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ABSTRACT

Recently, demands for synthesizing realistic human motions are rapidly in-
creasing in computer graphics (CG) and robotics fields. One of the easy solu-
tions to this issue is to use a motion capture system. However, it still remains
difficult to capture the motion data that animators really want, and most prior
work aimed to solve this problem by editing motion capture data, seamlessly
blending or connecting motion capture data sets, or modifying them according
to physical properties.

In most cases, human movements, however, are induced by external signals:
people first receive visual information such as environmental obstacles from
eyes, or audio information such as speech or music from ears, and then recognize
essential information or feel some emotions from the obtained information, and
finally perform movements. Considering these aspects makes it possible to
automatically synthesize more human-like motion, and, despite this possibility,
only a few methods considering these aspects have been developed.

To meet this need, we are focusing on dance performance as an experimen-
tal subject. Dance performance strongly depends on musical features such as
rhythm, speed, mood, intensity, or genre of played music recognized by dance
performers, and is well-suited to the issue. The ultimate goal of our study is to
realize dancing-to-music ability for CG characters and humanoid robots.

This dissertation describes three novel studies.
The first study is to analyze the relationship between motion and musical

rhythm. According to observation of human dance motion, motion rhythm is
represented with stop motion called a keypose, at which dancers clearly stop their
movements, and the motion rhythm is synchronized with musical rhythm to per-
form dance performance. The proposed method aims to reveal the relationship
and consists of music analysis step that estimates musical rhythm, and motion
analysis step that extract keypose candidates. By integrating these information,
keyposes that are very similar to dancers’ understandings are extracted.

The second study is to model how to modify upper body motion based on the
speed of played music. When we observed structured dance motion performed
at a normal music playback speed and motion performed at faster music play-
back speed, we found that the detail of each motion is slightly different while
the whole of the dance motion is similar in both cases. This phenomenon is
derived from the fact that dancers omit the details and perform the essential
part of the dance in order to follow the faster music speed. To prove this, we
analyzed the motion differences in the frequency domain, and obtained two in-
sights on the omission of motion details: (1) The keyposes mentioned in the first
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study are preserved, and (2) High frequency components are gradually reduced
depending on the musical speed. Based on these insights, we modeled the mo-
tion modification using musical rhythm and kinematic constraints that humans
have. We show the effectiveness of our algorithm through experimental results.
Additionally, we also developed some applications for CG character animation
and humanoid robot motion generation.

The third study is to automatically synthesize dance performance that is well
matched to input music. People feel various emotions depending on musical
mood. For example, people feel quiet and relaxed when listening to relaxing
music such as a ballad, and they feel excited when listening to intense music
such as hard rock music. We observed dance performance, especially original
dance, and found that the same is often true for dance performance. Based
on this, we designed an algorithm to synthesize new dance performance by
assuming the relationship between motion and music rhythm mentioned in the
first study, and the relationship between motion and music intensity. As for
motion synthesis step, we propose two methods: a globally optimal method
and a locally optimal method. Users can select one of them depending on their
purposes.

Our studies have many advances over prior work on human motion analysis
and synthesis. They contribute to not only entertainment systems of CG anima-
tion and humanoid robots, but also applications for digital archive of intangible
cultural heritages.
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論文要旨

近年コンピュータグラフィクス (CG)やロボティクスの分野では，自然な人体動
作を生成することの需要が高まってきている．モーションキャプチャシステムはそ

の解決策の一つであるが，アニメータが本当に必要としている動きを得ることは依

然難しく，得られたモーションキャプチャデータをさらに加工，編集しなければな

らないケースが多い．そのため既存の研究では一つの動きデータを加工する手法

や，複数の動きデータを滑らかに連結する手法，力学的拘束を満たすための動作変

形手法などが主に提案されてきている．

しかし実際の人間の行動を観察すると，まず環境などの視覚情報や音声・音楽な

どの音響情報を知覚し，そしてその情報の中からから必要なもののみを抽出したり

情報に対する感情が生まれ，その結果行動を起こす場面が多い．このような人間の

情報抽出能力や感情などを考慮した人体動作の生成手法が求められてきているにも

かかわらず，着手されているものは非常に少ない．

そこで本研究では主に舞踊動作を対象とし，動作と音楽の双方から舞踊動作を

観察・解析し，得られた知見を基に新たな舞踊動作を生成する手法について提案す

る．舞踊においては，演者が演奏されている楽曲からそのテンポ，リズムの早さや

曲調，盛り上がり，ジャンルなどの情報を抽出し，それらを基に動作を構成する．

そのため舞踊動作は人間の認識能力とそれに基づく動作を解析・生成するのに最も

適した研究題材の一つである．

本論文では以下に示す三つの手法について提案する．

一つ目の研究では動きのリズムと音楽のリズムとの関係に関する解析手法を提案

する．実際の舞踊を観察してみると，動きのリズムは「留め動作」，すなわち動き

が静止している状態によって表されることが多く，演者は留め動作を音楽のリズム

に合わせることで舞踊を披露している．本手法では，最初に実際の舞踊動作データ

から手，足，または重心がほぼ静止している時刻を求めて留め動作の候補点とし，

また動作計測時に使われた楽曲データから「音がどのくらいの強さで発音された

か」を示す発音成分を抽出し，その周期性から音楽のリズムを推定する．そして双

方の情報を考慮することで，舞踊動作のキーポーズを抽出する手法について述べ

る．また実験により動きの留め動作と音楽のリズムとの間に強い相関性があること

だけでなく，本手法の結果が実際の舞踊演者の理解と近いことを示す．

二つ目の研究は楽曲の速さに応じて生じる動きの変化のモデル化手法を提案す

る．ある型の決まった舞踊動作を 1.0倍の音楽再生スピードに合わせて演じた場合
と 1.5倍の再生スピードに合わせて演じた場合とを比較してみると，大局的に見れ
ば同じ舞踊動作をしていても，局所的に見るとわずかではあるが動きの違いが見ら

