riSi. (3.4)

Then, for each image pixel in the composite image, we determine whether the pixel

corresponds to the virtual object or to a real object in the scene by using the previously

prepared mask image. If a pixel corresponds to a point on the virtual object surface, a
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color to be observed at this point is extracted from the same pixel coordinate of the Io
′

and stored in the composite image.

Otherwise, we modify an observed color at the point on the real object surface, so that

effects caused by the virtual object onto the real object are represented. For this purpose,

the ratio of Io
′ to Is

′ is first computed. The ratio represents how much of the color at the

real object surface should be modified if the virtual object was placed in the scene. Let

P the observed color of the image pixel of camera A; then the color P ′ that should be

observed if there were a virtual object in the scene is computed by using the ratio as

P ′ = P
Io

′

Is
′ . (3.5)

3.6 Experimental Results

We have tested the proposed method by using real images of an indoor environment as

shown in Figure 3.3. In this experiment, SGI Onyx2 with 6 CPUs was used for capturing

a sequence of input images and for synthesizing final composite images. For efficient

generation of the composite images, the following two strategies were employed.

1. As described in Section3.5, each pixel in the composite image requires a different

type of operation, depending on which object surface the pixel corresponds to. Com-

putational cost of synthesizing each image pixel in the composite image is taken into

account for distributing computation evenly among all of the 6 CPUs.

2. Because effects due to the light sources with low radiance values are negligible in

the final composite image, the reference images rendered under light sources whose

radiance values are lower than a prefixed threshold value are omitted when a linear

combination of the reference images is computed. In this way, we can reduce the

number of reference images used for synthesizing final composite images, and achieve

required processing time by adjusting the threshold value.

Several examples of synthesized composite images are shown in Figure 3.5. In those

composite images, appearance of the virtual object blends well into the scene, and the

virtual object casts a shadow with a soft edge on the grass in the same way as the other

objects such as trees in the scene do. Table 3.1 shows changes in processing time due to
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Figure 3.5: Synthesized results.

the number of reference images. 2

Since the composite images are synthesized not by rendering the whole scene over and

over but rather based on the linear combination of pre-rendered reference images, the

processing time for synthesizing the composite images never affects the achievable image

quality.

In the examples shown in Figure 3.5, we approximated the real illumination distribu-

tion by using 400 light sources and selected those light sources according to a threshold

value. In this case, in spite of the highly realistic shading and shadows achieved in the

composite image, the virtual object can be superimposed onto the scene at the frame rate

of approximately 3 to 4 frames per second by using our current implementation of the

proposed method.

2 As described before, the number of reference images is equal to the number of area light sources that

approximate the entire illumination distribution of the scene.
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Table 3.1: Processing time due to the number of reference images.

num of reference images processing time (sec)

6 0.08

25 0.2

90 0.33

190 0.55

400 1.2

In the experiment shown in Figure 3.6, the 3D shapes and reflectance properties of

the surrounding real objects were modeled by using a photomodeling tool called Canoma;

the white hemisphere placed in the center of these images is a synthetic object, and the

other blocks are real objects. In the images synthesized by our proposed technique, the

brightness of the virtual object changes in a similar manner as the other blocks due to

changes in the real-world illumination distribution. In the resulting image on the right,

the shadows of the real objects fall naturally on the virtual object. In the synthetic image

on the left, interreflections are observed between the virtual object and the cube-shaped

block.

3.7 Discussion

There is one limitation in the approaches based on the linearity of scene radiance with

respect to illumination radiance. This limitation is that an image of the scene under novel

illumination conditions cannot be synthesized accurately if the illumination condition lies

in the linear subspace spanned by the basis lights under which basis images are rendered.

Therefore, it is essential to provide basis lights and their associated weights properly so

that images under desirable illumination conditions can be synthesized.

Previous studies investigated how to choose a set of basis lights so that these lights

could efficiently represent specific lighting configurations. For instance, Nimeoff et al.

introduced a set of steerable area light sources as basis lights to approximate the illumi-

nation effect of daylight [44]. Dobashi et al. defined a set of basis lights to represent
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Figure 3.6: The 3D shape and reflection properties of the real objects were model and

used for rendering basis images. The shadows of the real objects fall naturally on the

virtual object, and the interreflections are observed between the virtual object and the

real cube-shaped block.

directionality of spotlights based on spherical harmonics [10]. Later, Teo et al. introduced

a hybrid method for synthesizing illumination effects from both area sources and direc-

tional spotlight sources [64]. In addition, this method adopted a strategy for reducing the

number of basis images based on principal components analysis.

In terms of generating cast shadows with distinct boundaries, Naemura et al. intro-

duced a way of adjusting interpolated weights of predefined basis point sources [43]. Also

in the context of synthesizing a photorealistic appearance of human skin, Debevec et al.

introduced a method for re-rendering a human face based on a linear combination of face

images taken under densely sampled incident illumination directions in [8]. This method

further considered a model of skin reflectance to estimate the appearance of the face seen

from novel viewing directions and under arbitrary illumination.

Recently, the effect of defining a set of basis lights in the frequency domain based on

spherical harmonics was demonstrated in [52, 53, 2]. Later in Chapter 6, we will recon-

sider this issue of efficiently synthesizing images of a scene under arbitrary illumination

conditions and present a novel method for obtaining a set of basis images of real objects.
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3.8 Conclusions

In this chapter, we proposed a new method for superimposing virtual objects with natural

shading and cast shadows onto a real scene whose illumination condition was dynamically

changing. Based on linearity of the relationship between change of brightness observed on

an object surface and change of illumination radiance values in a scene, final composite

images are synthesized as a linear combination of pre-rendered reference images of virtual

objects placed in the scene in our proposed method. The main advantage of our proposed

method is that rendering algorithms that are computationally too expensive for real-

time processing can be used for rendering reference images since the rendering process

is done off-line. Thus the image quality is not affected by the requirement for real-time

processing, and the proposed method is able to satisfy both high image quality and real-

time processing.
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Illumination from Shadows

There has been another approach called inverse rendering in image-based modeling that

deals with a inverse problem of traditional model-based rendering. In inverse rendering,

techniques that recover unknown illumination conditions of a scene based on the knowledge

of the shape and the surface reflectance properties of objects located in that scene is called

inverse lighting. One of the main advantages of inverse lighting over the former image-

based lighting is that it does not require additional images for capturing illumination of

a scene, but uses the appearance of objects located in a scene instead for recovering an

illumination distribution of the scene.

In a natural illumination condition, a scene includes both direct and indirect illumi-

nation distributed in a complex way, and it is often difficult to recover an illumination

distribution from image brightness observed on an object surface. The main reason for this

difficulty is that there is usually not adequate variation in the image brightness observed

on the object surface to reflect the subtle characteristics of the entire illumination.

In this caper, we demonstrate the effectiveness of using occluding information of in-

coming light in estimating an illumination distribution of a scene. Shadows in a real scene

are caused by the occlusion of incoming light, and thus analyzing the relationships between

the image brightness and the occlusions of incoming light enables us to reliably estimate

an illumination distribution of a scene even in a complex illumination environment.

52
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4.1 Introduction

The image brightness of a three-dimensional object is the function of the following three

components: the distribution of light sources, the shape of a real object; and the reflectance

of that real object surface [24, 23]. The relationship among them has provided three major

research areas in physics-based vision:

• shape-from-brightness (with a known reflectance and illumination)

• reflectance-from-brightness (with a known shape and illumination)

• illumination-from-brightness (with a known shape and reflectance).

The first two kinds of analyses, shape-from-brightness and reflectance-from-brightness,

have been intensively studied using the shape from shading method [25, 27, 26, 50], as

well as through reflectance analysis research [28, 45, 22, 1, 32, 37, 57, 71].

In contrast, relatively limited amounts of research have been conducted in the third

area, illumination-from-brightness. This is because real scenes usually include both di-

rect and indirect illumination distributed in a complex way and it is difficult to analyze

characteristics of the illumination distribution of the scene from image brightness. Most

of the previously proposed approaches were conducted under very specific illumination

conditions, e.g., there were several point light sources in the scene, and those approaches

were difficult to be extended for more natural illumination conditions [26, 28, 57, 65, 74],

or multiple input images taken from different viewing angles were necessary [34, 47].

In this study, we present a method for recovering an illumination distribution of a scene

from image brightness observed on an object surface in that scene. To compensate for

the insufficient information for the estimation, we propose to use occluding information of

incoming light caused by an object in that scene as well as the observed image brightness

on an object surface. More specifically, the proposed method recovers the illumination

distribution of the scene from image brightness inside shadows cast by an object of known

shape in the scene.

4.2 Overview of Proposed Approach

Shadows in a real scene are caused by the occlusion of incoming light, and thus contain

various pieces of information about the illumination of the scene. However, shadows have
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been used for determining the 3D shapes and orientations of an object which casts shadows

onto the scene [38, 33, 60, 4], while very few studies have focused on the the illuminant

information which shadows could provide. In our method, image brightness inside shadows

is effectively used for providing distinct clues to estimate an illumination distribution.

The proposed approach estimates an illumination distribution of a scene using the

following procedures. The illumination distribution of a scene is first approximated by

discrete sampling of an extended light source; whole distribution is represented as a set of

point sources equally distributed in the scene. Then this approximation leads each image

pixel inside shadows to provide a linear equation with radiance of those light sources as

unknowns. Finally, the unknown radiance of each light source is solved from the obtained

set of equations. In this paper, we refer to the image with shadows as the shadow image,

to the object which casts shadows onto the scene as the occluding object, and to the surface

onto which the occluding object casts shadows as the shadow surface.

The assumptions that we made for the proposed approach are as follows.

• Known geometry: the 3D shapes of both the occluding object and the occluding

surface are known as well as their relative poses and locations.

• Distant illumination: we assume that light sources in the scene are sufficiently distant

from the objects, and thus all light sources project parallel rays onto the object sur-

face. Namely, the distances from the objects to the light sources are not considered

in the proposed approach.

• No interreflection: the proposed method does not take into account interreflection

between the shadow surface and the occluding object on the assumption that there is

no severe interreflection between them and no multiple scattering of the interreflected

rays from them to the scene. As a consequence, objects with darker color and weaker

specularity are preferred as occluding objects since they do not significantly act as

secondary light sources, and the method cannot handle a scene consisting of shiny

occluding objects.

This study further concerns the following two issues that need to be considered when

we tackle this illumination-from-brightness problem. The first issue is how to provide

reflectance properties of the shadow surface in cases where they are not given a priori.

Since it is a common situation that reflectance properties of a surface are not known, a
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solution to this problem is required to enlarge the variety of images to which the proposed

method can be applied. In our approach, instead of assuming any particular reflectance

properties of the surface inside shadows, both the illumination distribution of the scene

and the reflectance properties of the surface are estimated simultaneously, based on an

iterative optimization framework.

The second issue is how to efficiently estimate an illumination distribution of a scene

without losing the accuracy of the estimated illumination distribution. To capture the

subtle characteristics of the illumination distribution of a scene, the entire distribution

must be discretized densely, and this makes the solution exceedingly expensive in terms

of processing time and storage requirements. To satisfy both the accuracy and the effi-

ciency claims, we introduce an adaptive sampling framework to sample the illumination

distribution of a scene. Using this adaptive sampling framework, we are able to avoid

unnecessarily dense sampling of the illumination and estimate overall illumination more

efficiently by using fewer sampling directions.

The rest of this chapter is organized as follows. We describe how we first obtain a

formula which relates an illumination distribution of a scene with the image irradiance

of the shadow image in Section 4.3 and Section 4.4. The formula will later be used as a

basis for estimating both the illumination distribution of a real scene and the reflectance

properties of the shadow surface. Using this formula, we explain how to estimate an

illumination radiance distribution from the observed image irradiance of a shadow image

in Section 4.5. In this section, we consider the following two cases separately: (1) where

the reflectance properties of the shadow surface are known, (2) where those properties are

not known. We also introduce an adaptive sampling framework for efficient approximation

of the entire illumination, and show experimental results of the proposed method applied

to images taken in natural illumination conditions in Section 4.6. Finally, we discuss some

of the related work proposed in the field of computer graphics in Section 4.7, and present

concluding remarks and future research directions in Section 4.8.

4.3 Relating Illumination Radiance with Image Irradiance

In this section, we describe how we obtain a formula which relates an illumination dis-

tribution of a real scene with the image irradiance of a shadow image. The formula will
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Figure 4.1: (a) the direction of incident and emitted light rays (b) infinitesimal patch of

an extended light source, (c) occlusion of incoming light

later be used as a basis for estimating the illumination distribution of a scene and the

reflectance properties of a shadow surface.

First, we find a relationship between the illumination distribution of a real scene and

the irradiance at a surface point in the scene.1 To take illumination from all directions

into account, let us consider an infinitesimal patch of the extended light source, of a size

δθi in polar angle and δφi in azimuth as shown in Figure 4.1.

Seen from the center point A, this patch subtends a solid angle δω = sinθiδθiδφi.

Let L0(θi, φi) be the illumination radiance per unit solid angle coming from the direction

(θi, φi); then the radiance from the patch is L0(θi, φi)sinθiδθiδφi, and the total irradiance

of the surface point A is [23]

E =
∫ π

−π

∫ π
2

0
L0(θi, φi) cos θi sin θidθidφi. (4.1)

Then occlusion of the incoming light by the occluding object is considered as

E =
∫ π

−π

∫ π
2

0
L0(θi, φi)S(θi, φi) cos θi sin θidθidφi, (4.2)

where S(θi, φi) are occlusion coefficients; S(θi, φi) = 0 if L0(θi, φi) is occluded by the

occluding object; Otherwise S(θi, φi) = 1 (Figure 4.1 (c)).

Some of the incoming light at point A is reflected toward the image plane. As a result,

point A becomes a secondary light source with scene radiance.

1 For a good reference of the radiometric properties of light in a space, see [41].
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The bidirectional reflectance distribution function (BRDF) f(θi, φi; θe, φe) is defined

as a ratio of the radiance of a surface as viewed from the direction (θe, φe) to the irradiance

resulting from illumination from the direction (θi, φi). Thus, by integrating the product

of the BRDF and the illumination radiance over the entire hemisphere, the scene radiance

Rs(θe, φe) viewed from the direction (θe, φe) is computed as

Rs(θe, φe) =
∫ π

−π

∫ π
2

0
f(θi, φi; θe, φe)L0(θi, φi)S(θi, φi) cos θi sin θidθidφi. (4.3)

Finally, the illumination radiance of the scene is related with image irradiance on

the image plane. Since what we actually observe is not image irradiance on the image

plane, but rather a recorded pixel value in a shadow image, it is necessary to consider

the conversion of the image irradiance into a pixel value of a corresponding point in the

image. This conversion includes several factors such as D/A and A/D conversions in a

CCD camera and a frame grabber.

Other studies concluded that image irradiance was proportional to scene radiance [23].

In our work, we calibrate a linearity of the CCD camera by using a Macbeth color chart

with known reflectivity so that the recorded pixel values also become proportional to the

scene radiance of the surface. From (4.3) the pixel value of the shadow image P (θe, φe) is

thus computed as

P (θe, φe) = k

∫ π

−π

∫ π
2

0
f(θi, φi; θe, φe)L0(θi, φi)S(θi, φi) cos θi sin θidθidφi, (4.4)

where k is a scaling factor between scene radiance and a pixel value. Due to the scaling

factor k, we are able to estimate unknown L0(θi, φi)(i = 1, 2, · · · ·, n) up to scale. To obtain

the scale factor k, we need to perform photometric calibration between pixel intensity and

the physical unit (watt/m2) for the irradiance.

4.4 Approximation of Illumination Distribution with Dis-

crete Sampling

In our implementation of the proposed method, to solve for the unknown radiance L0(θi, φi)

which is continuously distributed on the surface of the extended light source from the

recorded pixel values of the shadow surface, the illumination distribution is approximated

by discrete sampling of radiance over the entire surface of the extended light source. This
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can be considered as representing the illumination distribution of the scene by using a

collection of light sources with an equal solid angle. As a result, the double integral in

(4.4) is approximated as

P (θe, φe) =
n∑

i=1

f(θi, φi; θe, φe)L(θi, φi)S(θi, φi) cos θiωi, (4.5)

where n is the number of sampling directions, L(θi, φi) is the illumination radiance per

unit solid angle coming from the direction (θi, φi), which also includes the scaling factor k

between scene radiance and a pixel value, and ωi is a solid angle for the sampling direction

(θi, φi).