れる．これは楽曲の速さに追従するために動作の細部を省略し，本質の部分のみを

残そうとした結果であると考えられる．そこでこれらの動作列を周波数領域で解析

した結果，一つ目の研究で得られた留め動作が保存されること，動きが速くなるに

つれて高周波成分から省略されていくこと，の二つの知見が得られた．この観察結

iii



果を基に，実際にリズムの速さに基づく動きが変化する様子をモデル化し，実験に

よってその有効性を示す．またCGアニメーションやヒューマノイドロボットにお
けるアプリケーション例も示す．

三つ目の研究では楽曲の曲調が舞踊動作に与える影響について観察を行い，楽

曲の曲調に合った舞踊動作を自動生成する手法を提案する．人は音楽を聞いてい

る間，その楽曲の曲調や激しさなどからさまざまな感情を得る．例えばロックなど

の激しい音楽を聴いている場合は感情が高揚することが多く，またバラードなどの

ゆったりとした音楽を聴いている場合はリラックスした気分になる．実際に創作舞

踊を例として観察してみると，楽曲の盛り上がっている部分では舞踊が激しくな

り，また落ち着いた曲調の部分では落ち着いた舞踊が披露されている場面が多いこ

とが分かった．そこで，一つ目の研究で得られた音楽リズムと留め動作の相関性に

加え，音楽の盛り上がりと動きの盛り上がりの間にも相関があると仮定し，入力し

た楽曲の特徴と合った舞踊動作を生成する手法を提案する．本研究では，動作生成

にはローカルな最適解探索方法とグローバルな最適解探索方法の二種類を用意し，

目的に応じた使い分けを可能としている．実験を通して，あたかもCGキャラクタ
が楽曲に合わせて表現豊かな舞踊動作を演じているかのような結果が得られた．

以上これを要するに，本論文では，舞踊動作を研究対象とし，人間の認識・知覚

能力を基にした舞踊動作の解析・生成に関する取り組みがなされており，舞踊動作

の肝となる留め動作に関する解析手法，楽曲リズムの変化に伴う動きの変化のモデ

ル化手法，楽曲の特徴に合った舞踊動作の自動生成法が提案されている．また本研

究の成果はエンターテイメントシステムとして活かされるだけでなく，失われつつ

ある無形文化財のアーカイブ化への応用なども期待され，社会上・実益上の観点か

ら見ても寄与するところが大きい．
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Chapter 1

Introduction

1.1 Background

Recent demand for realistic-looking human motion is rapidly increasing in
the fields of computer graphics (CG) and robotics. One of the easy solutions to
this problem is to use a motion capture system, which captures precise position
data of markers attached to parts of the human body. Such data always has
physical consistency without any false artifacts such as “foot-skating”. How-
ever, it still remains difficult to capture the motion that animators really want,
because of shortcomings in this data; for example, there are differences in body
size between characters and actual performers. To solve this problem, most prior
work aimed to either edit motion capture data [BW95, WP95, Gle98, LS01], to
seamlessly blend [WH97, KG03] or connect [KGP02, AF02] them, or to mod-
ify them according to physical properties [TSK00, KG02] or kinematic con-
straints [PHRA02, RNKI06].

In most cases, however, human movements are induced by external sig-
nals: people first receive visual information such as environmental obstacles
from eyes, or audio information such as speech or music from ears, recognize
essential information or feel some emotion from the obtained information, and
finally perform movements. Consideration of these front-end human actions
makes it possible to automatically synthesize more human-like motion. De-
spite this possibility, only a few methods considering these aspects have been
developed [PO03, SDO∗04, SMK05].

To meet this need, we are focusing on dance performance as an experimen-
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tal subject. Dance performance strongly depends on musical features such as
rhythm, speed, mood, intensity, or genre of played music recognized by dance
performers, and is well-suited to the kind of research. In particular, our subject is
Japanese folk dance. Japanese folk dance is very semantic; e.g. a hand trajectory
might symbolize the shape of a mountain, and most previous methods have been
developed to analyze these semantics based on historical context information.
Unfortunately, Japanese folk dance is disappearing. There are fewer trained
dancers, and very few methods to analyze the key features of this form of dance.
It is becoming increasingly important to archive dance performance alongside
analysis of the key features of each dance performance. Our approaches can be
very useful for this purpose.

The final goal of our studies is to realize dancing-to-music ability for CG
characters and humanoid robots. For dance analysis and synthesis, we combine
motion capture data and musical wave signals. Our approach consists of three
main steps: motion analysis, music analysis, and motion synthesis based on the
results of the previous two steps, as shown in Figure 1.1.

In this dissertation, we have proposed and developed three novel methods
to analyze and synthesize dance performance.

Analysis of the Relationship between Motion and Musical Rhythm

We propose a method to analyze the relationship between motion and mu-
sical rhythm. According to observations of dance performance, motion rhythm
is represented with a stop motion called a keypose, at which dancers clearly stop
their movements; this allows dance movements to become synchronized with
a performance’s musical rhythm. In other words, motion rhythm has a strong
dependence upon musical rhythm. The proposed method aims to reveal this
relationship. It consists of a music analysis step that estimates musical rhythm
and a motion analysis step that extracts keypose candidates. By integrating the
extracted information, keyposes that are very similar to dancers’ understandings
are extracted.

Motion Synthesis Based on the Relationship between Motion Style and Mu-

sical Speed

We propose a method to model how to modify upper body motion based
on the speed of played music. When we observed structured dance motion
performed at a normal music playback speed versus motion performed at faster

2



SynthesisSynthesisSynthesis

Music performanceMusic performance

Rhythm
Tempo
Mood
etc.

Musical features

Rhythm
Tempo
Mood
etc.

Musical features

AnalysisAnalysis

Motion sequenceMotion sequence

Stop motion
Style

Excitement
etc.

Motion features

Stop motion
Style

Excitement
etc.

Motion features

AnalysisAnalysis

Dance-to-music performance

Figure 1.1: Our goal: to realize dance-to-music ability for CG characters and
humanoid robots. Our approach consists of three main steps: motion analysis,
music analysis, and motion synthesis based on the results of the previous two
steps.
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music playback speed, we found that the details of each set of motions, which
is generally called style such as individual differences, vary slightly, while the
whole of the dance motion are quite similar. This phenomenon arises from the
fact that during faster music speed, dancers tend to omit details in order to
perform the essential parts of the dance. We characterized motion differences
at different speeds in the frequency domain, and thereby obtained insights into
real dancers’ omission of motion details. Based on these insights, we propose a
novel method of modeling this motion modification, and develop some applica-
tions useful in CG character animation and humanoid robot motion generation.
The experimental results look very natural, indicating the effectiveness of our
method.

Motion Synthesis Based on the Relationship between Motion Excitement and

Musical Intensity

We propose a method to automatically synthesize dance motion that is well
matched to input music. It is based on the fact that people feel various emotions
depending on the mood expressed by the music. For example, people feel quiet
and relaxed when listening to relaxing music such as a ballad, and they feel
agitated or excited when listening to intense music such as hard rock music. We
observed dance performances, especially original dance, and found that the same
is often true for dance performance. Considering both rhythm and intensity, we
design an algorithm to synthesize dance-to-music human motion. The experi-
mental results indicate that our method effectively creates dance performance as
if a character were listening and expressively dancing to the music.

1.2 Thesis Overview

Chapter 2 introduces an analysis method to extract the keypose by extracting
stop motion and musical rhythm. For musical rhythm estimation, an onset
component, which shows how much spectral power has increased from the
previous time frame, is calculated, and musical rhythm is then estimated from
the onset component sequence. As for motion information, it is detected when
end-effectors and center of mass are stopping their movements from their speed
sequences. Finally, the keyposes are detected by combining motion and musical
information.
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In Chapter 3, we first explain a motion decomposition method using a hi-
erarchical B-spline, which is key to accomplishing the modeling of the motion
modifications. By using a hierarchical B-spline technique, we observe the differ-
ences between motion performed at a normal musical speed and one performed
at a faster musical speed. Then we discuss how upper body motion is modi-
fied. Based on our obtained insights, we improve the hierarchical B-spline-based
method to decompose motion, and propose a new framework to synthesize new
upper body motion that satisfies kinematic constraints. We also show some
applications based on this method.

In Chapter 4, we first describe our observations on the relationship between
motion and musical intensity using original dance. We explain how to extract
motion and music intensity features. Motion intensity features are based on the
concept of Effort proposed by Laban, and musical intensity features are based
on the sound pressure level. We then explain two types of motion synthesis
method incorporating motion and musical features. One is a locally optimal
method, and the other is a globally optimal method. Users can select one of
the methods depending on their purposes. As for the globally optimal method,
we also develop a user interface that enables animators to control the synthesis
process by choosing desired motion segments well matched to music segments.
For example, animators can set key motions in the motion database for desired
music segments, such as setting a jumping motion to the final scene of the song,
or a punch motion to a particular sudden sound in the music.

In Chapter 5, we conclude this dissertation by summarizing our research
and contributions, and discussing possible future research directions.

5





Chapter 2

Keypose Extraction for Dance Structure

Analysis

2.1 Introduction

Recent improvements in motion capture system have enabled us to deeply
understand human motion. Understanding human motion and codifying this
understanding into a symbolic representation has been well studied in robotics
in order to manipulate a robot more effectively by using the symbolized motion.
Some previous methods have actually achieved such symbolization via observa-
tions of human motion [OTI∗00, TTO∗00, JM02, NNK∗05, ITTN04]. A symbolic
representation of human motion also makes it possible to archive intangible cul-
tural heritage such as Japanese folk dances [NNIY02]. However, most previous
method cannot recognize important features of human motion.

This chapter describes a novel method to analyze the relationship between
a dance performance’s stop motions and its musical rhythms in order to under-
stand the essential features of dance motion. Motion rhythm in dance is rep-
resented by stopping movements called stop motion; dancers often synchronize
their stop motions with musical rhythm. Our method directly analyzes motion
capture data for stop motions; our method also analyzes music wave signals
for musical rhythm. By integrating these two kinds of information, we extract
important and representative instances of dance motion that we call keyposes,
and reveal that motion rhythm has a strong connection with musical rhythm.

For musical rhythm estimation, an onset component which shows how much
spectral power increases from the previous time frame is calculated, and musical
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rhythm is estimated from the onset component sequence. As for motion infor-
mation, Flash et al. [FH85] found empirically that every motion is represented as
a sequence of motion segments, and that these motion segments are connected at
the points in time when end-effectors are stopping their motions. Accordingly,
our method detects when end-effectors and center of mass are stopping their
movements from their speed sequence data. Combining motion and musical
information allows the motion’s keyposes to be established.

2.2 Prior Work

In this section, we introduce some related work on the structural analysis
method of human motion, and musical rhythm tracking method.

2.2.1 Method of Keypose Extraction and Motion Structure Analysis

Generally, keyposes or keyframes show representative instances of anima-
tion sequences including video, and human motion. In computer graphics, they
are well known as important features to create computer animation. One of
the traditional methods for human motion animation is to interpolate transi-
tion motion between the keyposes specified at desired times by the animator,
and this function has been implemented in some commercial products such as
Maya [Auta] and MotionBuilder [Autb]. There are some improved methods to
synthesize 2D animation [CON05], or 3D animation including articulated figure
animation [CCYL04, IMH05].

These animation synthesis methods are a bottom-up approach: animation
is synthesized by specifying keyposes. On the other hand, keypose detection, or
motion structure analysis is a top-down approach: keyposes are extracted from
a previously existing constructed animation or real movement sequence. The
usefulness of detected keyposes depends upon the application; whether they
are being used for visualization vs. used by a performer. Assa et al. [ACC05]
proposed a method to summarize motion capture data by selecting keyposes.
Their requirement for selecting a keypose is that it must contain salient and
informative human motion for the sequence of interest; poses containing high
intensity are selected via their motion analysis method. This method was ex-
tended for the summarization of video that contains human activities by Caspi et
al. [CAMG06]. Sakamoto et al. [SKK04] proposed a motion retrieval method with
keyposes extracted through a self-organizing map (SOM). While these methods
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effectively extract visually salient postures and valuable motion data, they are
not sufficient for motion structure analysis: keyposes extracted by these methods
can be useful for visualization, but not always useful for performers desiring to
reproduce the same motion.

Keypose extraction specifically for motion structure analysis has been well
studied both in computer graphics and in robotics research. Li et al. [LWS02]
proposed a method to synthesize human animation using motion textons. Motion
textons are repetitive patterns in human motion, vs. the standard texton used in
image texture synthesis [MBSL99]. This work extracted motion textons through
linear dynamic systems (LDS) and synthesized human motion by modeling the
distribution of motion textons. Barbič et al. [BSP∗04] proposed a method to
segment human motion data into distinct behaviors using defined motion and
principal component analysis (PCA). These methods requires known motion
segments to segment and classify a new motion sequence; it is not applicable to
unknown motion sequences.

In robotics research, the goal of motion structure analysis method is to imi-
tate human motions with humanoid robots by symbolizing motion. Codifying
human motion into symbols makes it much easier to control a humanoid robots,
especially for balance maintenance. According to Flash et al. [FH85], every hu-
man motion consists of several motion primitives, which denote fundamental
elements of human motion, and these primitives are segmented by detecting in-
stances when hands and feet stop their movements. Ogawara et al. [OTI∗00] and
Takamatsu et al. [TTO∗00] proposed a method to extract motion primitives from
upper body motion and to imitate human motion using the extracted motion
primitives. Nakaoka et al. [NNK∗05] proposed a method to analyze the structure
of lower body motion in order to imitate human dance motion with a humanoid
robot. In whole body motion, there are many methods to segment human motion
by detecting the local minima of end-effector speed, and classify the motion seg-
ment into several clusters by calculating co-occurrence [OSU00, NNIY02], by us-
ing Hidden Markov Models (HMM) [ITTN04], or by applying a spatio-temporal
isomap for dimensionality reduction [JM02]. Kahol et al. [KTP03, KTP06] pro-
posed a motion segmentation method using approximated physical parameters
such as force, momentum and kinetic energy. Unfortunately, all these meth-
ods share a common problem in that too many keyposes/motion segments are
extracted because of the high degree of freedom of an articulated figure.

Regarding to dance motion specification, Labanotation [Hut77] proposed by
Rudolf Laban is one of the most popular dance notation systems. Figure 2.1
shows an example of Labanotation. Hachimura et al. [HN01] and Kojima et
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Figure 2.1: Labanotation: a notation method for dance motions. The top two
figures represent the notation symbols used for Labanotation; the bottom figure
represents an example of a notated dance sequence.
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al. [KHN02] proposed a method to convert input motion sequences into a La-
banotation score. Unfortunately, the information provided by the Labanotation
system is limited in that details of dancer postures are unspecified. Kahol et
al. [KTP04] extended their method for dance structure analysis. Based on this
method, Dyaberi et al. [DSJQ04] also proposed a method to analyze dance motion
structure using a topological graph structure. However, this method can only be
applied to certain forms of dance such as the Rondo: it is not a versatile method.

2.2.2 Musical Rhythm Tracking Method

Most humans have an ability to recognize rhythm and rhythm structure.
When people hear music, they will tap their foot, wave their hands in time
with the music, and can dance to the music even if they are children or begin-
ners. Thus, rhythm tracking is a fundamental research topic in the music signal
processing field, and has attracted many researchers.

In the case of MIDI signals, parameters of various musical features such as
onset, pitch and volume are easily obtained and useful in rhythm tracking [DH89,
Ros92a, Ros92b, DH94, LK94]. However it is very difficult to extract most of
these musical features from audio signals; this problem has been studied by
many researchers.

Most rhythm tracking methods for audio signals are based upon knowl-
edge of the onset component [Tod94, LZ03]). In particular, Goto [Got01] pro-
posed a real-time rhythm tracking method based on not only the onset compo-
nent, but also chord changes and drum sounds for rhythm structure analysis.
Scheirer [Sch98] proposed an offline rhythm tracking method for music which
has accel. and rit. and whose rhythm is not constant. There are methods which
can predict the musical rhythm by using Kalman filtering [CKDH01], applying
image processing techniques to musical spectral components [NT04], and using
a Bayesian network [SMS05].

2.3 Approach

An overview of our keypose extraction method is illustrated in Figure 2.2.
The inputs to our method are music signal in wave format, and motion capture
data that contains dance motion matched to the input music. We estimate
musical rhythm components from the onset components in the input music
signal, while we extract motion keypose candidates from the speed sequence of
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the musical rhythm. Finally, dance keyposes are extracted from the refined
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hands, feet, and center of mass motion. As there are initially too many motion
keypose candidates to be useful, and motion keypose candidates are refined by
considering musical rhythm; we extract useful keyposes from a refined subset
of motion keypose candidates.

2.4 Rhythm Tracking from Music Sequence

To estimate musical rhythm, we use the following known principles:

Principle 1: A sound is likely to be produced consistent with the timing of the
rhythm.

Principle 2: The interval of the onset component is likely to be equal to that of
the rhythm.