For instance, node directions of a geodesic dome can be used for uniform sampling of the

illumination distribution. By using n nodes of a geodesic dome in a northern hemisphere

as a sampling direction, the illumination distribution of the scene is approximated as a

collection of directional light sources distributed with an equal solid angle ω = 2π/n.

4.5 Estimation of Radiance Distribution based on Reflectance

Properties of Shadow Surface

After obtaining the formula that relates the illumination radiance of the scene with the

pixel values of the shadow image, illumination radiance is estimated based on the recorded

pixel values of the shadow image.

In (4.5), the recorded pixel value P (θe, φe) is computed as a function of the illumination

radiance L(θi, φi) and the BRDF f(θi, φi; θe, φi). Accordingly, in the following sections,

we take different approaches, depending on whether BRDF of the surface is given.

4.5.1 Known Reflectance Properties: Lambertian

Let us start with the simplest case where the shadow surface is a Lambertian surface

whose reflectance properties are given.

BRDF f(θi, φi; θe, φe) for a Lambertian surface is known to be a constant. From (4.5),

an equation for a Lambertian surface is obtained as

P (θe, φe) =
n∑

i=1

KdL(θi, φi)S(θi, φi) cos θiωi (4.6)

where Kd is a diffuse reflection parameter of the surface.
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Figure 4.2: Each pixel provides a linear equation.

From (4.6), the recorded pixel value P for an image pixel is given as

P =
n∑

i=1

aiLi, (4.7)

where Li (i = 1, 2, · · · ·, n) are n unknown illumination radiance specified by n node di-

rections of a geodesic dome. As shown in Figure 4.2, the coefficients ai(i = 1, 2, · · · ·, n)

represent KdS(θi, φi) cos θiωi in (4.6); we can compute these coefficients from the 3D ge-

ometry of a surface point, the occluding object and the illuminant direction. In our

examples, we use a modeling tool called the 3D Builder from 3D Construction Company

[75] to recover the shape of an occluding object and also the camera parameters from a

shadow image. At the same time, the plane of z = 0 is defined on the shadow surface.

It is worth noting that, as long as the 3D shape of the shadow surface is provided

in some manner, e.g., by using a range sensor, the shadow surface need not be a planar

surface. It is rather reasonable to think that a curved shadow surface has the potential

for providing more variation in aji in (4.8) than an ordinary planar surface would since

cos θi term of ai in (4.7) also slightly changes from image pixel to pixel. Unless severe

interreflection occurs within the surface, our method can be applied to a curved shadow

surface.

Here if we select a number of pixels, say m pixels, a set of linear equations is obtained

as

Pj =
n∑

i=1

ajiLi (j = 1, 2, · · · ·,m) (4.8)

Therefore, by selecting a sufficiently large number of image pixels, we are able to
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solve for a solution set of unknown Li’s.2 For our current implementation, we solve the

problem by using the linear least square algorithm with non-negativity constraints (using a

standard MATLAB function) to obtain an optimal solution with no negative components.

It should be noted that each pixel P (θe, φe) consists of 3 color bands (R, G, and B) and

likewise the diffuse parameter Kd consists of 3 parameters (Kd,R, Kd,G, Kd,B). Each color

band of L(θi, φi) is thus estimated separately from the corresponding band of the image

pixel and that of the diffuse parameter Kd. For the sake of simplicity in our discussion,

we explain the proposed method by using L(θi, φi), P (θe, φe), Kd and do not refer to each

of their color bands in the following sections.

We must also draw attention to the importance of shadow coefficients for recovering

illumination distribution of a scene from the observed brightness on an object surface. For

instance, consider the case described above where the given shadow surface is a Lambertian

surface. If we do not take into account the occlusion of including light, the variation of

aji in (4.8) is caused only by the cosine factor of incoming light direction and the surface

normal direction of the corresponding point on the shadow surface (cos θji). As a result,

the estimation of illumination distribution by solving (4.8) for a solution set of unknown

Li’s tends to become numerically unstable.

In contrast, taking into account the occlusion of incoming light tells us that the vari-

ation of aji becomes much larger since the shadow coefficient S(θi, φi) in (4.6) changes

significantly, i.e., either 0 or 1, from point to point on the shadow surface depending

on the spatial relationships among the location of the point, the occluding object, and

the sampling direction of the illumination distribution, as is well illustrated in Lambert’s

work described in [16]. This characteristics of shadows enables us to reliably recover the

illumination distribution of the scene from brightness changes inside shadows.

4.5.2 Known Reflectance Properties: Non-Lambertian surface

The proposed approach may be extended to other reflection models as well. The only

condition for a model to satisfy is that it enables us to analytically solve for a solution set

of unknown illumination radiance from image brightness.

Take a simplified Torrance-Sparrow reflection model [45, 67] for example; the pixel

2 More details of the pixel selection are found in Chapter 5.
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value of a shadow image P (θe, φe) is computed as

P (θe, φe) =
∑n

i=1 KdL(θi, φi)S(θi, φi) cos θiωi +
∑n

i=1 KsL(θi, φi)S(θi, φi)ωi
1

cos θe
e

−γ(θi,φi)
2

2σ2

=
∑n

i=1 (Kd cos θi + Ks
1

cos θe
e

−γ(θi,φi)
2

2σ2 )

S(θi, φi)ωiL(θi, φi), (4.9)

where γ(θi, φi) is the angle between the surface normal and the bisector of the light source

direction and the viewing direction, Kd and Ks are constants for the diffuse and specular

reflection components, and σ is the standard deviation of a facet slope of the Torrance-

Sparrow reflection model.

From (4.9), we obtain a linear equation for each image pixel where L(θi, φi)(i =

1, 2, · · · ·, n) are unknown illumination radiance, and

(Kd cos θi + Ks
1

cos θe
e

−γ(θi,φi)
2

2σ2 )S(θi, φi)ωi (i = 1, 2, · · · ·, n) are known coefficients.

Again, if we use a sufficiently large number of pixels for the estimation, we are able to

solve for a solution set of unknown illumination radiance L(θi, φi)(i = 1, 2, · · · ·, n) in this

case.

4.5.3 Experimental Results for Known Lambertian Surface

We have tested the proposed approach using an image with an occluding object, i.e.,

shadow image, taken under usual illumination environmental conditions, including direct

light sources such as fluorescent lamps, as well as indirect illumination such as reflections

from a ceiling and a wall (Figure 4.3 (b)).

First, an illumination distribution of the scene was estimated using the image irradiance

inside shadows in the shadow image. Then a synthetic object with the same shape as

that of the occluding object was superimposed onto an image of the scene taken without

the occluding object, which is referred as a surface image, using the rendering method

described in Chapter 2. Note that our algorithm does not require this surface image in

the process of illumination estimation in the case where the reflectance properties of the

shadow surface are given. This surface image is used here as a background image for

superimposing the synthetic occluding object onto the scene.

Synthesized results are shown in Figure 4.4 (a), (b), and (c). Also, we superimposed

another synthetic object of a different shape onto the scene in Figure 4.4 (d). The number



Chapter 4. Illumination from Shadows 62

Figure 4.3: Input images : (a) surface image (b) shadow image

of nodes of a geodesic dome used for the estimation is shown under the resulting image.

As we see in Figure 4.4, the larger the number of nodes we used, the more the shad-

ows of the synthetic object resembled those of the occluding object in the shadow image.

Especially in the case of 520 nodes, the shadows of the synthetic object are nearly indis-

tinguishable from those of the occluding object in the shadow image; this shows that the

estimated illumination distribution gives a good presentation of that of the real scene.

Here we see some “stair-casting” artifacts inside the synthesized shadows that result

from our approximation of continuous illumination distribution by discrete sampling of

its radiance. One approach to reduce this artifact is to increase the number of point light

sources used for rendering, whose radiance is given by interpolating the estimated radiance

Li of the neighboring light sources.

Figure 4.5 numerically shows the improvement of the accuracy obtained by increasing

the number of samplings. Here, the estimated illumination distribution was evaluated in

a different scene condition where the occluding object was rotated 45 degrees on its z

axis. The vertical axis represents the average error in pixel values (0 to 255) inside the

shadow regions in the synthesized images compared with those in the shadow image. The

horizontal axis represents the number of nodes of a geodesic dome used for the estimation.

The small pictures right next to the plot show error distributions inside shadow regions in

the synthesized images. Darker color represents larger error in a pixel value. The average

error at the zero sampling of illumination radiance represents, for reference, the average
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Figure 4.4: Synthesized images: known reflectance property

pixel value inside the shadow regions of the shadow image.

In this plot, we see that flattening of the error curve before convergence to the ex-

act solutions occurs. This is likely caused by the following factors. The first of these is

the errors in the measurements of the 3D shapes of the occluding object and the shadow

surface. The second factor is the errors in the given reflectance properties of the shadow

surface; there is some possibility that the shadow surface is not a perfect Lambertian sur-

face. The third factor is related to our lighting model that approximates the illumination

distribution of a scene by discrete sampling of an extended light source on the assumption

that light sources in the scene are sufficiently distant from the objects. The input image

used in this experiment was taken in an indoor environment, this assumption might not

perfectly hold. The last factor concerns our assumption that there is no interreflection

between the occluding object and the shadow surface.
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Figure 4.5: Error Analysis: The vertical axis represents the average error in pixel values

(0 to 255) inside the shadow regions in the synthesized images compared with those in the

shadow image. The horizontal axis represents the number of nodes of a geodesic dome

used for the estimation. The small pictures right next to the plot show error distributions

inside shadow regions in the synthesized images. Darker color represents larger error in a

pixel value.
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4.5.4 Unknown Reflectance Properties: Uniform Surface Material

There certainly may be a situation where reflectance properties of a surface are not known

a priori, and we need to somehow provide those properties in advance. To cope with

this situation, we combine the illumination analysis with an estimation of the reflectance

properties of the shadow surface. More specifically, we estimate both the illumination

distribution of the scene and the reflectance properties of the surface simultaneously, based

on an iterative optimization framework. We will later explain details of this iterative

optimization framework in conjunction with the adaptive sampling method described in

Section4.6. This approach is based on the assumption that the shadow surface has uniform

reflectance properties over the entire surface.

4.5.5 Unknown Reflectance Properties: Non-Uniform Surface Material

The last case is where the BRDF is not given, and the shadow surface does not have

uniform reflectance properties, e.g., surfaces with some textures. Even in this case, we

are still able to estimate an illumination distribution of a scene from shadows if it is

conceivable that the shadow surface is a Lambertian surface.

The question we have to consider here is how to cancel the additional unknown number

Kd in (4.6). An additional image of the scene taken without the occluding object, called the

surface image, is used for this purpose. The image irradiance of a surface image represents

the surface color in the case where none of the incoming light is occluded. Accordingly, in

the case of the surface image, the shadow coefficients S(θi, φi) always become S(θi, φi) = 1.

Therefore, the image irradiance P ′(θe, φe) of the surface image is computed from (4.6) as

P ′(θe, φe) = Kd

n∑
j=1

L(θj, φj) cos θjωj. (4.10)

From (4.6) and (4.10), the unknown Kd is canceled.

P (θe, φe)
P ′(θe, φe)

=
Kd

∑n
i=1 L(θi, φi) cos θiS(θi, φi)ωi

Kd
∑n

j=1 L(θj , φj) cos θjωj

=
n∑

i=1

L(θi, φi)∑n
j=1 L(θj, φj) cos θjωj

cos θiS(θi, φi)ωi

(4.11)

Finally, we obtain a linear equation for each image pixel where L(θi,φi)Pn
j=1 L(θj ,φj) cos θjωj

are

unknowns, cos θiS(θi, φi)ωi are computable coefficients, and P (θe,φe)
P ′(θe,φe) is a right-hand side
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quantity. Again, if we use a sufficiently large number of pixels for the estimation, we are

able to solve the set of linear equations for a solution set of unknown L(θi,φi)Pn
j=1 L(θj ,φj) cos θj

(i = 1, 2, · · · ·, n).

We should point out that the estimated radiance from these equations is a ratio of

the illumination radiance in one direction L(θi, φi) to scene irradiance at the surface point∑n
j=1 L(θj, φj) cos θjωj. As a result, we cannot relate the estimated radiance over the

color bands unless the ratio of the scene irradiance among color bands is provided. It

is, however, not so difficult to obtain this ratio. For instance, if there is a surface with a

white color in the scene, the recorded color of the surface directly indicates the ratio of the

scene irradiance among color bands. Otherwise, an assumption regarding total radiance

is required.

4.5.6 Experimental Results for Non-Uniform Surface Material

The input images used in this experiment are shown in Figure 4.6. The illumination

distribution of the scene was estimated using the image irradiance of both the shadow

image and the surface image, and a synthetic occluding object was superimposed onto

the surface image using the estimated illumination distribution. Synthesized results are

shown in Figure 4.7. Again, in the case of 520 nodes, the shadows in the resulting image

resemble those of the occluding object in the shadow image. This shows that the estimated

illumination distribution gives a good representation of the characteristics of the real scene.

Figure 4.8 numerically shows the improvement of the accuracy by increasing the num-

ber of samplings. The estimated illumination distribution was evaluated using a new

occluding object with a different shape. From the plot in the figure, we can clearly see

that the accuracy improves as we use more sampling directions of the illumination distri-

bution. It is likely that the flattening of the error curve before convergence to the exact

solutions is caused by the same factors described in Section 4.5.3.
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Figure 4.6: Input images : (a) surface image (b) shadow image

Figure 4.7: Synthesized images: unknown reflectance property
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Figure 4.8: Error Analysis: the vertical axis represents the average error in pixel values (0

to 255) inside the shadow regions in the synthesized images compared with those in the

shadow image. The horizontal axis represents the number of nodes of a geodesic dome

used for the estimation. The small pictures right next to the plot show error distributions

inside shadow regions in the synthesized images. Darker color represents larger error in a

pixel value.
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4.6 Adaptive Estimation of Illumination Distribution with

Unknown Reflectance Properties of Shadow Surface

This section further addresses two issues in inverse lighting. The first issue is how to

provide reflectance properties of a surface inside shadows in cases where they are not

given a priori, and the shadow surface is not conceivable as a Lambertian surface.

The second issue is how to efficiently estimate an illumination distribution of a scene

without losing the accuracy of the estimated illumination distribution. In Section 4.5, we

have estimated an illumination distribution of a real scene by sampling the distribution

at an equal solid angle given as node directions of a geodesic dome. For more efficiently

estimating the illumination distribution of a scene using fewer sampling directions of il-

lumination radiance, we propose to increase sampling directions adaptively based on the

estimation at the previous iteration, rather than by using a uniform discretization of the

overall illumination distribution in this section.

4.6.1 Basic Steps of the Proposed Approach

To take both diffuse and specular reflections of the shadow surface into consideration, a

simplified Torrance-Sparrow reflection model (4.9) described in Section 4.5.2 is reused.

Based on this reflection model, both the illumination distribution of the scene and the

reflectance properties of the shadow surface are estimated from image brightness inside

shadows as described in the following steps.

1. Initialize the reflectance parameters of the shadow surface. Typically, we assume the

shadow surface to be Lambertian, and the diffuse parameter Kd is set to be the pixel

value of the brightest point on the shadow surface. The specular parameters are set

to be zero (Ks = 0, σ = 0). Note that the initial value of Kd is not so important

since there is a scaling factor between the reflectance parameters and illumination

radiance values in any case. To fix the scaling factor, we need to perform photometric

calibration of our imaging system with a calibration target whose reflectance is given

a priori.

2. Select image pixels whose brightness is used for estimating both the illumination

distribution of a scene and the reflectance properties of the shadow surface. This

selection is done by examining the coefficients ai in (4.7).
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3. Estimate illumination radiance L(θi, φi). Using the reflectance parameters (Kd,Ks, σ)

and image brightness inside shadows in the shadow image, the radiance distribution

L(θi, φi) is estimated as described in Section 4.5.2.

4. Estimate the reflectance parameters of the shadow surface (Kd,Ks, σ) from the ob-

tained radiance distribution of the scene L(θi, φi) by using an optimization technique.