So we consider the onset component for estimating the musical rhythm.
Figure 2.3 illustrates onset component extraction. Here, we denote the spectral
power of the k-th note at the t-th temporal frame as X(t, k). Using Principle 1, we
calculate the onset component of the k-th note, which is the power increase from
the previous temporal frame t − 1 defined as d(t, k) [Got01].

d(t, k) =


max(X(t, k),X(t + 1, k)) − PrevPow

if min(X(t, k),X(t + 1, k)) ≥ PrevPow,
0 otherwise

(2.1)

where
PrevPow = max(X(t − 1, k),X(t − 1, k ± 1)). (2.2)

By calculating the sum of the onset components D(t) =
∑

k d(t, k), we can deter-
mine the total intensity of the sounds produced at the t-th temporal frame.

Using Principle 2, we calculate the auto-correlation function of D(t) to esti-
mate the average rhythm interval trhythm:

trhythm = arg max
τ∈[Tmin,Tmax]

1
T

T∑
t=1

D(t) ·D(t + τ), (2.3)

where T is the number of temporal frames and Tmin and Tmax are defined as
the interval of 150 bpm and 60 bpm respectively. Then, the starting time tstart

is estimated by calculating the cross-correlation function between D(t) and the
pulse sequence P(t) whose interval is the estimated rhythm interval trhythm:

tstart = arg max
τ

1
T

T∑
t=1

D(t) · P(t + τ). (2.4)
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Figure 2.4: Refinement of the estimated musical rhythm. Our method finds the
local maximum around the estimated rhythm.
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However, in practice, a rhythm interval may change slightly due to the perform-
ers’ sensibilities, changes in the music itself, etc., and errors caused by these
changes make rhythm tracking using rigid timing impossible. To solve this
problem, considering Principle 1 again, our method tracks the local maximum
around the estimated rhythm. This technique is illustrated in Figure 2.4.

2.5 Keypose Candidate Extraction from Motion Sequence

Our motion analysis method is based on the speed of a performer’s hands,
feet and center of mass (CM). In many forms of dance, including Japanese tradi-
tional dance, the movements of hands and feet have a strong relationship with
the intended expression of the whole body. Therefore, the speed of the hands
and feet are useful for extracting stop motions. However, this is not sufficient
for keypose extraction because sometimes the dancer makes rhythm errors, or
dances are varied by the preferences or the genders of performers, etc. So in
addition to the motion of the hands and feet, our algorithm uses the motion of
the body’s CM. The motion of the CM represents the motion of the whole body;
thus, the effects of missteps and individual differences are less. CM motion is
calculated from the standard mass distribution of a human body shown in Fig-
ure 2.5. Through this step, we extract motion keypose candidates which satisfy
the following criteria:

1. Dancers clearly stop their movements.

2. Dancers clearly move their body parts during neighboring candidates.

2.5.1 Body Center Coordinate System

Captured motion data is recorded in a global coordinate system. But to
calculate the speed of hands, we define a local body-centered coordinate system
named the body center coordinate system as follows. The origin O of this local
coordinate system is the middle of the human waist. The three axes of the local
coordinate system are shown in Figure 2.6. Note that the x-axis represents a
forward direction for the waist, the y-axis points left relative to the waist, and
the z-axis is perpendicular to these two axes and points upward. This coordinate
system makes it simpler to understand the motion of hands relative to the body.

Hand motions are converted into the body center coordinate system, and
then the speed of the hands is calculated. On the other hand, the speed of the
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Figure 2.7: Keypose candidate extraction for hand and CM motions. The solid
line represents a typical speed sequence of hands and CM, and horizontal dashed
lines represent speed threshold values.

feet and of the CM are calculated in the global coordinate system. In the global
coordinate system, the speeds of the feet and of the CM is nearly zero when these
parts stop, so it is easy to extract the stop motions of these parts.

The effects of noise are reduced by smoothing the motion sequence with a
Gaussian filter before extracting candidates.

2.5.2 Keypose Candidate Extraction

After calculating speed, we extract keypose candidates that satisfy the fol-
lowing criteria:

1. Dancers clearly stop the movements of their end-effectors.

2. Dancers clearly move their body parts during neighboring candidates.
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Figure 2.8: Keypose candidate extraction for foot motions. The solid line repre-
sents a typical speed sequence of feet, and the green- and yellow-colored areas
represent the feet trajectory lengths that satisfy, and do not satisfy, respectively,
the thresholding process.

Keypose Candidate Extraction for Hand and CM Motions

In hand and CM motions, the speed sequences demonstrate stop instances,
as shown in Figure 2.7. To extract keypose candidates for hands and CM motions,
we define the following two criteria which satisfy the keypose candidates criteria
described above:

1. Each candidate is a local minimum in the speed sequence, and the local
minimum is less than a minimum speed threshold.

2. The local maximum between two successive candidates is larger than a
maximum speed threshold.

Keypose Candidate Extraction for Foot Motions

In feet motions, one leg often functions as a supporting leg while the other
leg is functioning as a swing sole. Thus, the speed sequence for feet motions
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Time

Figure 2.9: Refinement of the keypose candidates using the musical rhythm.
Vertical solid lines represent the estimated musical rhythm; vertical broken lines
represent the motion keypose candidates. Musical rhythm frames are considered
to refine motion keypose candidates. Note keypose candidates relatively closely
bracketing the second and fourth musical rhythm, but not the first and third
musical rhythm; the first and third keypose candidates are therefore ignored.

often consists of a series of bell-shaped curves, as shown in Figure 2.8 To extract
keypose candidates from feet motions, we first extract the rise and decay of the
feet speed sequences. Then, the area between the rise and decay, which shows
how far each foot moved while it was used as a swing sole, is calculated. If the
area is larger than a trajectory length threshold, these rise and decay become
candidates.

2.6 Keypose Extraction Using Motion Keypose Candidates

and Musical Rhythm

2.6.1 Keypose Candidate Refinement Using Musical Rhythm

The next step is to refine the keypose candidates by considering musical
rhythm. For each speed sequence, our method tests whether there are candi-
dates around musical rhythm inflection points trhythm as detected from the onset
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components. If there is a keypose candidate, it is possible that there is a stop
point around trhythm, and if so, this keypose candidate is retained for the final
step.

Figure 2.9 illustrates the keypose candidate refinement process. In this
figure, a speed sequence is overlaid by vertical broken lines representing the
initially extracted motion keypose candidates and solid green or red vertical lines
representing the estimated musical rhythm. In this example, there are no keypose
candidates immediately surrounding the first and third musical rhythms, which
are represented by red vertical lines, so these keypose candidates are not retained
in the next phase of the keypose extraction process. On the other hand, there
are keypose candidates around second and fourth musical rhythms, represented
in the figure by green vertical lines, and these candidates are preserved for the
keypose extraction process.

2.6.2 Keypose Extraction

In the next phase, keypose candidates of a dance performance are subjected
to two further criteria:

1. Retained keypose candidates must include a match in time between more
than two of the following: left hand, right hand, or feet.

2. Retained keypose candidates must include a CM keypose match.

For example, the first criterion would be satisfied by keypose candidates of the
left hand, the right hand, and one foot which match in time. It would not be
satisfied by keypose candidate time-matches in only one foot and one hand.
In other words, the first criterion can extract poses at which dancers stop the
movements of their hands and feet even when the stopping instance of each
body part is slightly different. These poses are likely to be stop motions.

But this first criterion may extract poses that are not considered to be key-
poses. For example, consider walking motion. In this motion, a performer’s
hands nearly stop their movements when his/her feet are on the ground. How-
ever, the body keeps moving in the forward direction, and this pose cannot
usefully be considered a stop motion. Such translations are common in dance,
so we define the second criterion to help eliminate false positives (keypose can-
didates labeled as valid poses, when in fact they are not); both criteria must be
simultaneously satisfied to retain a keypose candidate.
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2.7 Experiments

2.7.1 Experimental Data

Our proposed method was evaluated using three dance sequences: the
Aizu-bandaisan dance performed by a male and a female dance master, and the
Jongara-bushi dance. The motion data for these three dance performances were
captured by an instrument made by Vicon Motion Systems, an optical motion
capturing system that recorded the position of 33 markers on each dancer (see
Appendix B.1). The sampling rate of the Aizu-bandaisan dance and the Jongara-
bushi dance were 120 fps and 200 fps, respectively. Figure 2.10 and Figure 2.11
show the actual dance performance and the captured motion data of the Aizu-
bandaisan dance and the Jongara-bushi dance, respectively.

The music was converted into WAV format with a typical USB-hosted audio
input device; 16-bit data was sampled at 32000Hz.

2.7.2 Results of Rhythm Tracking

To extract the music’s onset components, its frequency spectrum was cal-
culated using Constant Q Transform (CQT) (see Appendix A) . The windowing
function for the CQT was a Hamming function whose size was 1024 samples
and which was shifted by 256 samples at each step.

The estimated average rhythm interval of the Aizu-bandaisan and the Jongara-
bushi dance music recordings were 0.704 seconds (around 85 beats per minute)
and 0.576 seconds (around 104 beats per minute) respectively. Figure 2.12 show
the results of our rhythm tracking applied to the Aizu-bandaisan and the Jongara-
bushi dances, respectively. The upper window of this application shows the
spectrogram for each dance, in which solid red vertical lines indicate the es-
timated rhythm. The lower window shows the onset component D(t) of each
octave-based frequency band. The rhythm appeared at the onset times, which
are represented by deep gray in the spectrogram.

2.7.3 Results of Keypose Extraction

To evaluate the effectiveness of our proposed method, for all three dances,
we compared the results of our keypose extraction method with the results from
Nakazawa et al.’s method [NNIY02], which uses only motion capture data to
extract keyposes. Additionally, we compared the results of our method with the
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Figure 2.10: The Aizu-bandaisan dance.
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Figure 2.11: The Jongara-bushi dance.
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(a)

(b)

Figure 2.12: Results of music rhythm tracking of (a) the Aizu-bandaisan dance,
and (b) the Jongara-bushi dance.
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keyposes manually extracted by dancers. Figure 2.13 shows the keyposes which
dance masters recognize as important stop motions in these dances.

Aizu-bandaisan Dance Performed by a Female Dance Master

Our method’s analysis of a female dance master performing the Aizu-
bandaisan dance is shown in Figure 2.14. Five time-correlated speed graphs
are shown for left hand, right hand, left foot, right foot, and CM, from top to
bottom, respectively; solid green vertical bars indicate valid keyposes which sat-
isfy all criteria. A 3D computer-generated figure shows each keypose extracted
by our method, and below, the desired true keyposes of the dance are shown
as drawn by a dance master. (The speed graphs in the figure are not complete
transcriptions of the dance from beginning to end, but represent a subset of the
data.)

Note that near the right side of this illustration, to the left of the rightmost red
vertical line which represents a beat, a CM stop motion was detected and is shown
as a light blue vertical bar in the lowermost speed signal graph. This keypose
candidate was correctly determined by our method not to be a valid keypose,
because although the left hand (shown as the uppermost signal) and right hand
(shown immediately below the left hand) are likewise in stop motion, neither of
the legs have been identified as keypose candidates. Because our criteria state
that at least three of the four end effectors must be keypose candidates as well as
the CM, this keypose candidate was correctly rejected as a valid pose. Several
correct rejections are apparent in this figure.

As summarized in Table 2.1, this dance has 9 true keyposes. Our method
correctly extracted all of these keyposes with no false positives and no mis-
detected errors. A previous method which considers only motion capture data
extracted 8 of the 9 true keyposes correctly, but generated 4 false-positives and
mis-detected 5 errors.

Aizu-bandaisan Dance Performed by a Male Dance Master

In this example of the dance, the male dancer moved his body parts with
unusually large motions, and he did not stop clearly the movements at the
dance’s prescribed keyposes.

A graphical subset of the data using our method is shown in Figure 2.15. Ta-
ble 2.2 summarizes our method’s analysis in contrast with the previous method.
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(a)

(b)

Figure 2.13: Keyposes extracted by dance masters. (a) The Aizu-bandaisan
dance, and (b) the Jongara-bushi dance.
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Note that the previous method can extract only 3 of the dance’s 9 keyposes cor-
rectly, and there were 2 undetected errors. In contrast, our proposed method
extracted 5 of the dance’s 9 keyposes successfully, with 2 mis-detected errors.

These results imply that detection errors caused by individual differences
between dancers can be considerably reduced by considering CM motions.

Jongara-bushi Dance

Results for our extraction method for a dancer performing the Jongara-bushi
are shown in Figures 2.16 and 2.17, and are summarized in Table 2.3.

This dance has 12 true keyposes. The previous method extracted 6 of these,
and had no mis-detected errors. In contrast, our method extracted 9 correct
keyposes, with no mis-detected errors. We believe that our method failed to
detect 3 keyposes because of the high speed of this dance.

2.8 Discussion

As shown in Section 2.7, the results of our method are much better than
those of the previous method. This is derived from the fact that our method con-
siders not only motion capture data but musical information, while the previous
method considers only motion capture data. By incorporating an analysis of a
dance’s musical rhythm, we reduce the number of false positives that previous
methods have generated due to the high degree of freedom of any articulated
figure.

Additionally, through the comparison between our results and the keyposes
specified by dance masters, we find that our results are much closer to the
dancers’ intended keyposes. In this way, our algorithm derives results quite
similar to dancers’ intended stop motions.

Although we have used traditional Japanese dance motion data in our ex-
periments, we believe that since most dance performances have in common that
stop motions are important, and that performers tend to dance to the rhythm of
the music, our proposed method should work well for other types of dance such
as ballet.

Noting that our method correctly identified all the keyposes of the Aizu-
bandaisan dance but failed to identify all the keyposes of the much faster Jongara-
bushi, it is possible that our discovery parameters would need adjustment when
analyzing fast dance. For example, by using a different windowing technique,
higher visual or musical sampling frequencies, or by generally tweaking all
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our digital signal processing parameters, we might increase the accuracy of our
proposed method in all forms of dance.

2.9 Summary

In this chapter, we have proposed a new analysis method for the motions
of human dance. Our method is quite different from previous work in that our
method considers not only motion information acquired from motion capture
data, but also musical rhythm as estimated from recordings of the accompanying
music. Our results prove that musical rhythm is one of the most important factors
for dance performances, and that by considering musical rhythm, our method
can efficiently acquire keyposes, which are very important in characterizing a
particular dance. Our proposed method also considers the speed of the center of
mass of a dancer to understand the movement of the body; it can therefore better
handle individual variations in dance performances resulting from missteps,
gender difference, style, and so forth.

We tested our method and a previous method on three dance sequences and
found our method to be quantifiably superior.
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# extracted keyposes
accuracy rate

(method / truth)
# mis-detected errors

Prev. method 13 89% (8/9) 5

Our method 9 100% (9/9) 0

Table 2.1: Evaluation of keypose extraction from the Aizu-bandaisan dance
performed by a female dance master.

# extracted keyposes
accuracy rate

(method / truth)
# mis-detected errors

Prev. method 3 33% (3/9) 2

Our method 5 56% (5/9) 2

Table 2.2: Evaluation of keypose extraction from the Aizu-bandaisan dance
performed by a male dance master.