(Section 4.6.2)

5. Proceed to the next step if there is no significant change in the estimated values

L(θi, φi),Kd,Ks, and σ. Otherwise, go back to Step 3. By estimating both the

radiance distribution of the scene and the reflectance parameters of the shadow

surface iteratively, we can obtain the best estimation of those values for a given set

of sampling directions of the illumination radiance distribution of the scene.

6. Terminate the estimation process if the obtained illumination radiance distribution

approximates the real radiance distribution with sufficient accuracy. Otherwise,

proceed to the next step.

7. Increase the sampling directions of the illumination distribution adaptively based on

the obtained illumination radiance distribution L(θi, φi). (Section 4.6.3)

Then go back to Step 2.

In the following sections, each step of the proposed approach will be explained in more

detail.

4.6.2 Estimation of Reflectance Parameters of Shadow Surface based on

Radiance Distribution

In this section, we describe how to estimate the reflectance parameters of the shadow

surface (Kd,Ks, σ) by using the estimated radiance distribution of the scene L(θi, φi).

Unlike the estimation of the radiance distribution of the scene L(θi, φi), which can be

done by solving a set of linear equations, we estimate the reflectance parameters of the

shadow surface by minimizing the sum of the squared difference between the observed

pixel intensities in the shadow image and the pixel values computed for the corresponding

surface points. Hence, the function to be minimized is defined as

f =
m∑

j=1

(Pj
′ − Pj)2 (4.12)
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where Pj
′ is the observed pixel intensity in shadows cast by the occluding object, Pj is

the pixel value of the corresponding surface points computed by using the given radiance

distribution of the scene L(θi, φi) in (4.9), m is the number of pixels used for minimization.

In our method, the error function in (4.12) is minimized with respect to the reflectance

parameters Kd,Ks, and σ by the Powell method to obtain the best estimation of those

reflectance parameters [51]. As has been noted, this approach is based on the assumption

that the shadow surface has uniform reflectance properties over the entire surface.

4.6.3 Adaptive Sampling of Radiance Distribution

If the estimated radiance distribution for a set of sampling directions does not approximate

the illumination distribution of the scene with sufficient accuracy, we increase the sam-

pling directions adaptively based on the current estimation of the illumination radiance

distribution.

Radiance distribution changes very rapidly around a direct light source such as a

fluorescent light. Therefore, the radiance distribution has to be approximated by using a

large number of samplings so that the rapid change of radiance distribution around the

direct light source is captured. Also, to correctly reproduce soft shadows cast by extended

light sources, radiance distribution inside a direct light source has to be sampled densely.

On the other hand, coarse sampling of radiance distribution is enough for an indirect

light source such as a wall whose amount of radiance remains small. As a result, the number

of sampling directions required for accurately estimating an illumination distribution of a

real scene becomes exceedingly large.

To overcome this problem, we increase sampling directions adaptively based on the

estimation at the previous iteration, rather than by using a uniform discretization of the

overall illumination distribution. In particular, we increase sampling directions around

and within direct light sources.3

Based on the estimated radiance distribution L(θi, φi) for the sampling directions at

the previous step, additional sampling directions are determined as follows.

Suppose three sampling directions with radiance values L1, L2, and L3 are placed to

form a triangle M1 as illustrated in Figure 4.9. To determine whether a new sampling

3 A similar sampling method has been employed in radiosity computation to efficiently simulate the

brightness distribution of a room [6].
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Figure 4.9: Subdivision of sampling directions

direction needs to be added between L1 and L2, we consider the following cost function

U(L1, L2) = diff (L1 ,L2 ) + αmin(L1 ,L2 )angle(L1 ,L2 ). (4.13)

where diff (L1 ,L2 ) is the radiance difference between L1 and L2, min(L1 ,L2 ) gives the

smaller radiance of L1 and L2, angle(L1 ,L2 ) is the angle between directions to L1 and L2,

and α is the manually specified parameter which determines the relative weights of those

two factors. The first term is required to capture the rapid change of radiance distribution

around direct light sources, while the second term leads to fine sampling of the radiance

distribution inside direct light sources. The additional term angle(L1, L2) is used for

avoiding unnecessarily dense sampling inside direct light sources. In our experiments, α

is set to 0.5.

If the cost U is large, a new sampling direction is added between L1 and L2. In our

experiments, we computed the cost function values U for all pairs of neighboring sampling

directions, then added additional sampling directions for the first 50% of all the pairs in

the order of the cost function values U .

4.6.4 Experimental Results for Adaptive Sampling Method

We have tested the proposed adaptive sampling method by using real images taken in both

indoor and outdoor environments. In the following experiment, the adaptive sampling

technique was applied to a uniform unknown reflectance properties case. The shadow

image shown in Figure 4.10 was used here as an input of a indoor scene.
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Starting from a small number of uniform sampling directions of the illumination dis-

tribution, the estimation of the radiance distribution of the scene was iteratively refined.

At the same time, the reflectance parameters (Kd,Ks, and σ) of the shadow surface were

estimated as explained in Section 4.6.2. Then an appearance of the shadow surface around

the occluding object was synthesized using the estimated radiance distribution of the scene

and the estimated reflectance parameters of the shadow surface.

The region inside the red rectangle in Figure 4.10 (b) was replaced with the synthesized

appearances in the left column in Figure 4.11. The number of sampling directions of the

radiance distribution used for the estimation is shown under the resulting images. Here,

the resulting shadows of the synthetic occluding object resemble more closely those of the

occluding object in the shadow image as we increase the number of sampling directions

based on the proposed adaptive sampling technique. Finally, in the case of 140 sampling

directions, the synthesized shadows of the occluding object blend into the input shadow

image well, and few distinct boundaries in the shadows are seen in the resulting composite

image.

To see how well the adaptive sampling of radiance distribution works in this example,

we took an omni-directional image of the office scene as a ground truth. The middle

column of Figure 4.11 shows the omni-directional image of the scene taken by placing

a camera with a fisheye lens looking upward on the shadow surface in Figure 4.10 (a).

The omni-directional image shows both direct light sources, i.e., the fluorescent lamps in

our office, and indirect light sources such as the ceiling and walls. The right column of

Figure 4.11 shows the estimated radiance values visualized for comparison with the ground

truth. In those images in Figure 4.11 (b) and (c), we can see that sampling directions of

the radiance distribution were nicely added only around the direct light sources at each

step by the proposed adaptive sampling framework, starting from the coarse sampling

directions at the top row.

Figure 4.12 numerically shows the improvement of the accuracy by adaptive refinement

of sampling directions and the estimation of reflectance properties of the shadow surface.

From the plot in the figure, we can clearly see that the accuracy improves rapidly as we

adaptively increase the sampling directions of the radiance distribution.

To confirm the merit of the adaptive sampling framework, we also estimated the illu-

mination radiance distribution with uniform sampling. In that case, even 300 uniformly
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Figure 4.10: Input image : (a) shadow image taken of an indoor scene (b) the region which

synthesized images with the estimated radiance distribution and reflectance parameters are super-

imposed.

sampled directions could not achieve the same level of accuracy as the estimation result

obtained by 80 sampling directions with the proposed framework.

Figure 4.13 (a) shows another example image taken outside the entrance lobby of our

building in the late afternoon. In this image, we used the rectangular pole with two col-

ors as an occluding object casting shadows. In the same way as the previous example,

an appearance of the shadow surface around the occluding object, illustrated with a red

rectangle in Figure 4.13 (b), was synthesized by using the estimated radiance distribution

of the scene and the estimated reflectance parameters of the shadow surface. Figure 4.14

shows the resulting images obtained by the use of our method. Although the grid pattern

on the shadow surface is missing in those synthesized images due to the assumption of

uniform reflectance on the shadow image, the appearance of the shadow around the oc-

cluding objects is virtually indistinguishable in the case of 140 sampling directions. This

shows that the estimated illumination distribution well represents the characteristics of

the real scene.
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Figure 4.11: Adaptive refinement of illumination distribution estimation: (a) synthesized

images with the estimated radiance distribution and reflectance parameters (b) adaptive refinement

of sampling directions with a ground truth of an omni-directional image of the scene (c) the

estimated radiance values visualized for comparison with the ground truth
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Figure 4.12: Error Analysis
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4.7 Discussion

In the field of computer graphics, there have also been several methods proposed for

recovering an illumination distribution of a real scene from appearance changes observed

on object surfaces in the scene. Most of them have been conducted in fully computer-

generated environments where a designer specified the geometry and reflectance of whole

scenes and the locations of all light sources [59, 31]; those methods were mainly developed

for assisting designers in achieving desirable effects such as highlights and shadows in the

synthesized image.

Some researchers extended similar approaches for real images and estimated radiance

of real light sources in the scene. Fournier et al. [17] estimated radiance of the light

sources with users’ defined fix locations on the assumption that all surfaces were Lamber-

tian surfaces. Later, Marschner and Greenberg [39] introduced to approximate the entire

illumination with a set of basis lights located in the scene. Although this method has an

advantage over the previous methods of not requiring knowledge about the light locations

of the scene, the estimation depends entirely on the appearance changes observed on an

object surface assumed to be Lambertian, and therefore some restrictions are imposed on

the shape of the object, e.g., the object must have a large amount of curvature.

Later, Ramamoorthi and Hanrahan [52] introduced a signal-processing framework that

described the reflected light field as a convolution of the lighting and BRDF, and showed

under which condition lighting and BRDF recovery could be done robustly. Simulta-

neously, Basri and Jacobs [2] reported that the images of a convex Lambertian object

obtained under a wide variety of lighting conditions could be approximated with a low-

dimensional linear subspace by using a similar signal-processing approach.

Recently, based on the signal-processing framework proposed by Ramamoorthi and

Hanrahan, it was shown that high frequency components of the appearance of an object

surface could retain significant energy by taking the occlusion of incoming light as well

as its bidirectional reflectance distribution function (BRDF) into account in [48]. This

indicates that the use of shadows for illumination estimation has the significant advantage

of providing more clues to the high frequency components of illumination distribution of

a scene.
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4.8 Conclusions

In this chapter, we have presented a method for recovering an illumination distribution of

a scene from image brightness observed on a real object surface. In a natural illumination

condition, it is hard to recover an illumination distribution from image brightness observed

on a real object surface. The main reason for this difficulty is that there is usually not

adequate variation in the image brightness observed on the surface to reflect the subtle

characteristics of the entire illumination.

One of the main contributions of our work is to demonstrate the effectiveness of using

occluding information of incoming light in estimating the illumination distribution of a

scene. Analyzing the relationships between the image brightness and the occlusions of

incoming light enabled us to reliably estimate the illumination distribution of a scene even

in a complex illumination environment.

In addition, the question of how to provide the reflectance properties of a surface to

be used for the estimation still remains from the previously proposed methods. Since it

is a common situation that reflectance properties of a surface are not known, solutions to

this problem are required. Another contribution of our work is that we have combined

the illumination analysis with an estimation of the reflectance properties of a surface in

the scene. This makes the method applicable to the case where reflectance properties of a

surface are not known, and it enlarges the variety of images to which the method can be

applied.

We also introduced an adaptive sampling of the illumination distribution of a scene as

a solution to the question of how we could efficiently estimate the entire illumination with

a smaller number of sampling directions of the entire distribution in this paper. Using

the proposed adaptive sampling framework, we were able to avoid unnecessarily dense

sampling of the illumination and to estimate overall illumination more efficiently by using

fewer sampling directions.

While the effectiveness of the proposed method in estimating illumination distribu-

tions of usual scenes was demonstrated in this paper, the estimation was based on the

assumptions that light sources in the scene were sufficiently distant from the objects, and

that there was no severe interreflection between a shadow region and an occluding object.

The future directions of this study include extending the method for: (1) considering the

interreflection between a shadow region and an occluding object; and (2) taking distances
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Figure 4.13: Input image : (a) shadow image taken in an outdoor scene (b) the region where

synthesized images with the estimated radiance distribution and reflectance parameters are super-

imposed in Figure 4.14

from the occluding object to light sources into account.
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Figure 4.14: Adaptive refinement of illumination distribution estimation: synthesized im-

ages with the estimated radiance distribution and reflectance parameters



Chapter 5

Stability Issues in Illumination

Estimation

In this chapter, we discuss the amount of the information about the illumination distri-

bution of the scene obtainable from a given image of a scene. It is worth noting that

brightness distributions inside shadows vary as a function of the lighting environment of

the scene and the shape of an occluding object. As a consequence, the amount of the

information contained in a shadow image about the illumination distribution of a scene

changes from image to image, depending on how much of the shadow surfaces are blocked

by the occluding object and how much are covered by the field of view of the camera taking

the shadow image. Hence it is essential to evaluate an shadow image first in terms of how

much information about the illumination distribution of the scene the image can provide.

We explain two main factors that control the stability of the illumination estimation from

shadows: blocked view of shadows; limited sampling resolution for radiance distribution

inside shadows. Then we introduce solutions for overcoming these two problems.

5.1 Illumination Distribution Solvable From a Given Shadow

Image

Let us first consider the ideal case where radiance values of light source Li’s can be

estimated without suffering from any instability problems. As shown in Figure 4.2, a set

81
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of linear equations is derived from a given shadow image. Recall (4.8)

Pj =
n∑

i=1

ajiLi (j = 1, 2, · · · ·,m),

and rewrite it in a matrix form as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · ·
am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1

L2

L3

...

Ln

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

P3

...

Pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A · L = P. (5.1)

Here the coefficients matrix A of the system A ·L = P is consists of n column vectors

ai = (a1i, a2i, . . . , ami)T where n is the number of sampling directions, and m is the number

of the image pixels. Here, if the coefficients matrix A consist of n linearly independent

column vectors ai, we numerically obtain enough constraints for solving A for unknown

radiance of Li’s.

The amount of the information that shadows in a shadow image provide is obviously

limited. Under some circumstances, we might not be able to derive n linear independent

vectors ai from a given shadow image. As shown in Figure 4.2, the coefficients aij in the

coefficients matrix A represent f(θi, φi; θe, φe)S(θi, φi) cos θi, and the most powerful clue

to the illumination distribution of a scene among the components of ai is S(θi, φi) (either

0 or 1) since the other components do not change so much from image pixel to pixel.

As a consequence, it makes the estimation more stable if we observe the difference

between radiance of two shadow regions for each light source: one illuminated and the

other not illuminated by the light source. In other words, the more variations in S(θi, φi)’s

in shadow regions we have, the more likely it is that we will obtain n linearly independent

column vectors, thereby making it possible to robustly estimate radiance values of the

light sources approximating illumination distribution of the scene.

In the following sections, we describe the main sources that prevent us from observing

both shadow and non-shadow regions for a light source in a particular direction. This

tends to makes the matrix A ill-conditioned and leads to the instability problem of the

proposed method.
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5.2 Blocked View of Shadows

The visible portion of a shadow surface changes from image to image depending on how

wide the field of view of a camera taking the shadow image is, and what size portions of the

view of the camera are occluded by the occluding object. Only part of the shadows cast

by the occluding object can be usually observed in the shadow image, with the exception

of special cases such as a camera aimed directly toward a floor onto which shadows are

cast.

1
2

3

2

3

The region blocked 

     by the object

light sources

camera

occluding object

Figure 5.1: Blocked view of shadows.

Consider the case shown in Figure 5.1 as an example. In this case, the region behind

the occluding object cannot be seen by the camera. More precisely, only the shadow

caused by the light source 3 can be observed in the shadow image, and shadows cast by

the light sources 1 and 2 are not seen.

Let a1 and a2 as column vectors and L1 and L2 as radiance values for the light source

1 and 2 respectively, then in the case shown in this example, a1 and a2 become close to
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singular. In other words, the occlusion coefficients S(θi, φi) of a1 and those of a2 are the

same for all shadow pixels, and only differences for distinguishing the light source 1 from

the light source 2 are in f(θi, φi; θe, φe) cos θi. As a result, the estimation becomes too

sensitive to the image noise, and radiance values of the light source 1 and 2 can not be

reliably estimated.

5.3 Limited Sampling Resolution For Radiance Distribution

inside Shadows

Second, the number of image pixels is fixed, and therefore radiance distribution inside

shadow regions can be measured only up to a certain resolution.

In the basic formulation of the previously proposed method described in Chapter 4.5,

it was simply assumed that we could obtain a large enough number of image pixels inside

shadow regions to provide sufficient constraints for solving a set of linear equation (5.1)

for unknown radiance values of point light sources. However, this is true only when we

can measure radiance values inside shadows at any resolution.

To illustrate this point, consider two cases shown in Figure 5.2. In the first case in

(1), illumination distribution of a scene is represented by coarsely distributed point light

sources 1, 2, and 3. On the other hand, more densely distributed point light sources

are used in the other case shown in (2). Shadows are partitioned into smaller regions

depending on which light source is occluded by the occluding object. For instance, the

shadow in the left case is partitioned into the following regions in order from left to right:

3, 1&3, 1, 1&2&3, 1&2, and 2.

As we can see in the case in Figure 5.2 (2), the shadow does not contain a region

where only the point light source 1 is occluded. Also, partitioned regions such as 3 or 2

are significantly smaller than those in the case in Figure 5.2 (1). As a result, we obtain

less of a variety of partitioned regions inside shadows, thus making the estimation less

reliable, and the estimation further becomes more sensitive to image noise because each

partitioned region contains fewer image pixels.

Since the number of image pixels is limited, radiance distribution inside shadows can be

measured only up to a certain resolution. As a result, sampling resolution of illumination

distribution of a real scene is also bound to a certain limit. For instance, if we use more
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1
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1 and 2
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1 and 3

1, 2 and 3 are 
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(1)
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3

1 and 2

(2)

1 and 3

Figure 5.2: Difference in visible combinations of occlusions of lights: (1) coarsely dis-

tributed light sources and (2) densely distributed light sources.

densely distributed point light sources for the estimation, we might not even observe any

image pixels of some shadow regions.

It follows from the discussions above that there is a chance that the estimation becomes

too unstable to provide a correct estimate of the illumination distribution of the scene for

a given set of point light sources for the estimation. As a solution to this problem, a

new procedure to evaluate an input shadow image in terms of the information about the

illumination distribution of a scene obtainable from the image is considered in the next

chapter. Using the outputs from this procedure, a set of point light sources is defined so

that radiance values of those light sources can be estimated reliably from the given shadow

images.
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5.4 Techniques For Robust Estimation

Recall the case shown in Figure 5.1 where two column vectors a1 and a2 of the light sources

1 and 2 respectively are close to singular. Here, if the light sources 1 and 2 are combined

to form a larger light source for more coarse sampling of illumination distribution, we are

able avoid facing the instability problem caused by the light source 1 and the light source

2. Similarly, the sampling resolution problem described in Section 5.3 can be avoided if we

use the more coarse sampling instead of dense sampling of illumination radiance whenever

it is decided to be necessary in terms of the stability of computation for solving the set of

linear equations obtained from a given shadow image.

In this chapter, we will adopt a strategy for changing the sampling density of the

illumination distribution depending on the amount of the information obtainable from a

shadow image for a particular direction of the illumination distribution.

5.5 Selection of Illumination Distribution Samplings

The derived coefficients matrix A from a shadow image is first examined in terms of the

stability of computation for solving the set of linear equations obtained from a given

shadow image.

Stability of a given system is measured by the condition number. Some systems are

sensitive to errors and others are not. For a positive matrix A, the condition number c is

computed (again using a standard MATLAB function) as

c = σmax/σmin, (5.2)

where σmax is the maximum singular value of the matrix A, and σmin is the minimum

singular value.

If this condition number c is sufficiently small, (5.1) can be solved without numerical

instability. Therefore, the given set of light sources representing real illumination distribu-

tion is appropriate for the given shadow image. On the other hand, if the condition number

c is large, the problem of illumination estimation for the given set of light sources is close

to ill-conditioned. Therefore, we need to reduce light sources representing illumination

distribution by combining several light sources into one with a larger solid angle.

Then, our question is how to select those light sources to be combined for sampling
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the illumination distribution more coarsely. This is done by examining the column vector

ai = (a1i, a2i, . . . , ami)T corresponding to a light source Li in (5.1). If two vectors ai

and aj for two light sources Li and Lj are about the same, (5.1) becomes ill-conditioned

and brightness distribution inside shadows does not provide sufficient information for

determining radiance of those two light sources. Therefore, those two light sources need

to be combined to form a larger light source for more coarse sampling of illumination

distribution. We evaluate the similarity of two vectors ai and aj with their dot product

ai · aj.

Since the entire stability computation depends on the coefficients matrix A and the

radiance values Li are estimated from these coefficients as well, it is important to compute

ai of the matrix A as accurately as possible. For this purpose, we further introduce

the following two techniques. One is a technique for computing more accurate shadow

coefficients S(θi, φi) using the more appropriate light model for Li. The other is a technique

for sampling pixels from a shadow image in such a way as to maximize the information

obtainable from the image.

5.6 Occlusion Test of Incoming Lights

In the proposed approach, the entire illumination distribution of a scene is represented as

a set of point sources equally distributed in the scene whose solid angle is defined by a

sampling density n. Nevertheless, the occlusion tests are previously performed simply by

examining occlusions of the center points of those light sources.1

The important point to note is that all objects casting shadows from extended light

sources produce three types of regions: completely illuminated, completely occluded (um-

bra), and partially occluded (penumbra). As illustrated in Figure 5.3, a penumbra sur-

rounds an umbra and there is always a gradual change in intensity from a penumbra and

an umbra. The previous approach can treat only hard edged shadows correctly, and the

approximation with point light sources introduces inaccuracy in illumination estimation

in the presence of soft edged shadows, i.e., shadows with umbra and penumbra. Mix-

ing up the umbra and the penumbra area not only prevents us from computing accurate

coefficients ai in (4.7) but also reduces the varieties of occlusions observed in a shadow

1 As described in Section 5.1, occlusion coefficients S(θi, φi) becomes 0 if the center point of Li is

occluded by the occluding object, and S(θi, φi) = 1 otherwise.
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umbra

penumbra

Figure 5.3: Umbra and penumbra.

image.

One approach to reduce the side-effect from this approximation is to increase the

number of point light sources used for approximating illumination distribution and to

compute occlusion coefficient S(θi, φi) more accurately between 0 and 1, cf., 0 or 1.2

In our actual implementation of this super-sampling scheme, a hexagonally packed

grid is defined inside each light source and used for computing the occlusion coefficients.

The size of a hexagonally packed grid for a light source is determined from the solid angle

of the light source. Figure 5.4 shows a hexagonal grid, made up of 19 hexagons, used in

our experiments. For each point inside the hexagonal grid, we determine whether a light

ray coming from the point is occluded by an occluding object. Then, occlusion coefficient

S(θi, φi) for the light source is given as a ratio of unoccluded sampling points inside the

hexagonal grid.

2 In theory, any subtle change in illumination distribution can be approximated with sufficient accuracy

if an infinite number of point light sources is used. However, the computational cost would increase

prohibitively if too many light sources were to be used. Moreover, the use of too many point light sources

causes the sampling resolution problem described in Section 5.3.
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Figure 5.4: Hexagonal grids used for supersampling inside one light source.

5.7 Pixel Selection

First, the visible part of shadow surface is partitioned into clusters based on the com-

binations of occlusion coefficients S(θi, φi). In other words, pixels that have the same

combination of coefficients S(θi, φi) are clustered into the same group. Conceptually,

those clusters are similar to partitioned regions in shadows in Figure 5.2. At the same

time, the number of pixels in one group is examined so that we can avoid selecting a pixel

from a group that contains fewer image pixels.

Figure 5.5 shows several examples of partitioning based on the occlusion coefficients

S(θi, φi) with pseudo colors. Here each color represents an individual class with a different

combination of occlusions of the light sources, and the block region corresponds to the

occluding objects. From these examples of partitioning, we also see that patterns of

partitioning differ from image to image depending on factors such as the shape of an

occluding object and the camera viewpoint.

After the shadow surface is partitioned into clusters, one pixel is selected from each

of those clusters. By selecting image pixels in this way, we can maximize variation of

patterns of occlusion of light sources by an occluding object, and therefore, we are able to

evaluate the input shadow image in an appropriate manner. In addition, we are able to

avoid selecting redundant pixels, i.e., pixels that provide the same information about the

illumination of the scene as other pixels.
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For evaluating an input shadow image correctly, it is essential to select image pixels

from a shadow image to maximize variation of patterns of occlusion of light sources by an

occluding object.

Figure 5.5: Clustering results.

5.8 Experimental Results

We have tested those proposed techniques for the robust estimation by using real images

taken in both a laboratory and an office. First, we have tested our proposed method

by using images taken under a relatively simple illumination environment so that we

can examine the performance of our proposed method carefully. Figure 5.6 shows our

experimental setup with three light sources with different colors. The input images taken

by using this setup with different occluding objects are shown in Figure 5.7 (1).

The results of illumination estimation with coarse samplings are shown in Figure 5.7

(2). Here, the estimated illumination radiance is visualized by mapping their values onto

a hemisphere shown in Figure 4.1. As we can see in these results, illumination distribution

was correctly estimated for this set of light source samplings. However, after we increased

the number of light sources for sampling illumination distribution, the estimation became

unstable. Figure 5.7 (3) shows densely distributed light sources and in fact, we can see

that the results of estimation shown in this column are erroneous especially around the

blue and green light sources.

On the other hand, Figure 5.7 (4) shows the result of illumination estimation with our

proposed method. Their stability measure is represented in the left of Figure 5.7 (4). Here,

brighter light sources represent more reliable sampling regions which are not required to
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green

red

blue

camera

Figure 5.6: Experimental setup with three area light sources with different colors.

be merged to form a larger light source for more coarse sampling. Unlike the estimation

results in Figure 5.7 (3), illumination distribution due to three light sources with different

colors was correctly estimated in the right of Figure 5.7 (4).

Based on the estimated illumination distribution from the input shadow image shown

Figure 5.8 (1), several synthetic objects were superimposed onto a synthetic surface in

the bottom row of Figure 5.8 (1). Here, real objects with the same shape as that of the

synthetic objects and shadows cast by those objects are shown in the top row for the

comparison purpose.

In the proposed approach, since the entire illumination distribution of a scene is rep-

resented as a set of area light sources whose solid angle is adjusted depending on its

stability, the distribution of shadows is a little different from those of real shadows cast by

the real objects. However, it is found through our experiments that if we instead used a
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Figure 5.7: Illumination estimation without and with considering stability.

set of point light sources and examined only occlusions of the center points of those light

sources, the entire estimation became unstable unless the method happened to find the

correct locations for those three light sources with coarse sampling.

We have also tested our proposed method by using real images taken in an ordinary

office environment. In the bottom row of Figure 5.8 (2), several synthetic objects were also

superimposed onto the surface using the illumination distribution estimated from the input

shadow image shown in this figure. It is worth noting that in this example, a relatively

large area of the shadow surface is occluded by the occluding object, and it is often

difficult to provide a correct estimate of the illumination distribution in such case. Even

in this challenging case, our proposed approach could reliably estimate the illumination

distribution of the scene by taking stability issues into considerations. Shadows cast by

those synthetic objects resemble well those cast by the real objects, and this shows that

the estimated illumination distribution gives a good presentation of that of the real scene.
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5.9 Conclusions

In this chapter, an improved approach for estimating illumination distribution of a real

scene from shadows in a given image in a reliable manner has been presented. First,

the source of instability of the previously described illumination-from-shadows method

was carefully studied in several aspects: invisible regions of shadows; limited sampling

resolution for radiance distribution inside shadows; and approximation of illumination

distribution as a collection of point light sources.

Then, based on that analysis, a robust method to overcome those problems has been

presented. The proposed method consists of three components. For estimating the illu-

mination distribution of a scene reliably by taking stability issues into considerations, we

proposed to change the sampling density of the illumination distribution depending on the

amount of the information obtainable from a shadow image for a particular direction of

the illumination distribution. For using radiance distribution inside penumbra of shadows

correctly, we introduced a super-sampling scheme for examining occlusion of incoming

light from each light source. We also explained the optimal sampling of image pixels and

the selection of illumination distribution samplings for more stable computation.

All of these extensions contribute to improve stability and accuracy of illumination

estimation from shadows, and illumination distribution can be estimated in a reliable

manner with these proposed improvements regardless of types of input images such as the

shape of an occluding object or a camera position.
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Figure 5.8: Synthesized appearance using the estimated illumination distribution.



Chapter 6

Modeling Appearance of Objects

for Variable Illumination

Inverse rendering carries out the opposite procedures of model-based rendering to provide

object and illumination models of a real scene from photographically available information

of the scene. Once models of a scene are acquired, new images of the scene under novel

lighting and/or viewing conditions can be synthesized by using conventional model-based

rendering techniques.

On the other hand, the approach called image-based rendering directly uses the original

set of input images of a scene for producing new images of the scene under novel condi-

tions [61]. Depending on which scene conditions should be modified, image-based rendering

techniques are classified into three categories: image-based rendering under novel viewing

conditions, image-based rendering under novel lighting conditions, and image-based ren-

dering under novel viewing and novel lighting conditions. In this thesis, we consider the

second category, image-based rendering under novel lighting conditions.

In contrast with model-based rendering techniques, image-based rendering techniques

do not require full radiometric computation to synthesize the photo-realistic appearance

of objects in a scene. This makes the cost to produce new images of the scene independent

of the scene complexity. Also image-based rendering techniques normally do not require

geometric and photometric models of a scene.1 Image-based rendering, however, has

a tendency to require many input images of a scene to synthesize reasonably realistic

1 Some image-based rendering techniques make use of geometric models of a scene for better compression

of its appearance.

95
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appearance of the scene. This results in the requirement for a large amount of both

computer memory and data storage.

The main goal of this chapter is determining a set of lighting directions for sampling

images of an object so that a set of basis images for representing the appearance change

of the object under varying illumination conditions can be obtained from those images.

6.1 Related Works

It is well known that the appearance of an object changes significantly under different

illumination conditions. For instance, the appearance change of someone’s face often

becomes much larger than the difference of two different faces under the same lighting.

Thus, for the task of object recognition and image synthesis, it is very important to be

able to predict the variation of objects’ appearance under varying illumination conditions.

While there may seem to be a large variety of possible appearances for a given object,

it has been demonstrated in previous research that the changes in appearance of an object

for varying illumination can be represented with a linear subspace spanned by a set of basis

images of the object. For instance, in the most simplistic case of a convex Lambertian

object under distant illumination without attached and cast shadows, the appearance of

the object can be completely described with a 3-D linear subspace defined with three

input images taken under linearly independent lighting conditions [42, 58, 73]. However,

the assumption of this model would be too restrictive to be used for object recognition in

more realistic settings.

Other researchers have reported empirical studies for representing image variation due

to varying illumination for human faces and other objects [21, 14, 72]. Interestingly enough,

most of the image variation caused by varying illumination can be explained with a low-

dimensional linear subspace slightly higher than 3D even when images contain a significant

amount of shadows. For instance, Hallinan reported a) that a 5-D subspace would suffice

to represent most of the image variation due to illumination change including extreme

cases where a face is lit from its sides, and b) that a 3-D subspace would be sufficient

when a face is lit mainly from its front [21]. Georghiades et al. used a similar observation

more specifically for object recognition under varying lighting conditions [18, 19].

A set of basis images spanning such a linear subspace can be obtained by applying the
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principal component analysis to a large number of images of an object taken under different

lighting, e.g., by moving a point light source along a sphere surrounding the object. One

might ask whether a certain set of input images of an object would be sufficient to fully

span the subspace of the object for arbitrary illumination conditions. Previous empirical

studies do not necessarily provide enough insight to this important question, and thus it

has been a common practice to use as many input images as possible to ensure that the

set of input images span a subspace entirely.

Another interesting observation of Hallinan’s early work is that a subspace obtained by

PCA does not vary widely between sparsely and densely sampled sets of lighting directions

in the case of faces [21]. However, it was not known how many images would be sufficient

in order to obtain the basis images correctly.