# extracted keyposes
accuracy rate

(method / truth)
# mis-detected errors

Prev. method 6 50% (6/12) 0

Our method 9 75% (9/12) 0

Table 2.3: Evaluation of keypose extraction from the Jongara-bushi dance.
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Figure 2.14: Result of keypose extraction from the Aizu-bandaisan dance per-
formed by a female dance master. Five time-correlated speed graphs are shown
for left hand, right hand, left foot, right foot, and CM, from top to bottom, respec-
tively; solid green vertical bars indicate valid keyposes which satisfy all criteria.
A 3D computer-generated figure shows each keypose derived from the motion
capture data, and below, the desired true keyposes of the dance are shown as
drawn by a dance master.
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Figure 2.15: Result of keypose extraction from the Aizu-bandaisan dance per-
formed by a male dance master. Five time-correlated speed graphs are shown
for left hand, right hand, left foot, right foot, and CM, from top to bottom, respec-
tively; solid green vertical bars indicate valid keyposes which satisfy all criteria.
A 3D computer-generated figure shows each keypose derived from the motion
capture data, and below, the desired true keyposes of the dance are shown as
drawn by a dance master.

31



U
nd

et
ec

te
d

U
nd

et
ec

te
d

Figure 2.16: Subset of extracted keyposes from the Jongara-bushi dance. Five
time-correlated speed graphs are shown for left hand, right hand, left foot, right
foot, and CM, from top to bottom, respectively; solid green vertical bars indicate
valid keyposes which satisfy all criteria. A 3D computer-generated figure shows
each keypose derived from the motion capture data, and below, the desired true
keyposes of the dance are shown as drawn by a dance master.
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Figure 2.17: All extracted keyposes from the Jongara-bushi dance.
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Chapter 3

Synthesis of Temporally-Scaled Upper

Body Motion Based on Aspects of

Human Motion

3.1 Introduction

Synthesizing human motion sequence synchronized with musical rhythm is
important for realizing dancing-to-music ability. Toward this, we are develop-
ing sound-feedback system, in which CG characters and humanoid robots mimic
human’s improvisational ability for entertainment. In particular, synchronizing
recorded human motion data with currently played music plays an important
role for the sound feedback system, due to the difference of rhythm. In this
chapter, we propose a novel method to temporally scale upper body motion of
dance performance for synchronization with music.

To achieve this, we first observe human dance motion and obtain its prop-
erties. We then develop a model for the needed modification in synthetic upper
body motion based on the speed of corresponding input music, based on insights
acquired via this observation.

When we observe structured dance motion performed by humans at normal
music playback speeds vs. motion performed using music that is 1.3 times faster,
we find that the details of each motion sequence, style, differs slightly, though
the whole of the dance motion sequence is similar in both cases. An example
of this type of motion modification, natural in humans, is shown in Figure 3.1.
This phenomenon is derived from the fact that dancers omit details of a dance,
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(a) (b)

Figure 3.1: Comparison of hand trajectory differences depending on music play-
back speed. (a): Comparison of right hand trajectories, and (b): comparison of
left hand trajectories. Green lines and yellow lines represent the hand trajectory
at normal music playback speed, and 1.3 times faster music playback speeds,
respectively.

but retain its essential aspects, if this is necessary to follow faster music. If we
therefore observe motion differences in dances performed at different speeds in
the frequency domain, we can obtain useful insights on motion detail omission.
Based on these insights, we propose a new modeling method and develop some
applications useful for CG character animation and humanoid robot motion
generation.

First, we describe motion decomposition using a hierarchical B-spline, which
is a key technique to accomplish the modeling of motion modification. A B-
spline allows us to control frequency resolution by only setting its control points
at desired temporal intervals. By using a hierarchical B-spline technique, we
observe the differences between motion performed at a normal musical speed vs.
motion performed at a faster musical speed. Then we discuss how upper body
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motion is modified. Based on our obtained insights, we improve the hierarchical
B-spline method to decompose a motion sequence and propose a new framework
to modify upper body motion that satisfies kinematic constraints. We also show
some applications based on the proposed method.

Our proposed method aims to modify only upper body motion, not whole
body motion. However, some methods on motion splicing for CG anima-
tion [IF04, HKG06, MZF06] and humanoid robots [NNK∗05] have recently been
proposed. Motion splicing means that motion of some body parts are trans-
ferred to another motion sequence to enrich a motion sequence variation. The
combination of these methods and our proposed method could be very useful
for whole body motion generation.

3.2 Prior Work

We employ a hierarchical approach to analyze and modify human motion.
Previous work related to this approach can be roughly categorized into three
domains: a multi-dimensional approach, a parameterization-based approach,
and a style-based approach.

Multi-dimensional Approach

A “multi-level” or “multi-dimensional” hierarchical approach has been ex-
tensively studied. In computer vision, a image pyramid, a multi-level repre-
sentation of an image [BA83], and its extensions have been used for various
purposes such as optical flow estimation [BAHH92] and image and video com-
pletion [HB95, WSI04, SMKT06]. In computer graphics, a hierarchical approach
has been shown to have potential in efficient point-based rendering [RL00] and
scattered data interpolation [LWS97].

Recently, many researchers of human motion animation are focusing on the
good potential of a multi-dimensional approach. Bruderlin et al. [BW95] and
Lee et al. [LS01] applied an image pyramid-based approach to motion sequence
synthesis; they constructed a hierarchical structure of motion in which each layer
contains certain frequency components. By editing a coefficient in each layer,
new motion sequences can be generated. This research has influenced us to more
deeply analyze the frequency components of human motion.

Safonova et al. [SHP04] found that most motion sequences could be repre-
sented in a low dimensional space, as few as ten degrees of freedom, because
some body portions, e.g. legs and arms are operating in a coordinated way
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in most cases. They applied principal component analysis (PCA) to a motion
capture database in order to reduce its dimensionality, and thereby synthesized
human motion that satisfies both user-specified constraints and physical correct-
ness by solving an optimization in a lower-dimensional space. After this re-
search appeared, many researchers considered dimensionality reduction-based
approaches. Chai et al. [CH05] and Liu et al. [LZWM06] used PCA to re-
duce the dimensionality of a motion capture database and to estimate full-body
marker positions from a commensurately smaller marker set. Forbes et al. [FF05]
used weighted PCA to convert a high-dimensional motion data set into a low-
dimensional space. The resulting low dimensional space converted by PCA has
a Euclidean distance metric which makes it simpler to retrieve a desired motion
from a motion database. Arikan [Ari06] and Liu et al. [LM06] proposed a method
to compress a motion database. In their method, first, motion data is segmented
and classified. Then, PCA is applied to each cluster to compress similar motions.
Mukai et al. [MK06] proposed a method to efficiently render human motion
animation by converting motion into low-dimensional multilinear spaces. In
robotics research, this technique has generated recent interest; there is now a
method to control humanoids in PCA spaces [CGM∗06].

There are some methods in which the dimensionality of motion data can
be reduced by using a motion description method such as Labanotation. Yu et
al. [YSLG05] proposed a method to retrieve motion from a database using La-
banotation descriptors method as query terms. Shen et al. [SLY∗05] proposed a
method to edit motion by adjusting the parameters of Labanotation. Müller et
al. [MRC05, MR06] proposed a motion retrieval method in which they assumed
prior motion initial conditions based on end-effector trajectories.

Parameterization-Based Approach

There are some methods to convert motion into a parameterized represen-
tation. Lee et al. [LS99] also proposed a method to efficiently resolve spacetime
constraints problem using a hierarchical motion decomposition method. For
human motion imitation with a humanoid robot, Ruchanurucks et al. [RNKI06]
proposed a method to decompose motion into a hierarchical B-spline and to
optimize the control points of each hierarchical B-spline layer in order to sat-
isfy mechanic constraints of a humanoid robot. Abe et al. [ALP06] developed
a method to represent momentum curves for motion capture data with a cubic
non-uniform B-spline. Considering momentum conservation, their method op-
timized the control points of B-spline curves in order to satisfy user-specified
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constraints.