Recently, it was shown through the frequency-space analysis of reflection that appear-

ance of a convex Lambertian object can be well represented with a 9-D linear subspace

spanned by basis images of the object, called harmonic images, each of which corresponds

to an image of the object illuminated under harmonic lights whose distributions are speci-

fied in terms of spherical harmonics[52, 53, 2]. Basri and Jacobs successfully used this 9-D

subspace defined with harmonic images for face recognition under varying illumination

[2]. Other researchers have also used a set of harmonic images for the purpose of efficient

rendering of an object under complex illumination [54, 62]. More recently, Ramamoorthi

has shown theoretically that, under certain conditions of lighting and object shape and

reflectance, a set of basis images obtained from PCA on input images taken under varying

lighting coincides with a set of harmonic images [55].

While harmonic images are specified analytically, it is difficult to obtain harmonic im-

ages for various kinds of real objects because harmonic lights consist of both negative and

positive values distributed in a complex way and thus do not exist as real lighting. There-

fore, the previously proposed techniques for object recognition and image synthesis based

on harmonic images require the model of an object about its 3-D shape and reflectance

properties such as albedo so that harmonic images of the object under harmonic light can

be rendered synthetically. This is not a problem for the case of synthetic objects because

the model of a synthetic object is given a priori by definition. On the other hand, acquir-

ing shape and reflectance properties of real objects is not an easy problem and therefore,

most of the previous studies treated real objects as Lambertian objects and estimated only
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albedos by using vision techniques such as photometric stereo.

This motivated us to develop a method for determining a set of harmonic images of

a real object by using only input images of the object under simple lighting such as a

point light source. Lee et al. recently proposed an interesting method to determine a

configuration of 9 light source directions such that input images taken under those light

source directions approximate a 9-D subspace spanned by harmonic images [36]. They

have reported that such a configuration of 9 light source directions does not vary much

for similar objects, e.g., different faces. However, Lee et al.’s method still needs a set

of harmonic images that are rendered synthetically by using an object’s model in order

to determine a set of 9 lighting directions. Moreover, Lee et al.’s method chooses 9 light

directions from a large number of candidates and therefore, a large number of input images

are required for each new object or new class of objects.

6.2 Proposed Appearance Sampling Approach

In this chapter, we present a novel method for analytically obtaining a set of basis images

of a convex object for arbitrary illumination from input images of the object taken under a

point light source. The main contribution of our work is that we show that a set of lighting

directions can be determined for sampling images of an object depending on the spectrum

of the object’s BRDF in the angular frequency domain such that a set of harmonic images

can be obtained analytically based on the sampling theorem on spherical harmonics [13].

Using those sampling directions determined from the sampling theory, we are able to

obtain harmonic images by using a significantly smaller number of input images than other

techniques which do not take into account a relationship between a spectrum of BRDFs

and a sampling density of illumination directions. In addition, unlike other methods based

on spherical harmonics, our method does not require the shape and reflectance model of an

object used for rendering harmonics images of the object synthetically. Thus, our method

can be easily applied for determining a set of basis images for representing the appearance

change of a real object under varying illumination conditions.

The rest of the chapter is organized as follows. We briefly review the spherical har-

monics transformation of a function over the unit sphere and harmonics images based on

spherical harmonics in Section 6.3. We show details of the sampling theorem used in our
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method for obtaining harmonic images of real objects in Section 6.4, and consider issues in

obtaining harmonic images of real objects based on this sampling theorem in Section 6.5.

Finally, we show experimental results of the proposed method applied to images of real

objects in Section 7.4.2, and present concluding remarks in Section 6.7.

6.3 A Set of Basis Images for Variable Illumination

6.3.1 Review of Spherical Harmonics

Spherical Harmonics define an orthonormal basis over the unit sphere. Consider the unit

sphere in R3, a unit vector on the sphere can be described by the polar coordinate system

θ, (0 ≤ θ ≤ π) in elevation and φ, (0 ≤ φ < 2π) in azimuth as shown in Figure 6.1. In this

coordinate system, spherical harmonics Y m
l (θ, φ), (l ≥ 0,−l ≤ m ≤ l) are defined as

Y m
l (θ, φ) = Nm

l Pm
l (cos θ)eImφ, (6.1)

where Nm
l are the normalized constants, and Pm

l (·) are the associated Legendre functions

of degree l and order m.

A function f(θ, φ) defined over the unit sphere is expanded as a linear combination of

spherical harmonics as

f(θ, φ) =
∞∑
l=0

l∑
m=−l

fm
l Y m

l (θ, φ), (6.2)

and fm
l denote coefficients in its spherical harmonic expansion computed as 2

fm
l =

∫ 2π

0

∫ π

0
f(θ, φ)Y m

l (θ, φ) sin θdθdφ. (6.3)

6.3.2 Harmonic Image Representation

The reflectance property of an object is characterized by a bidirectional reflectance dis-

tribution function (BRDF) ρ(θ′i, φ
′
i, θ

′
o, φ

′
o), where (θ′i, φ

′
i) and (θ′o, φ′

o) are incident and

reflection directions with respect to the surface normal of the object surface as shown in

Figure 6.2 whose local coordinate is denoted by using ′ Namely, the north pole direction

(0′, 0′) in the local coordinates corresponds to the surface normal of the object surface.

2 In this study, we consider spherical harmonics in a real form.
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Figure 6.1: Polar coordinate system

Then, the brightness E of the object surface with a surface normal at the direction

(θn, φn) is represented by the global coordinate defined on the unit sphere as

E =
∫ π

0

∫ 2π

0
L(θ, φ)ρ(Mφn

θn
(θ, φ), θ′o, φ

′
o) cos θ sin θdθdφ, (6.4)

where L(θ, φ) is light source distribution, and Mφn

θn
(·) represents a rotation operator that

rotates (θ, φ) into the local coordinate defined with respect to the surface normal of the

object surface.

In this study, we consider the appearance of an object under variable illumination seen

from a fixed viewpoint and therefore, we represent ρ(Mφn

θn
(θ, φ), θ′o, φ′

o) cos θ by using the

global coordinate as R(θ, φ), and refer to it as the reflection kernel.

Since both the light source distribution and the reflection kernel are functions defined

on the unit sphere, we can represent them as

L(θ, φ) =
∞∑
l=0

l∑
m=−l

Lm
l Y m

l (θ, φ), (6.5)

R(θ, φ) =
∞∑
l=0

l∑
m=−l

Rm
l Y m

l (θ, φ). (6.6)

where Lm
l and Rm

l are coefficients in their spherical harmonic expansion from (6.3). As-

suming spherical light sources with Y m
l (θ, φ) radiance in its (θ, φ) direction, Rm

l represents

the brightness seen under these spherical light sources called harmonic lights in (6.3).
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Figure 6.2: BRDF defined in the polar coordinate system

From (6.5), (6.6), and the orthonormality of spherical harmonics, the surface brightness

E in (6.4) is represented as

E =
∞∑
l=0

l∑
m=−l

Lm
l Rm

l . (6.7)

Here, if we prepare Rm
l for all pixels, that is, for all corresponding points on the object

surface, images under variable illumination are represented from (6.7). Images containing

Rm
l are called harmonic images [2].

6.4 Methods for Obtaining Harmonic Image

There are several approaches for obtaining harmonic images of an object. One approach

is to provide a reflection kernel R(θ, φ) of the object from the knowledge of its 3D shape

and reflectance properties. Since Y m
l (θ, φ) are predefined functions, Rm

l are computed

from (6.3). Most of the previously proposed methods employed this approach to compute

harmonic images synthetically.

One might think of observing an object under physically constructed harmonic lights.

In this case, each pixel value directly corresponds to coefficients Rm
l , and thus the 3D

shapes and reflectance properties of the object need not be given a priori. However, as

pointed out by other researchers [2, 36], harmonic lights are complex diffuse lighting con-

sisting of both negative and positive radiance. Thus, it is difficult to physically construct
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such lighting in a real setting.

In this work, we take an alternative approach of observing a reflection kernel R(θ, φ)

for each surface point on an object directly by taking an image of the object under a point

light source located at the direction (θ, φ). This approach is based on the assumption that

a point light source used in this method is sufficiently distant from the objects and thus,

this light source projects parallel rays onto the object surface.

The reflectance kernel R(θ, φ) represents radiance of reflected light due to incoming

light with unit radiance from the direction (θ, φ). Thus if we suppose that this point

light source has unit radiance, the value of R(θ, φ) can be obtained simply as an observed

brightness of the surface point when the object is illuminated under a light source from

the direction (θ, φ).3 Once we determine the values of R(θ, φ) for all directions, we can

compute pixel values of harmonic images as Rm
l from (6.3). In this way, we do not need

to synthetically compute the reflection kernel R(θ, φ) of the object, nor are the 3D shapes

and reflectance properties of the object required.

Since the function R(θ, φ) are continuously distributed on the unit sphere in (6.3), we

first need to approximate its distribution by a discrete set of the function R(θ, φ) so that

we can sample R(θ, φ) using a point light source physically located at (θ, φ) direction.

Then, the question we have to ask is how densely R(θ, φ) need be sampled in order to

correctly compute coefficients Rm
l from them. In other words, we want to know how

densely a point light source needs to be positioned around an object to obtain harmonics

images of the object correctly. In the next section, we will consider this issue in terms of

the characteristics of spherical harmonics Y m
l (θ, φ).

6.4.1 Sampling Theorem on Spherical Harmonics Transformation

There have been several methods proposed in the field of applied mathematics to efficiently

compute coefficients of a function R(θ, φ) in its spherical harmonic expansion using fewer

samplings of the function R(θ, φ). We have adapted one of their theories to enable us to

compute harmonic images using fewer input images of objects taken by moving a point

light source to particular locations.

It is common knowledge that the sampling theorem on the 1D line tells us that a

3 Note that we can determine R(θ, φ) only up to some unknown scaling factor, so it is reasonable to

treat a point light source to have unit radiance.
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band-limited function can be reconstructed accurately from properly sampled discrete

data. Namely, Fourier coefficients of the function can be determined by weighted sums of

the function sampled at even intervals. In the case of a function defined on the sphere,

the similar theorem, the sampling theorem on the sphere, has been proved [13]. In this

section, we outline the theorem.

Let us assume that the reflection kernel R(θ, φ) is band-limited with bandwidth N, that

is, Rm
l = 0 (l ≥ N). Then, consider the “comb” function s(θ, φ) with equiangular grid

(∆θ,∆φ) = (π/2N, 2π/2N)

s(θ, φ) =
√

2π
2N

2N−1∑
j=0

2N−1∑
k=0

wjδ(θ − θj)δ(φ − φk), (6.8)

where (θj , φk) = (π(j + 1/2)/2N, 2πk/2N) are sampling points on the sphere, and wj

are weight of the points. We can compute the coefficients sm
l of the comb function from

definition (6.3). For degree l < 2N , we obtain

sm
l =

2N−1∑
j=0

wj

√
2l + 1

2
P 0

l (cos θj)δm0, (6.9)

where the Kronecker delta δij = 1 if i = j, and δij = 0 if i �= j. Here, we can uniquely

choose the weight wj so that
∑2N−1

j=0 wjP
0
l (cos θj) =

√
2δl0. Thus, the coefficients are

described simply as sm
l = δl0δm0 for degree l < 2N . Equivalently, the comb function is

represented by the addition of Y 0
0 (θ, φ) = const. and higher-degree terms as

s(θ, φ) = 1 +
∑

j≥2N

∑
|k|≤j

sk
j Y

k
j (θ, φ). (6.10)

Then, from (6.6) and (6.10), the product of the reflection kernel and the comb function

is written as

R(θ, φ) · s(θ, φ) = R(θ, φ)

+
∑
l<N

∑
|m|≤l

∑
j≥2N

∑
|k|≤j

Rm
l sk

j Y
m
l (θ, φ)Y k

j (θ, φ), (6.11)

where degree l < N because R(θ, φ) is band-limited. The second term is known as aliasing

introduced by discrete sampling. However, it is known that the product of the spherical

harmonics Y m
l (θ, φ)Y k

j (θ, φ) is represented as a linear combination of spherical harmonics

with a degree greater than or equal to |l − j|. Accordingly, aliasing appears to be a



Chapter 6. Modeling Appearance of Objects for Variable Illumination 104

degree greater than or equal to |N − 2N | = N in this case. Therefore, for degree l < N ,

R(θ, φ) · s(θ, φ) is equal to R(θ, φ), that is,

(R(θ, φ) · s(θ, φ))ml = Rm
l . (6.12)

Hence, the coefficients of the reflection kernel can be computed accurately by the

Fourier transform of R(θ, φ) · s(θ, φ) as

Rm
l =

√
2π

2N

2N−1∑
j=0

2N−1∑
k=0

wjR(θj, φk)Y m
l (θj, φk), (6.13)

where the weight wj are analytically given by

wj =
2
√

2
2N

sin θj

N−1∑
n=0

1
2n + 1

sin[(2n + 1)θj ]. (6.14)

6.5 Appearance Sampling of Real Objects based on Sam-

pling Theorem

The sampling theorem described in the previous section tells us the minimum number of

sampling 2N×2N = 4N2 to compute spherical harmonics transformation of a band-limited

function with bandwidth N . In this section, we consider issues in defining bandwidth of

an object. We will later discuss what kind of artifacts we should expect when the function

is not band-limited within N in Chapter 7.

6.5.1 Convex Lambertian Surface

Let us start with the simplest case of convex Lambertian objects. It has been shown

in the previous studies that the first nine spherical harmonics with the order l = 2 are

sufficient to capture more than 99% of the reflection energy of a convex Lambertian surface

[2, 52, 53].

Accordingly, we can consider that the function R(θ, φ) is band-limited with bandwidth

N = 3, and this results in 4N2 = 36 samplings of R(θ, φ) necessary for computing Rm
l

correctly. In other words, the coefficients Rm
l are given as a finite weighted sums of the

function R(θ, φ) sampled at equiangular grid: θj = π(j+1/2)
6 (j = 0, . . . , 5), φk = 2πk

6 (k =

0, . . . , 5). Namely, 36 input images of an object taken by moving a point light source to the

directions specified with (θj, φk) on a sphere around the object are required to compute

harmonic images of the object.
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Note that what needs to be satisfied is not the number of samplings (4N2) of the func-

tion but rather, the sampling intervals (∆θ = π/2N , ∆φ = 2π/2N) that this sampling can

provide. For instance, even when a large number of input images of an object taken under

a point light source are available, there is no guarantee that this set of images can produce

correct harmonic images that can span a low-dimensional linear subspace representing the

appearance of the object under arbitrary illumination unless those intervals are satisfied.

6.5.2 Complex Appearance beyond Lambertian

Ramamoorthi and Hanrahan analytically derived the bandwidth of reflection kernels of

objects that have more complex appearance than convex Lambertian surfaces such as the

Phong reflection model and the Microfacet BRDF [52].4 For instance, this study shows

that the bandwidth of the Microfacet BRDF is approximately N ≈ σ−1. Thus, if the

surface roughness of an object is predicted even roughly, it should help us to find the

bandwidth of the reflection kernel of the object.

There are a large number of previous studies on BRDF measurements and BRDF

databases which show reflectance parameters of various kinds of surface materials. This

knowledge should be useful for estimating bandwidths of reflection kernels of various ob-

jects based on the analysis presented in [52].

6.6 Experimental Results

We have tested the proposed method using real images of several objects taken by moving

a point light source to equiangular grid points defined by the sampling theorem. Figure 6.3

shows an overview of our hardware set-up5 used for obtaining the input images of the

objects; an array of light sources is mounted on a turntable. These light sources are equally

spaced in elevation, and the set of light sources is rotated around the objects in azimuthal.

In the case of the sheep and the Venus examples, since those objects have an appearance

similar to that of a Lambertian surface, 36 input images of them are taken under a point

4 [56] is also a good reference to get insights into the bandwidth of a reflection kernel of various types of

objects in CURET database. This work discusses appropriate sampling resolutions to model appearance

of those objects based on their experiments as well.

5 Surface Reflectance Sampler, TechnoDream21 corporation
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Figure 6.3: Image acquisition set-up:an array of light sources is mounted on a turntable.

These light sources are equally spaced in elevation, and the set of light sources is rotated

around the objects in azimuthal.

light source positioned at equiangular grid points: θj = π(j+1/2)
6 , φk = 2πk

6 (j, k = 0, . . . , 5).

For the fish example, since it has a more complex appearance, 144 input images are taken

under a point light source at equiangular grid points : θj = π(j+1/2)
12 , φk = 2πk

12 (j, k =

0, . . . , 11). Based on the sampling theorem, coefficients Rm
l are computed up to the degree

l = 2 from the 36 images, and up to the degree l = 5 from the 144 images.

The first nine harmonic images obtained from those input images are shown in Fig-

ure 6.4. In spite of given discrete sets of the appearance of the objects, the obtained

harmonic images have complex and smooth shading that reflects the distribution of har-

monic lights in these examples.

To evaluate the accuracy of the recovered harmonic images, we took images of those
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objects under normal lighting conditions in our laboratory, including direct light sources

such as fluorescent lamps. Coefficients Lm
l in (6.5) representing the illumination condition

are computed from an omni-directional image of the scene taken by a camera with a fish-

eye lens in the same manner as described in [54]. Then appearance of the objects under

this illumination condition is synthesized from (6.7).

In Figure 6.5, the left column shows the real images of the objects and the right

column shows the synthesized appearance. The synthesized appearance of the objects

resembles that of the objects in real images, and this shows that the recovered harmonic

images provide a good representation of the appearance of the objects. The shoulder of

the plaster figure in the middle right image appears darker than that in the real image.

This is due to severe cast shadows observed in the input images that do not follow our

method’s assumption for convex objects.

To demonstrate how well the recovered harmonic images represent the appearance

of those objects under varying illumination, we synthesize their appearance from the re-

covered harmonic images under several natural illumination conditions provided by high-

dynamic range light probe measurements by [7]. Figure 6.6 shows the results. In this

figure, synthesized appearance changes dynamically depending on characteristics of the

illumination, and one can say from this that the proposed method succeeded in providing

a set of basis images representing appearance of those objects under varying illumination.

6.7 Conclusions

In this study, we have presented a novel method for analytically obtaining a set of basis

images of an object for arbitrary illumination from input images of the object taken under

a point light source. The main contribution of our work is that we have shown that a set

of lighting directions can be determined for sampling images of an object depending on

the spectrum of the object’s BRDF in the angular frequency domain such that a set of

harmonic images can be obtained analytically based on the sampling theorem on spherical

harmonics.
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Figure 6.4: Obtained harmonic images: positive values are shown in green, and negative

values are shown in red.
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Figure 6.5: Comparison between real images and synthesized images under complex illu-

mination
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Figure 6.6: Synthesized images of objects under natural illumination. The first row shows

illumination maps. The second, third and forth rows show synthesized appearance of

objects under the corresponding illumination map.



Chapter 7

Anti-aliasing Method for

Appearance Sampling of Real

Objects

There certainly is a situation where bandwidth of reflection kernels of an object is difficult

to predict, or where only a limited number of samplings of the function are obtainable

depending on a particular hardware set-up used for acquiring input images. In this chapter,

we carefully study the issues of aliasing in modeling appearance of real objects and extend

the method based on the sampling theorem described in Chapter 6 further for reducing

the artifacts due to aliasing, by substituting extended light sources for a point light source

to sample the reflection kernel of a real object.

7.1 Aliasing Caused by Insufficient Sampling

First, let us consider what kinds of artifacts we should expect when the function R(θ, φ)

has a lower or a higher bandwidth than N determined from the number of samplings

2N × 2N based on the sampling theorem.

Let B denote actual bandwidth of the function. Driscoll and Healy proved that the

error in spherical harmonics transformation, generally known as aliasing, is confined to

coefficients Rm
l of degree greater than or equal to |B − 2N | in [13]. This can be confirmed

by replacing the bandwidth N of the reflection function with B in (6.11).

From this, in the case where the function has bandwidth B lower than N (B < N),

111
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there is no aliasing for degree less than N +k for B = N−k. Since we compute coefficients

Rm
l for l < N , those coefficients are correctly computed. In this case, all of the coefficients

Rm
l for B ≤ l < N become 0.

In the case where the function R(θ, φ) has a bandwidth B higher than N (B > N),

error due to insufficient sampling of the function is confined to the coefficients of degree

l ≥ N − k for B = N + k. In this case, the coefficients Rm
l for l < N − k degree are

correctly computed. Therefore, closer to B we select N , smaller error in Rm
l we expect.

Next we show what happens when we have sufficient or insufficient samplings of the

function R(θ, φ) by using synthetic data. The function R(θ, φ) used here is a reflection

kernel for the Torrance-Sparrow reflection model with known reflection parameters (Kd =

{.62, .71, .62},Ks = 0.29, σ = 0.1).1 The surface normal and viewing direction for this

reflection kernel are set at the direction (θ = 0, φ = 0).

We computed the coefficients Rm
l up to the degree B = σ−1 ≈ 10 for this reflection

kernel from discrete samplings of R(θ, φ) at different sampling intervals: N = 200 (160000

sampling), N = 11 (484 samplings), N = 5 (100 samplings), N = 3 (36 samplings). The

computed coefficients are shown in Figure 7.1a)∼d). Here spherical harmonic coefficient

for given degree l and order m are represented using a single index r = l2 + l + m.

The horizontal axis represents the index r, and the vertical axis represents the computed

coefficients Rm
l . The number of samplings is shown for each graph, and a red arrow

represents the upper bound N determined from the number of samplings.

Figure 7.1e)∼h) are visualization of the reflection kernel R(θ, φ) reconstructed from the

computed coefficients Rm
l in (6.6) up to the degree l = 10 for the cases of N = 200, N = 11,

N = 5, and N = 3, respectively. Figure 7.1i) shows a reflection kernel reconstructed from

the coefficients up to the degree l = 2 for the cases of N = 3. In these figures, the

upper half of R(θ, φ) is visualized in a polar coordinate system with radius indicating

{θ|0 ≤ θ ≤ π/2}, and angle indicating {φ|0 ≤ φ < 2π} as illustrated in Figure 7.1j).

From Figure 7.1a) and b), we can see that the coefficients Rm
l obtained from 4N2 = 484

samplings are almost the same as those obtained from 4N2 = 160000 samplings, and the

R(θ, φ) is reconstructed correctly in both cases. This shows that a set of samplings for

N = 11 are sufficient to capture the appearance of a surface with this reflection kernel

1 Kd and Ks are constants for the diffuse and specular reflection components, and σ is the standard

deviation of a facet slope of a simplified Torrance-Sparrow reflection model.
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Figure 7.1: Experimental results using synthetic data: coefficients are computed from a

discrete set of f(θ, φ) sampled at different sampling intervals.
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under varying illumination. This follows what the sampling theorem tells us.

On the other hand, in the cases of N = 5 and N = 3 where N is smaller than B = 10,

the computed coefficients suffer from aliasing. It is important to note that the coefficients

Rm
l for l < N (the left side of the red arrow in Figure 7.1c) and d)) closely match the

coefficients obtained from sufficient samplings (Figure 7.1a)) while the coefficients Rm
l

for N ≤ l ≤ B (the right side of the red arrow) differ. As a result, distinct effects are

evident in the reflection kernel reconstructed from the coefficients up to the degree l = 10

(Figure 7.1g) and h)).

On the other hand, the reflection kernel reconstructed from the coefficients up to the

degree l = 2 for N = 3 shown in Figure 7.1i) does not show such effects while high

frequency components such as specularity are missing at the center. It follows from these

examples that it is appropriate to compute Rm
l for l < N only when 4N2 samplings of the

function are available. In this way, we can avoid annoying effects caused by Rm
l for N ≤ l

in the reconstructed function R(θ, φ).

7.2 Use of Extended Light Sources

The sampling theorem states that the higher the frequency content of an object’s ap-

pearance, the more input images are required to obtain a correct set of basis images. The

number of input images required may become extremely large in the case of highly specular

surfaces containing a large quantity of high frequency components in their reflection.

In this case, insufficient sampling of an object appearance will result in aliasing in the

basis images, and this will lead to undesirable artifacts in the synthesized appearance.

Since the number of input images provided for modeling an object’s appearance is usually

limited, an anti-aliasing framework for obtaining a set of correct basis images from an

insufficient number of object input images is needed. However, this aliasing problem has

not been carefully considered in previous studies.

In this section, we propose a novel approach for sampling the appearance of an object

under appropriately provided Extended Light Sources (ELS). The use of ELS for modeling

the shape and reflectance of an object was originally introduced in [46]. We extend their

analysis further in the angular frequency domain so that the harmonic images of an object

of arbitrary surface materials can be obtained without suffering from aliasing caused by
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insufficient sampling of its appearance.

Extended light sources (ELS) may be constructed by illuminating a spherical diffuser

with a point light source as illustrated in Figure 7.2. The use of ELS brings the following

three advantages:

Functioning as a low-pass filter: ELS have a radiance distribution that is similar to

that of the Gaussian function. This enables extended sources to function as a low-pass

filter when the reflection kernel of an object is sampled under ELS. From this, we are able

to model its appearance without suffering from aliasing.

Adjustable bandwidth: The distribution of ELS can be adjusted by changing the dis-

tance from the diffuser to a point light source. This enables us to adjust the bandwidth

of the ELS in the frequency domain.

Reducing saturation problem: When an object is illuminated by a point light source,

image intensities from its specular reflection components often become much greater than

those from its diffuse reflection components. Under ELS, the gap between image intensities

due to specular and diffuse reflection components are narrowed [46]. This helps avoid

saturation, so that we are able to observe both specular and diffuse reflection components

in the same image.

In the following, we consider the reflection kernel of an object sampled under ELS.

7.2.1 Radiance Distribution

First, the radiance distribution of ELS needs to be provided. The radiance distribution of

ELS is symmetric with respect to the point source direction and therefore has no azimuth

dependence around the point source direction. Accordingly, the radiance of the inner

surface of the diffuser E may be represented as a function of the elevation angle θ′e, that

is E(θ′e, φ′
e) = E(θ′e). Here θ′e represents the elevation angle defined with respect to the

direction of the point light source as shown in Figure 7.2.

Then E(θ′e) are computed from the analytic formula derived in [46] as

E(θ′e) =
CP [(S + H) cos θ′e − S]

[(S + H − S cos θ′e)2 + (S sin θ′e)2]
3
2

,

(7.1)
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Figure 7.2: ELS are constructed by a spherical diffuser and a point light source in the

same manner as described in [46].

where P denotes the radiance of the point source and C is a constant representing the

proportionality between the irradiance of the outer surface of the diffuser to the radiance

of its inner surfaces. As illustrated in Figure 7.2, S is the radius of the spherical diffuser,

H is the distance from the the diffuser’s surface to the point light source.2

Here the surface points on the diffuser within the range of θ′e < α can receive energy

from the point light source, and the effective range α is determined by the relationships

between S and H as

α = cos−1(
S

S + H
). (7.2)

7.2.2 Modified Reflection Kernel

Next, let us consider a reflection kernel R(θ, φ) sampled as an observed brightness of an

object surface when it is illuminated by ELS whose center is located at the direction (θ, φ).

Since radiance of the ELS are distributed over the spherical surface of the diffuser, the

modified reflection kernel seen under ELS, denoted as R′(θ, φ) is determined by computing

2 This formula is based on the condition that the spherical diffuser is ideal and thus incident energy is

scattered equally in all directions.
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the integral of the scene radiance resulting from illumination of the entire surface of the

extended source as

R′(θ, φ) =
∫ π

0

∫ 2π

0
R(Mφ

θ (θ′e, φ
′
e))E(θ′e) sin θ′edθ′edφ′

e, (7.3)

where Mφ
θ (·) is a rotation operator that rotates the distribution of the ELS E(θ′e) so that

its center (θ′e = 0) is located at the direction (θ, φ). In other words, the modified reflection

kernel R′(θ, φ) is determined by convolving the original reflection kernel R(θ, φ) with the

radiance distribution of the ELS E(θ′e) as illustrated in Figure 7.3.

R(Mφ
θ (θ′e, φ′

e)) and E(θ′e) in (7.3) can be expanded as a linear combination of spherical

harmonics:

E(θ′e) =
∞∑

n=0

EnY 0
n (θ′e) (7.4)

R(Mφ
θ (θ′e, φ

′
e)) =

∞∑
l=0

l∑
m=−l

Rm
l Y m

l (Mφ
θ (θ′e, φ

′
e)), (7.5)

where Rm
l and En denote coefficients in their spherical harmonic expansion. Then a

rotation formula for spherical harmonics is given in [52] as

Y m
l (Mφ

θ (θ′e, φ
′
e)) =

l∑
m′=−l

Dl
m,m′(θ)eImφY m′

l (θ′e, φ
′
e), (7.6)

where the term eImφ considers the rotation about φ, and the matrix Dl tells us how to

compute a rotated spherical harmonic as a linear combination of all the spherical harmonics

of the same order l.

Substituting (7.4) and (7.5), (7.3) becomes

R′(θ, φ) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

l∑
m′=−l

Rm
l EnDl

m,m′(θ)eImφ (7.7)

∫ π

0

∫ 2π

0
Y m′

l (θ′e, φ
′
e)Y

0
n (θ′e) sin θ′edθ′edφ′

e.

Then the orthonormality of the spherical harmonics tells us
∫ π

0

∫ 2π

0
Y m′

l (θ′e, φ
′
e)Y

0
n (θ′e) sin θ′edθ′edφ′

e = δlnδm′0,

and therefore

R′(θ, φ) =
∞∑

n=0

∞∑
l=0

l∑
m=−l

l∑
m′=−l

Rm
l EnDl

m,m′(θ)eImφδlnδm′0. (7.8)
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Figure 7.3: Modified Reflection Kernel obtained by convolving the original reflection kernel

R(θ, φ) with the distribution of the extended source E(θ′e).

Finally, from the characteristics of Kronecker delta (δij = 1 if i = j, and δij = 0 if i �= j),

the modified reflection kernel is obtained

R′(θ, φ) =
∞∑
l=0

l∑
m=−l

Rm
l ElD

l
m,0(θ)eImφ. (7.9)

The important point to note in (7.9) is that the modified reflection kernel R′(θ, φ) is

computed as a product of the coefficient Rm
l and El. This indicates that the modified

reflection kernel R′(θ, φ) is band-limited with the lower bandwidth between R(θ, φ) and

E(θ′e). Fortunately, it is not difficult to adjust the bandwidth of the ELS.
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7.2.3 Adjusting Bandwidth of Extended Light Sources

As has been noted above, ELS used in our approach have a distribution similar to that

of the Gaussian function, and their distribution and effective range are determined by the

radius S of a spherical diffuser and the distance H from the diffuser surface to a point

light source as shown in (7.1) and (7.2). In other words, the closer the point light source

is positioned to the diffuser, the narrower its range α becomes. This property of Extended

Light Sources enables us to specify their bandwidth.

The Fourier transform of the Gaussian function is known to lead to another Gaussian

function in the frequency domain. In addition, the standard deviation σf of the Gaus-

sian function in the frequency domain is known to become inversely proportional to the

standard deviation σs of the Gaussian function in the spatial domain. That is σf = 1
σs

.

Similarly, we can safely say that the Gaussian function defined on the unit sphere also

results in a half-Gaussian distribution of the coefficients, that is a Gaussian distribution

with a half range, in its spherical harmonic expansion.

To see how bandwidth of ELS changes depending on their α values, we synthetically

provide several radiance distributions of ELS with different α values from (7.1). The

coefficients El and the corresponding α of those extended sources are shown in Figure

7.4. In this figure, spherical harmonic coefficients for given degree l and order m are

represented using a single index r = l2 + l + m. The horizontal axis represents the index

r, and the vertical axis represents the computed coefficients El.

In each graph in this figure, the left side of a red arrow corresponds to the coefficients

up to the degree l = 8. The energy captured by spherical harmonics up to the degree l = 8,

denoted as P8 are also computed by sums of the squares of their respective coefficients

divided by the total squared energy of the transformed function. In this figure, we clearly

see that P8 becomes closer to 100% as their α values increase from 30 to 50 degrees.

Especially in the case of α = 50 degrees, more than 99% of the total energy is captured

by the spherical harmonics up to the degree l = 8, so it is reasonable to assume that the

extended source generated with α = 50 degrees is band limited with bandwidth l = 8. As

shown in this example, the bandwidth of ELS can be set by adjusting their effective range

α.
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7.3 Modeling Appearance by using Extended Light Sources

Based on the analysis provided in the previous section, we propose a novel scheme for

sampling the reflection kernel of an object by ELS with a properly adjusted range α. Here

we employ the efficient sampling theorem in spherical harmonics proposed in [40].