Style-Based Approach

The concept of motion style was introduced by Unuma et al. [UAT95]. They
analyzed walking motions with some expressions such as happy or sad, and
decomposed motion into low frequency components representing basic motion
common to various walking motions and high frequency components represent-
ing the emotion of a motion, using a Fourier transform. They also synthesized
new walking motions by blending the high frequency components. Pullen et
al. [PB02] employed a similar approach. They observed the differences between
motion generated using a keypose-based technique and motion capture data and
found that motion capture data looks more natural than keypose-based synthetic
motion because of its details, i.e. the high frequency components, of motion cap-
ture data that keypose-based synthetic motion does not have. Therefore, their
method extracted the high frequency components from motion capture data and
superimposed them onto keypose-based motion in order to enable animators to
synthesize more human-like animation using the traditional keypose-based syn-
thesis approach. Nakazawa et al. [NNI03, NNI04] employed a keypose-based
approach to analyze style components of dance motion. First, they detected
keyposes in dance motion and extracted base motions by interpolating the req-
uisite joint angle trajectories between keyposes. Individual differences, which
they defined as motion style, were extracted by calculating the differences be-
tween actual motions and base motions; new dance motions were generated by
blending motion style components.

Recent style-based approaches have employed on stochastic models. Brand et
al. [BH00] employed a hidden Markov model (HMM) to analyze style in a motion
database. Using an HMM, new motion sequences were synthesized by adjusting
a small number of stylistic parameters. Urtasun et al. [UGB∗04] and Glardin et
al. [GBT04] used PCA to analyze motion data sets that contained various walking
styles. In their experiments, they captured walking motions at varying speeds.
Applying PCA to their motion data, principal components containing walking
styles were derived as a function of walking speed, and new walking motions
were interpolated and extrapolated by adjusting weights of principal compo-
nents. Shapiro et al. [SCF06] used independent component analysis (ICA) to
analyze and synthesize stylistic motions. ICA is slightly different from PCA in
that PCA space has an orthogonal basis while ICA space has a non-orthogonal
basis; their method can effectively represent motion style as a set of independent
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components. Faloutsos et al. [FvdPT01] proposed a motion controller based on
a support vector machine (SVM) learning method that could generate various
kinds of motion such as walking, running, falling down and so on. Grochow et
al. [GMHP04] proposed a method of inverse kinematics computation based on
the scaled Gaussian process latent variable model (SGPLVM). Hsu et al. [HPP05]
proposed a method to transfer motion style using a linear dynamic system (LDS)
model and their iterative motion warping method.

The goals of previous methods are quite different from ours in that most
previous methods aim to synthesize new motions as efficiently as possible,
whereas our goals are to analyze the details of human motion and to synthe-
size temporally-scaled realistic motion based on our analysis of these properties.
MacCann et al.’s approach [MPS06] is somewhat similar to our proposed method;
they aimed to temporally scale a motion sequence while retaining physical con-
sistency.

3.3 Hierarchical B-Spline

This section describes how we decompose motion sequences using a hierar-
chical B-spline.

3.3.1 B-Spline

B-spline is one of the best-known parameterized curves; it is a generalized
version of a Bèzier curve. Let a vector known as the knot vector be defined as

T = (t0, t1, t2, · · · , tM) . (3.1)

Note that all the elements of the knot vector should satisfy the criterion that
ti ≤ ti+1. Given a control point set of a B-spline curve Q = {Qi|i = 1, · · · ,N} and
the knot vector, the degree of the B-spline curve is defined as

d ≡M −N − 1, (3.2)

and its basis functions are recursively defined as

Bi,1(t) =
 1 if ti ≤ t < ti+1

0 otherwise
, (3.3)
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and
Bi,d+1 =

t − ti

ti+d+1 − ti
Bi,d(t) +

ti+d+2 − t
ti+d+2 − ti+1

Bi+1,d(t) (d , 1) (3.4)

for the B-spline whose degree is d. From these parameters and functions, the
B-spline curve f (t) is given as

f (t) =
n∑

i=0

Bi,d(t)Qi. (3.5)

If each interval of neighboring knots is the same, the B-spline curve is said to be
uniformal.

For a uniformal cubic B-spline of degree three (d = 3), the basis function is
formulated as

B0,4(t) =
1
6

(1 − t)3, (3.6a)

B1,4(t) =
3t3 − 6t2 + 4

6
, (3.6b)

B2,4(t) =
−3t3 + 3t2 + 3t + 1

6
, (3.6c)

B3,4(t) =
1
6

t3, (3.6d)

for 0 ≤ t < 1. Here, denoting a control point at knot t as Qt, the cubic B-spline
curve is given as

f (t) =
3∑

i=0

Bi,4(t − ⌊t⌋)Q⌊t⌋+i−1. (3.7)

As this formulation is a three dimensional polynomial equation with regard to t,
the cubic B-spline is two times differentiable. Therefore, continuous acceleration
can be approximated using a B-spline.

3.3.2 Motion Approximation Using a B-Spline

To model motion using a B-spline, let the knot range of a motion sequence
be [0, n] and the number of motion frames be m. Assume that the knot of each
control point lies within [0, n]. In order to approximate motion sequence D ={
d(ti)|ti < ti+1, ∀ti ∈ [0, n], i = 1, · · · ,m

}
with a B-spline, a least-squares solution is

used to determine the control point set Q̂ =
{
Q̂i|i = 0, · · · ,n

}
:

Q̂ = arg min
Q

∑
i

∣∣∣ f (ti) − d(ti)
∣∣∣2 . (3.8)
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This least-squares problem can be solved using a pseudo-inverse.
To achieve this, we assume that the motion sequence D can be represented

with the B-spline curve:

d(t) ≃
3∑

i=0

Bi,4(t − ⌊t⌋)Q̂⌊t⌋+i−1. (3.9)

From all the data points, the following linear system of equations is formed:
d(t1)
d(t2)
...

d(tm)

 ≃ N


Q̂0

Q̂1
...

Q̂n

 , (3.10)

where N is the m × (n + 1) matrix whose elements are the basis function of the
B-spline represented as

Ni j =

 B j+1−⌊ti⌋,4(ti − ⌊ti⌋) if j ≤ ti < j + 1
0 otherwise

. (3.11)

Matrix N may appear to have a number of elements, but each row vector of N
has at most four non-zero values, and N is therefore a sparse matrix.

Since N is not a square matrix in most cases, we use a pseudo-inverse
matrix to solve the linear system of equations. The pseudo-inverse matrix N+ is
calculated as follows:

N+ =

 NT
(
NNT

)−1
if (n + 1) < m(

NTN
)−1

NT if (n + 1) > m
. (3.12)

Using this, the control point set can be estimated as
Q̂0

Q̂1
...

Q̂n

 = N+


d(t1)
d(t2)
...

d(tm)

 , (3.13)

and this provides a least-squares solution which satisfies Equation (3.8).
An example of this kind of data approximation is shown in Figure 3.2, which

indicates that input data can be roughly approximated by a B-spline curve.
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Figure 3.2: B-spline fitting. Red points: input data sequence, blue crosses: B-
spline control points estimated from Equation (3.13), and green curve: B-spline
curve approximating the input data sequence.

3.3.3 Motion Decomposition Using a Hierarchical B-Spline

As shown in Figure 3.2, it can be difficult to approximate high frequency
components of the original input sequence with only one B-spline curve; ap-
proximation using a hierarchical B-spline can solve this problem. Hierarchical
B-spline consists of using a series of B-spline curves with different knot spacings;
higher layers of a hierarchical B-spline are based on finer knot spacing which
can preserve the higher frequency components of the original sequence.

Hierarchical B-spline construction is illustrated in Figure 3.3 First, the input
data sequence is approximated with a B-spline curve f 0 using Equation (3.13),
which serves as a smoothed initial approximation. There is a point-by-point
difference between the input data and the estimated B-spline curve, however,
expressed by

∆1(2ti) = d(ti) − f 0(ti). (3.14)

A “finer” layer which preserves higher frequency content can be constructed by
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Figure 3.3: Illustration of hierarchical B-spline construction. First layer f 0
roughly approximates original input sequence, while other “finer” layers f k
approximate difference sequenceDk =

{
∆k

(
2kti

) ∣∣∣∆k

(
2kti

)
= d(ti) −

∑k−1
l=0 f l

(
2lti

) }
.

fitting a B-spline curve f 1 to the difference sequence D1 = {∆1(2ti)|i = 1, · · · ,m}.
To preserve high frequency components, the knot spacing of f 1 is chosen to be
half the interval of f 0.