This sampling theorem tells us that spherical harmonics transformation of a band-

limited function with bandwidth B (Rm
l = 0 (l ≥ B)), can be computed by weighted sums

of 2B2 − B sampled function values based on Gaussian quadrature [51] as

Fm
l =

2π
2B − 1

B−1∑
j=0

2B−2∑
k=0

wjf(θj, φk)Y m
l (θj, φk), (7.10)

where the weights wj are weights of Gaussian quadrature, θj are Gaussian nodes in cos θ,

and φk = 2πk
(2B−1) are equally sampled in azimuth [40, 48].

In order to avoid aliasing caused by insufficient sampling of the appearance of an

object, we observe its reflection kernel under ELS whose bandwidth is properly adjusted

to B. By doing so, the modified reflection kernel R′(θ, φ) of the object sampled under the

ELS also becomes band-limited with the same bandwidth B as the ELS, and this enables

us to model the appearance of the object without suffering from aliasing caused due to

insufficient sampling of the original reflection kernel R(θ, φ).

7.4 Experimental Results

We have tested our proposed approach based on ELS by using both synthetic and real

data.

7.4.1 Synthetic Data

The reflection kernel R(θ, φ) of several surface materials are synthetically provided based

on the Ward isotropic reflection model [69] with known reflection parameters as shown in

Table 7.1. Based on the Ward reflection model, reflection kernel R(θ, φ) is computed as

R(θ, φ) =
Kd

π
+ Ks

1√
cos θ cos θo

exp(− tan2 γ(θ, φ)/σ2)
4πσ2

, (7.11)

where Kd and Ks are constants for the diffuse and specular reflection components, and σ is

the standard deviation of the surface slope. Here the surface normal and viewing direction
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for the reflection kernel are set at the direction (θn = 0, φn = 0) and (θo = 45, φo = 0)

respectively.

The ELS used in this experiment are generated with α = 50 degrees whose bandwidth is

equivalent to B = 9. This makes the modified reflection kernel R′(θ, φ) band-limited with

B = 9. Accordingly, the spherical harmonic coefficients R
′m
l of the band-limited function

R′(θ, φ) were obtained from a properly sampled discrete set of the function values (153

samplings for B = 9 in (7.10)).

The right columns in Figure 7.5, and 7.6 show the obtained reflection kernel for glossy

gray paper and lightly brushed aluminum surfaces respectively. b) shows computed coeffi-

cients R
′m
l , and d) and f) show the distribution of R′(θ, φ) reconstructed from the obtained

R
′m
l in (6.2) up to the degree l = 8.3

For reference, the left columns of these figures show the coefficients and distribution

of the original reflection kernel R(θ, φ). a) shows its coefficients computed from 100000

samplings of R(θ, φ), and c) and e) show its distribution computed by substituting the

reflection parameters into the Ward reflection model.

Comparing a) with b), while the magnitude of the coefficients is different because of

the multiplication with the coefficients of the ELS whose distribution is similar to that of

a half Gaussian function, the recovered R′m
l show almost the same distribution as that of

Rm
l . In Figure 7.7 a) and b), we also provide the low-frequency appearance of the original

reflection kernel for reference by substituting the coefficients Rm
l up to degree l = 8 into

(6.2). In other words, all coefficients with the index l > 8 of Rm
l are truncated in this case.

Comparing f) with the low-frequency appearance of the original reflection kernel in

Figure 7.7 a), the modified reflection kernel reconstructed by our method provides a good

Table 7.1: Reflection parameters for the Ward model.

Material kd ks σ

glossy gray paper .29 .083 .082

lightly brushed aluminum .15 .19 .088

3 d) shows R′(θ, φ) scanned in the line of {θ|0 ≤ θ ≤ π/2}, {φ|0 or π}, and f) shows the upper half of

the reflection kernel visualized in a polar coordinate system with radius indicating {θ|0 ≤ θ ≤ π/2}, and

angle indicating {φ|0 ≤ φ < 2π} .
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representation of the low-frequency appearance of the original reflection kernel, although

high-frequency appearance such as the specular peak in e) is blurred due to the approxi-

mation of the original reflection kernel up to the degree l = 8.

It is worth noting that almost no undesirable artifacts appear in the reconstructed re-

flection kernel R′(θ, φ) in f). This shows that the proposed method succeeded in computing

the coefficients R
′m
l of the modified reflection kernel from the discrete 153 samplings of

R′(θ, φ) without suffering from aliasing due to insufficient sampling of its appearance. In

contrast, as Westin et al. pointed out in [70], simply truncating all coefficients Rm
l with

l > 8 resulted in undesirable artifacts such as ringing in the reconstructed reflection. This

ringing is called the Gibbs phenomenon and is shown in Figures 7.7 a) and b).

In order to avoid the Gibbs phenomenon, Westin et al. progressively reduced the

magnitude of the coefficients according to a half Gaussian distribution of an empirically

determined width. Fortunately, the coefficients of the ELS used in our method have a

distribution that is similar to that of a half Gaussian distribution, as shown in Figure 7.4.

It follows from this that the use of ELS is desirable not only as a method of modifying the

original reflection kernel to be band-limited, but also for reducing the number of artifacts

caused by the truncation of the coefficients with index l ≥ B of the original reflection

kernel. 4

4 R′(θ, φ) is computed as a product of Rm
l , El, and Dl in (7.9). Since El and Dl are computable numbers,

we are able to recover Rm
l of the original reflection kernel from the set of modified reflection kernel R′(θ, φ)

if necessary.
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7.4.2 Real Data

Real images of abalone shellfish were taken under the physically constructed ELS appa-

ratus shown in Figure 7.8. Abalone shellfish is famous for its interesting structural colors

which alter greatly depending on viewing direction and illumination conditions. In this

set-up, 9 halogen lamps were positioned at Gaussian nodes in elevation, and an array of

these light sources were mounted on a turntable and rotated around the spherical dif-

fuser (an acrylic globe with a diameter of 35cm) by φk = 2πk

(18−1) , (k = 0, . . . , 16) degrees in

azimuth. Here the number of point light sources in elevation indicates that a modified

reflection kernel has to be band-limited with B = 9. Accordingly the distance between the

diffuser and the point light sources was adjusted so that the bandwidth of the constructed

ELS was set to B = 9.

In total, 153 input images of the abalone shellfish were taken to sample its reflection

kernel at each grid point (θj, φk). Then coefficients R
′m
l of this reflection kernel were

computed up to the degree l = 8 by substituting the observed reflection kernel R′(θj , φk)

into (7.10). The first nine harmonic images obtained by our method are shown in Figure 7.9

(a).

Figure 7.9 (b) shows the appearance of the abalone shellfish synthesized from (6.7)

under natural illumination conditions provided as high-dynamic range light probe mea-

surements by [7]. In this figure, the synthesized appearance of the abalone shellfish signif-

icantly changes depending on the characteristics of the given illumination distributions,

and this shows that the complex appearance of its structural colors are well represented

by a set of basis images obtained by our method.

In addition, the synthesized appearance of the shellfish is compared with its real ap-

pearance as seen under a normal lighting condition in our laboratory in Figure 7.8.5 In

this figure, the synthesized appearance highly resembles the real image.

As has been noted before, in the case of a highly specular surface, image intensities

from specular reflection components tend to be much greater than those from diffuse

reflection components. This is the reason why image intensities in the real image become

saturated in some specular regions. In general, the limited dynamic range of an image

taken with one shutter speed makes it difficult to model the appearance of highly specular

5 Coefficients Lm
l of this lighting condition are computed from an omni-directional image of the scene

taken by a camera with a fish-eye lens.
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Real Image

Synthesized Image

Figure 7.8: Comparison between real image and synthesized image under complex illumi-

nation. The appearance of the shellfish is modeled by using extended light sources.

surfaces. In contrast, the use of ELS contributes to reduce the high contrast between

image intensities from both specular and diffuse components. This helps us to observe

and model the appearance of highly specular surfaces from images taken at a single shutter

speed.
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Figure 7.9: (a) Obtained harmonic images: positive values are shown in green, and negative

values are shown in red. (b) Synthesized images of objects under natural illumination.

The first row shows illumination maps, and the second row shows synthesized appearance

under the corresponding illumination map.
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7.5 Conclusions

In this chapter we have demonstrated the effectiveness of using Extended Light Sources

(ELS) for modeling the appearance of an object under varying illumination. The use

of ELS for modeling the appearance of objects has the following advantages: (1) ELS

have the ability to function as a low-pass filter for sampling objects’ appearance, so basis

images of an object can be obtained without suffering from aliasing caused by insufficient

sampling of its reflection kernel, (2) ELS can reduce the high contrast between image

intensities from both specular and diffuse components. This helps us observe and model

the appearance from images taken at a single shutter speed, and (3) ELS can minimize

undesirable artifacts resulting from the truncation of spherical harmonic coefficients of

higher degrees. These advantages help provide basis images of an object from a limited

number of samplings of its appearance.

Our method can adequately synthesize the appearance of an object up to a certain

frequency. However, objects of high bandwidth such as a mirror illuminated by a point

light source are difficult to be adequately modeled. A future research direction of this

work would be to integrate other modeling techniques with the objective of recovery of an

object original reflection kernel.



Chapter 8

Summary and Conclusions

Conventional model-based rendering techniques have been intensively developed for syn-

thesizing the realistic appearance of computer graphics objects. Model-based rendering

techniques synthesize the appearance of objects based on empirically or analytically given

reflection models. To use these models, the geometric and photometric information about

the scene needs to be provided: the shapes of objects in the scene, their surface reflectance

properties, and the lighting condition of the scene where those objects are placed.

Surface reflectance properties greatly influence the appearance of an object. The ap-

pearance of a metallic surface is completely different from that of a matted surface even

under the same lighting condition. In addition, the appearance of an object changes sig-

nificantly under different lighting conditions. It is thus important to provide not only

appropriate surface reflectance properties of objects in a scene but also appropriate il-

lumination conditions so that the realistic appearance of the objects can be synthesized

under these illumination conditions. Nevertheless, the photometric information about a

scene tends to be manually provided by a user.

Since it is difficult to imagine the appearance of an object directly from reflectance

parameters, this input process of manually specifying its reflectance properties is normally

non-intuitive and thus time-consuming. The correct appearance of a scene is difficult

to achieve unless we stop relying on our instinct for adjusting reflectance parameters.

As for providing lighting conditions, a scene generally includes both direct and indirect

illumination distributed in a complex way, and it is difficult for a user to manually specify

such complex illumination distribution.

In order to overcome these difficulties in providing photometric information about a

131



Chapter 8. Summary and Conclusions 132

scene, techniques for automatically providing the photometric models of a scene have

been studied in the fields of both computer vision and computer graphics research. In

particular, techniques that use a set of images of a scene provided under different viewing

and/or lighting conditions for determining its geometric and photometric information are

called image-based modeling.

This thesis addressed two issues of image-based modeling for synthesizing the photore-

alistic appearance of an object under natural illumination conditions: capturing real-world

illumination, and modeling complex appearance of real objects for variable illumination.

Regarding the first issue of capturing and modeling real-world illumination, both of an

image-based approach and an inverse lighting approaches were studied.

8.1 Modeling Real-World Illumination

The technique that measures real-world illumination conditions from photographically

acquired images of the scene is called image-based lighting. While image-based lighting

techniques have been developed successfully with practical applications, two difficulties

still remained to be solved: how to construct a geometric model of the scene, and how to

capture a wide field of view of the scene.

In Chapter 2, we confronted these two difficulties and proposed an efficient method for

automatically measuring illumination distribution of a real scene by using a pair of omni-

directional images taken by a CCD camera with a fisheye lens based on an omni-directional

stereo algorithm. In Chapter 3, we pursued the possibility of real-time rendering of syn-

thetic objects with natural shading and cast shadows onto a real scene whose illumination

condition was dynamically changing.

There has been another approach called inverse lighting in image-based modeling that

deals with an inverse problem of traditional model-based rendering. One of the main

advantages of inverse lighting over the former image-based lighting is that it does not

require additional images for capturing illumination of a scene, but uses the appearance

of objects located in a scene instead for recovering an illumination distribution of the

scene. Real scenes normally include both direct and indirect illumination distributed in a

complicated way, and this makes it difficult to analyze characteristics of the illumination

conditions of the scene from image brightness in inverse lighting.
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In Chapter 4, we demonstrated the effectiveness of using occluding information of

incoming light in estimating an illumination distribution of a scene. Shadows in a scene are

caused by the occlusion of incoming light, and thus contain various pieces of information

about the illumination of the scene. In our method, image brightness inside shadows

was effectively used for providing distinct clues to estimate an illumination distribution.

Chapter 4 further addressed two issues in inverse lighting. First, the method combined the

illumination analysis with an estimation of the reflectance properties of a shadow surface.

This makes the method applicable to cases where reflectance properties of a surface were

not known a priori. Second, an adaptive sampling framework for efficient estimation of

illumination distribution was introduced.

Later in Chapter 5, the amount of the information about the illumination distribution

of scene obtainable from a given image of a scene was discussed. In particular, two

main factors that controlled the stability of the illumination estimation from shadows

were analyzed: blocked view of shadows and limited sampling resolution for radiance

distribution inside shadows. Based on this analysis, a robust method was presented.

8.2 Modeling Appearances of Objects for Variable Illumi-

nation

Inverse rendering carries out the opposite procedures of model-based rendering to provide

object and illumination models of a real scene from photographically available information

of the scene. Once models of a scene are acquired, new image of the scene under novel

lighting and/or viewing conditions can be synthesized by using conventional model-based

rendering techniques.

On the other hand, the approach called image-based rendering directly uses the orig-

inal set of input images of a scene for producing new images of the scene under novel

conditions. Depending on which scene conditions should be modified, image-based ren-

dering techniques are classified into three categories: image-based render under novel

viewing conditions, image-based rendering under novel lighting conditions, and image-

based rendering under novel viewing and novel lighting conditions. In this thesis, the

second category, image-based rendering under novel lighting conditions was considered.

In contrast with model-based rendering techniques, image-based rendering techniques
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do not require full radiometric computation to synthesize the photorealistic appearance

of a scene. This makes the cost to produce new images of the scene independent of the

scene complexity. Image-based rendering, however, has a tendency to require many input

images of a scene to synthesize reasonably realistic appearance of objects in a scene. This

results in the requirement for a large amount of both computer memory and data storage.

While there may seem to be a large variety of possible appearances for a given object,

it has been demonstrated in previous research that changes in appearance of an object

for varying illumination can be represented with a linear subspace spanned by a set of

basis images of the object. A set of basis images spanning such a linear subspace is

often provided by applying principal-component analysis to the input images of an object

taken under different lighting conditions. Since little is known about how to sample the

appearance of an object in order to obtain its basis images correctly, a large number of

input images taken by moving a point light source along a sphere surrounding the object

are generally provided.

Recent investigations in frequency-space analysis of reflection have shown that the

appearance of an object under varying complex illumination conditions can be well rep-

resented with a linear subspace spanned by basis images of the object, called harmonics

images, each of which corresponds to an images of the object illumination u under har-

monics lights whose distribution are specified in terms of spherical harmonics.

In Chapter 6, we presented a method for analytically obtaining a set of harmonics

images for varying illumination from input images of the object taken under a set of point

light sources. The main contribution of our work is that we show that a set of lighting

directions can be determined for sampling images of an object depending on the spectrum

of the object’s BRDF in the angular frequency domain such that a set of harmonic images

can be obtained analytically based on the sampling theorem on spherical harmonics.

Using those sampling directions determined from the sampling theory, we are able to

obtain harmonic images by using a significantly smaller number of input images than other

techniques that do not take into account a relationship between a spectrum of BRDFs and

a sampling density of illumination directions. In addition, unlike other methods based on

spherical harmonics, our method does not require the shape and reflectance model of an

object used for rendering harmonics images of the object synthetically. Thus, our method

can be easily applied to determine a set of basis images for representing the appearance
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change of a real object under varying illumination conditions.

The sampling theorem, however, states that the higher the frequency content of an

object’s appearance, the more input images are required to obtain a correct set of basis

images. The number of input images required may become extremely large in the case of

highly specular surfaces containing a large quantity of high frequency components in their

reflection.

In this case, insufficient sampling of an object appearance will result in aliasing in the

basis images, and this will lead to undesirable artifacts in the synthesized appearance.

Since the number of input images provided for modeling an object’s appearance is usually

limited, an anti-aliasing framework for obtaining a set of correct basis images from an

insufficient number of object input images is needed. Nevertheless, this aliasing problem

has not been investigated in previous studies.

In Chapter 7 we carefully studied this issue of aliasing and extend the method based

on the sampling theorem further for reducing the artifacts due to aliasing, by substituting

extended light sources (ELS) for a point light source to sample the reflection kernel of

a real object. The use of ELS for modeling the shape and reflectance of an object was

originally introduced in [46]. We extended their analysis further in the angular frequency

domain so that the harmonic images of an object of arbitrary surface materials can be

obtained without suffering from aliasing caused by insufficient sampling of its appearance.

The use of ELS has the following advantages. ELS have a radiance distribution that is

similar to that of the Gaussian function, and this enables extended sources to function as

a low-pass filter when the appearance of an object is sampled under them. This enables us

to obtain a set of basis images of an object for varying illumination without suffering from

aliasing caused by insufficient sampling of its appearance. In addition, ELS can reduce

high contrast in image intensities due to specular and diffuse reflection components. This

helps avoid saturation so that we are able to observe both specular and diffuse reflection

components in the same image taken with a single shutter speed.

Once a set of basis images of an object is obtained, its appearance under natural

illumination conditions can be synthesized simply as a linear combination of these basis

images whose linear coefficients are computed from the given lighting conditions, and

these lighting conditions can be modeled by our proposed image-based or inverse lighting

methods.
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Our method can adequately synthesize the appearance of an object up to a certain

frequency. However, objects of high bandwidth such as a mirror illuminated by a point

light source are difficult to be adequately modeled. A future research direction of this

work would be to integrate other modeling techniques with the objective of recovery of an

object original reflection kernel and to model appearances of objects seen from arbitrary

viewing directions.
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Chapter 9

Appendix: Non-Photorealistic

Shading Model For Artistic

Shadings

As an application of our proposed inverse lighting method described in Chapter 4, we

present a new technique for superimposing synthetic objects onto oil paintings with artistic

shadings that are consistent with those originally painted by the artists.

In a colored medium such as oil painting, artists often use color shift techniques for

adding some artistic tones to their paintings as well as for enlarging their dynamic ranges.

For instance, in the painting by Vincent van Gogh shown in Figure 9.2, a non-photorealistic

blue to white color transition is observed inside shadows cast by the book placed on the

wooden table. Those kinds of shadows cannot be synthesized by using traditional rendering

techniques.

In this chapter, we attempt to determine the mechanisms for color shifts performed by

artists and to automate their processes so that we can superimpose onto paintings synthetic

objects that have consistent shadings. To discover how intrinsic color shifts were performed

by artists, we first study characteristics of shadows observed both in real scenes and in

paintings. In particular, we analyze HSV (hue, saturation, value) color distributions inside

shadows observed in paintings. We then adapt the acquired mechanisms to superimpose

synthetic objects with consistent shadings onto oil paintings.
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9.1 Shadows in Real Scenes

From (4.5), the influence of an object onto another object surface in a real scene can

be considered as follows. First, scene radiance r(θe, φe) of a surface point viewed from

the direction (θe, φe) is computed in the case where there is no object that occludes any

incoming light at the surface point (Figure 9.1 (a)).

r(θe, φe) =
n∑

i=1

f(θi, φi; θe, φe)L(θi, φi) cos θi (9.1)

where n is the number of sampling directions of illumination radiance, and L(θi, φi) is the

illumination radiance per unit solid angle δω = 2π/n coming from the direction (θi, φi).

Second, scene radiance r′(θe, φe) at the surface point in the case where an object in

the scene occludes some of the incoming light is computed as (Figure 9.1 (b)).

r′(θe, φe) =
n∑

i=1

f(θi, φi; θe, φe)L(θi, φi)S(θi, φi) cos θi (9.2)

where S(θi, φi) represents the occlusion of incoming light L(θi, φi) by the object.

Then, the ratio of r′ to r is computed. This ratio represents how much of the radiance

at the surface point would still be preserved if the object were to be placed in the scene.

We refer to r′
r as the shadow ratio.

Let I be a color of each surface point we observe in an image of the scene in case of r.

Then by multiplying the shadow ratio r′
r to I, the color I ′ that would be the color of the

surface if there were an object placed in the scene can be computed as

I ′ = I
r′

r
(9.3)

Note that I ′ always becomes proportional to r′
r , and I′

I is always equal to r′
r .

r
(b)
r’

(a)

Figure 9.1: Scene radiance (a)without objects (b)with objects.
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9.2 Shadows in Oil Paintings

There are some rules in conventional paintings, such as perspective, anatomy, and mod-

eling with a scene with darker shadows. The impressionists attempted to break some of

these rules. In particular, they changed the color of shadows such as gray or black to com-

plementary hues. Therefore, image brightness observed inside shadows in their paintings

changes differently from that observed in real scenes. We clearly see this in the painting

by Vincent van Gogh shown in Figure 9.2, as a non-photorealistic blue to white color

transition observed inside shadows cast by the book placed on the wooden table.

If we superimpose a synthetic object onto an oil painting without considering the color

modifications performed by an artist, the rendered appearances and shadows of the syn-

thetic object result in something quite different from those originally painted by the artist.

Thus it is essential to first determine the intrinsic mechanisms for color modifications per-

formed by an artist and then to use them for rendering a synthetic object superimposed

onto the input painting.

Figure 9.2: “Still Life: Drawing Board, Pipe, Onions and Sealing-Wax” by Vincent van

Gogh.
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9.2.1 Color Modification Function

It is known that artists sometimes prefer to use the HSV (hue, saturation, value) color

model than other models such as RGB (red, green, blue) or CMY K (cyan, magenta,

yellow, black), because of the similarity of the HSV color model to the way humans

perceive color. From this, we analyze color modifications made by artists using the HSV

color model.

Figure 9.3 shows the HSV color of the painting by Vincent van Gogh. Images contain-

ing each component of HSV are referred to as Himage, Simage, and Vimage respectively.

In the Himage and the Simage of the painting by Vincent, we see that the hue and satu-

ration of the painting greatly change inside the shadows cast by the objects on the table.

From this, it seems reasonable to suppose that the changes in hue and saturation are

related to the shadow ratio of corresponding surface points on the shadow surface.

In this study, we define a modification function Fh( r′
r ) that represents the change in

hue for a particular shadow ratio r′
r as

Fh(
r′

r
) = h′ − h, (9.4)

where h represents the hue observed for a surface point when its scene radiance is r, and h′

represents that observed for a surface point when its scene radiance is r′. In other words,

the function Fh( r′
r ) shows how the hue of the surface is shifted when the scene radiance

of the shadow surface changes from r to r′.

Similarly, the changes in saturation and value are defined as

Fs(
r′

r
) =

s′

s ,
(9.5)

Fv(
r′

r
) =

v′

v .
(9.6)

Here s and v represent the saturation and value for a surface point with its scene radiance

r, and s′ and v′ represent those for a surface point with its scene radiance r′.



Chapter 9. Non-Photorealistic Shading Model For Artistic Shadings 148

hue

saturation

value

Figure 9.3: Color conversion from RGB (red, green, blue) to HSV (hue, saturation, value).
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9.3 Obtaining Color Modification Function for a Painting

We analyze mechanisms for the color modification performed by an artist as described in

the following steps.

1. We select an occluding object and a shadow surface in an input painting. Then the

3D shapes of the occluding object and the shadow surface are provided by using the

same modeling tool as in Chapter 4 for this purpose (Figure 9.4).

2. The shadows cast by the occluding object in the Vimage are used for recovering an

illumination distribution of the scene by using the method described in Chapter 5.

Assuming that there are only white light sources in the scene, what we need to

estimate is the radiance of those light sources.1 We also assume the shadow surface

to be Lambertian, and the diffuse parameter is set to be the pixel value of the

brightest point on the shadow surface.

3. Cast shadows of the occluding object are simulated by using the estimated illumina-

tion distribution. Assuming uniform Lambertian reflectance on the shadow surface,

the hue of the shadow surface, h in (9.4) is set to be the pixel value of a surface

point in the Himage where its scene radiance is r.2 Similarly, the saturation and

value of the shadow surface, s and v in (9.5) and (9.6), are set to the pixel values of

this surface point in the Simage and the Vimage respectively.

4. For other points on the shadow surface, their shadow ratios r′
r are computed based on

the scene geometry and the estimated illumination distribution of the scene. Then

their h′, s′, and v′ that are observed values in Himage, Simage, and Vimage respec-

tively, are substituted into (9.4), (9.5), (9.6), and the function values Fh( r′
r ), Fs( r′

r ),

and Fv( r′
r ) are stored in the computer ’s memory for the given shadow ratio r′

r .

5. Using all points in the painting, we are able to obtain a set of function values for

different shadow ratios. This enables us to analyze how the color modifications were

made by the artist as the shadow ratio changes. Finally, for each of Fh( r′
r ), Fs( r′

r ),

1 Since no knowledge of how ratio conversions work in the painting is available at first, an assumption

regarding the color of light sources is required.
2 In other words, h shows the hue of a surface point on the shadow surface where none of the objects in

the scene occludes any incoming light at this surface point.
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and Fv( r′
r ), we compute a parametric function that enables us to perform the color

modifications made by the artist using a small number of parameters (Section 9.3.2).

Figure 9.4: Reconstruction of the scene: (a) original photograph with marked edges indi-

cated, (b) recovered scene geometry, (c) textured-mapped view from a different viewing

position.
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9.3.1 Obtained Color Modification Functions

Figure 9.5 numerically shows the color modifications made by Vincent van Gogh (left) and

by Rembrandt (right). In the plots shown in this figure, the horizontal axis represents the

shadow ratio r′
r within the range of 0.0 to 1.0, which represents how the surface radiance

at the surface point would be changed if we place the occluding object in the scene. The

vertical axis represents function values Fh( r′
r ), Fs( r′

r ), and Fv( r′
r ) for the corresponding

shadow ratio r′
r respectively.

In the plot of Fh( r′
r ) obtained from the painting by Vincent van Gogh, the hue of

the painted shadows changes gradually from the color of the wooden desk (yellow) to its

complementary hue (blue) as the shadow ratio gets closer to 0.0. Also, its saturation

changes non-linearly as we seen in the plot of Fs( r′
r ) when the shadow ratio is around

0.6. These are reasons why we see a gradual blue to white color transition inside shadow

regions in the painting by Vincent van Gogh.

In contrast, in the case of the painting by Rembrandt that gives with a realistic de-

scription, the hue and saturation of the shadow surface do not change much, and the plot

of Fv( r′
r ) shows a linear transition. A Lambertian surface normally shows a similar plot

in a real image.

9.3.2 Approximating Color Conversion Functions

We derive functions that simulate the modifications performed by an artist so that we

can automatically superimpose synthetic objects onto his or her painting with consistent

shadings.

The function to be used for approximating artists’ color modifications is defined as

fc(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 (9.7)

c = h, s, v

where x corresponds to a shadow ratio.

From the plots Fh( r′
r ), Fs( r′

r ), and Fv( r′
r ) obtained above, the coefficients a0, a1, a2, a3, a4, a5

are estimated by minimizing the sum of the squared difference between the observed values

Fc( r′
r ) and the computed function values fc( r′

r ) in (9.7) for a set of shadow ratio r′
r . The
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Figure 9.5: The color modifications made by Vincent van Gogh and Rembrandt: f(r′
r )

show the estimated functions that approximate the original plots.
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objective function Ec to be minimized is thus defined as

Ec =
n∑

i=0

(Fc(xi) − fc(xi))2 (9.8)

c = h, s, v

where n is the number of samplings of shadow ratios.

In our experiments, this objective function Ec is minimized with respect to the co-

efficients a0, a1, a2, a3, a4, a5 by using a standard MATLAB function to obtain the best

estimation of those coefficients.

The gray lines in Figure 9.5 show plots computed from the estimated parametric func-

tions of the paintings by Vincent van Gogh and Rembrandt. In these figures, we can see

that the estimated functions approximate the original plots fairly well.

9.4 Superimposing Synthetic Objects onto Paintings

Based on the modification functions we obtained so far, a synthetic object is superimposed

onto a painting by using the ray casting algorithm as follows:

1. For each image pixel in the painting, a ray is extended from the projection center of

the painting through the pixel using the camera parameters obtained at the modeling

step of the scene geometry.3

2. If the ray intersects a synthetic object, we consider that the pixel corresponds to

a point on the synthetic object surface and compute a color to be observed at the

surface point under the estimated illumination distribution of the scene. Then the

computed color is stored in the pixel as the surface color of the synthetic object at

the pixel (Section 9.4.1).

3. Otherwise, we consider that the pixel corresponds to a point on a object surface

originally painted by the artist referred to as the painted surface, and modify an

observed color at the point on the painted surface so that shadows cast by the

synthetic object onto the painted surface are generated (Section 9.4.2 ).

3 At the modeling step of the scene geometry, the camera parameters of the painting are also recovered

by using a photo-modeling tool interactively.
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9.4.1 Rendering the Synthetic Object Surface

For computing the color on the synthetic object surface, we first compute surface radiance

r and r′ at the surface point under the estimated illumination distribution from (9.1) and

(9.2), respectively, to obtain a shadow ratio r′
r at this surface point.4

Then the function values Fc( r′
r )(c = h, s, v) are computed by assigning the obtained

shadow ratio r′
r to the modification function fc( r′

r ) in (9.7). This color modification is

necessary to take self-occlusions of the synthetic object into consideration. In addition,

h, s, and v of this surface point are computed for the case where the irradiance of this

surface point is r.

Finally, we obtain h′, s′, and v′ that would be the color of the surface point in the case

where its surface radiance becomes r′ and the color modifications were made by the artist

according to this shadow ratio as

h′ = h + Fh(
r′

r
) (9.9)

s′ = sFs(
r′

r
) (9.10)

v′ = vFv(
r′

r
) (9.11)

Then the RGB color of this surface point is computed from h′, s′, v′ and stored in the pixel

as the surface color of the synthetic object at the pixel.

9.4.2 Shadows Cast by a Synthetic Object

In the case where the ray through an image pixel does not intersect with the synthetic

object, the pixel corresponds to a point on the painted surface, and the color of the pixel

needs to be modified so that shadows cast by the synthetic object are created on the

painted surface.

As in the previous section, we first compute surface radiance r and r′ to obtain a

shadow ratio r′
r at this surface point.5 Then, the values of Fh( r′

r ), Fs( r′
r ), and Fv( r′

r ) are

computed by assigning the obtained shadow ratio r′
r to the modification function f( r′

r ) in

(9.7).

4 Here the occlusion coefficients S(θi, φi) in (9.2) represent self-occlusions by the object.
5 The occlusion coefficients S(θi, φi) in (9.2) represent occlusions of incoming light by the synthetic

object at the painted surface.
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Finally, given h, s, and v of the painted surface, we obtain the color h′, s′ and v′ that

would be the color of the painted surface if the synthetic object were placed in the scene

from (9.9), (9.10), and (9.11) respectively.

9.5 Synthesized Results

Synthesized results are shown in Figure 9.6. In Figure 9.6 (b), a synthetic object with the

same shape as that of the occluding object was rendered on a synthetic surface with the

same shape and reflectance as the shadow surface. In this result, the shadows cast by the

synthetic object strongly resemble those of the occluding object in the original painting.

This shows not only that the estimated illumination distribution gives a good represen-

tation of the characteristics of the scene but also that the computed ratio conversion

functions work well.

We also superimposed a synthetic object of a different shape onto the scene in Figure 9.6

(c). In the images synthesized by our method, the synthetic object casts artistic shadows

on the wooden table that are similar to those of the other objects originally painted by the

artist, and this shows that the color modifications made by the artist are well approximated

by the color modification functions obtained by our method.
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Figure 9.6: Results: (a) input paintings, (b) Synthesized occluding objects and shadow

surfaces, and (c) Synthesized new objects superimposed into the painting.
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