The same process can be used to construct the next layer f 2: the next finer
B-spline curve f 2 is obtained from the difference sequence D2 whose elements
∆2 are given as

∆2

(
22ti

)
= d(ti) −

(
f 0(ti) + f 1(2ti)

)
. (3.15)

This can be continued as desired; the k-th layer of a hierarchical B-spline is
recursively estimated from the difference sequence

Dk =

∆k

(
2kti

) ∣∣∣∣∣∣∆k

(
2kti

)
= d(ti) −

k−1∑
l=0

f l

(
2lti

) . (3.16)

The approximated data sequence f is therefore given as

f =
L∑

l=0

f l

(
2lti

)
, (3.17)
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in which L is the number of hierarchical B-spline layers.
The use of a hierarchical B-spline decomposition offers these advantages:

• One can attain any desired frequency resolution by adjusting the knot
spacing.

• The optimization of a generated motion sequence is relatively easy.

In our proposed method, the desired frequency resolution for an input mo-
tion sequence depends on the musical rhythm. We set the knot spacing to
correspond to the frequencies of the musical rhythm so that we can compare the
same frequency components of motions captured at different speeds.

Optimization is likewise simpler when using a hierarchical B-spline because
the input sequences are converted into sets of control points. Thus, the optimiza-
tion procedure for a motion sequence merely manipulate the estimated control
points, not the sequence itself, frame-by-frame; the method’s computational cost
is therefore not high.

3.4 Observations of Human Motion

Using a hierarchical B-spline-based decomposition technique, we observed
human dance motion. This section describes how we observed motion and the
acquired relationship between human motion and music playback speed.

Mean and Variance of Joint Angles

Using a motion capture system, we captured the Aizu-bandaisan dance,
a classical Japanese folk dance, at its normal speed as performed by a dance
master. We then asked the dance master to perform the dance with input music
played 1.2 times faster than this speed, and 1.5 times faster. Motion sequences at
each of these three speed were captured five times in order to investigate motion
variance, so a total of 15 datasets were considered in this experiment.

We obtained the marker position of each joint angle through an optical
motion capture system (see Appendix B), and then converted the marker position
data to joint angles (see Appendix C). Using quaternion algebra, the j-th joint
angle q j can be represented as follows:

q j = exp(v j)

= cos |v j| +
v j

|v j|
sin |v j|, (3.18)
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where q j is a unit quaternion, and v j is a 3-dimensional vector whose unit vector
v j

|v j| represents a rotation axis, and whose norm represents half the joint rotation
(see Appendix D for details).

The mean joint angle v̄ is calculated as

v̄ j(t) =
1
N

N∑
i=1

vi
j(t), (3.19)

where vi
j represents the j-th joint angle of the i-th motion sequence, and N

represents the number of input motion sequences (in our case, N = 5 for a given
music playback speed). Using our computed sequence of mean motion, we also
calculate the variation var of j-th joint angle at t-th temporal frame:

var j(t) =
1

N − 1

N∑
i=1

(
1 − ui

j(t) · ū j(t)
)
, (3.20)

where

ui
j ≡

(
vi

j
T
, 1

)T

|vi
j
T
, 1|
. (3.21)

The variance is calculated in a 4D homogeneous coordinate system which ac-
counts for both magnitude and direction differences [BFB94, SMKT06].

We set the knot spacing to the estimated musical rhythm mentioned in
Chapter 2, and then apply a hierarchical B-spline decomposition technique. We
used up to five layers in our motion decomposition and observed the mean and
variance of each reconstructed motion. Our choice of five layers was arbitrary,
but empirically found to be enough to reconstruct high frequency components
of human motion.
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Figure 3.4: Comparison of mean motion reconstructed using a single-layer B-
spline. Top left: joint angle trajectories of left shoulder, top right: joint angle
trajectories of right shoulder, and bottom row: reconstructed motion sequences.
Green, yellow, and light blue lines represent the motion sequences at normal, 1.2
times faster, and 1.5 times faster music playback speeds, respectively.

Motion Comparison Using a Single-Layer B-Spline

The mean angle trajectories of left and right shoulders are shown in Fig-
ure 3.4. From this result, we obtained the following insights:

• The shape of the joint angle trajectory at a normal music playback speed is
similar to the trajectory at music playback which is 1.2 times faster.

• The shape of the joint angle trajectory at a normal music playback speed
is also similar to the trajectory of music playback which is 1.5 times faster
music playback speed, but their details, such as curvature, differ visibly
from each other.

47



Figure 3.5: Comparison of mean motion reconstructed using a two-layer hier-
archical B-spline. Top left: joint angle trajectories of left shoulder, top right:
joint angle trajectories of right shoulder, and bottom row: reconstructed motion
sequences. Green, yellow, and light blue lines represent the motion sequences at
normal, 1.2 times faster, and 1.5 times faster music playback speeds, respectively.

Motion Comparison Using a Two-Layer Hierarchical B-Spline

The mean angle trajectories of left and right shoulders are shown in Fig-
ure 3.5. From this result, we obtained the following insights:

• The shape of the joint angle trajectory at a normal music playback speed
slightly differs from that of 1.2 times faster music playback speed, especially
in the trajectory’s sharpest curves.

• The shape of the joint angle trajectory using 1.5 times faster music playback
speed appears to be a smoothed version of the normal music playback
speed trajectory.
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Figure 3.6: Comparison of mean motion reconstructed using a three-layer hierar-
chical B-spline. Top left: reconstructed joint angle trajectories of left shoulder, top
right: joint angle trajectories of right shoulder, and bottom row: reconstructed
motion sequences. Green, yellow, and light blue lines represent the motion se-
quences at normal, 1.2 times faster, and 1.5 times faster music playback speeds,
respectively.

Motion Comparison Using a Three-Layer Hierarchical B-Spline

The mean angle trajectories of left and right shoulders are shown in Fig-
ure 3.6. From this result, we obtained the following insights:

• The differences among each joint angle trajectory are becoming noticeable.

• The shape of the joint angle trajectory at 1.2 times faster music playback
speed appears to be a slightly smoothed version of the trajectory at a normal
music playback speed.
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Figure 3.7: Comparison of mean motion reconstructed using a four-layer hier-
archical B-spline. Top left: joint angle trajectories of left shoulder, top right:
joint angle trajectories of right shoulder, and bottom row: reconstructed motion
sequences. Green, yellow, and light blue lines represent the motion sequences at
normal, 1.2 times faster, and 1.5 times faster music playback speeds, respectively.

Motion Comparison Using a Four-Layer Hierarchical B-Spline

The mean angle trajectories of left and right shoulders are shown in Fig-
ure 3.7. From this result, we obtained the following insights:

• The differences among each joint angle trajectory get clearly noticeable.

• The shape of the joint angle trajectory at 1.5 times faster music playback
speed seems to be a smoothed version of the trajectory at 1.2 times faster
music playback speed.

• The shape of the joint angle trajectory at 1.2 times faster music playback
speed seems to be a smoothed version of the trajectory at normal music
playback speed.
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Figure 3.8: Comparison of mean motion reconstructed using a five-layer hier-
archical B-spline. Top left: joint angle trajectories of left shoulder, top right:
joint angle trajectories of right shoulder, and bottom row: reconstructed motion
sequences. Green, yellow, and light blue lines represent the motion sequences at
normal, 1.2 times faster, and 1.5 times faster music playback speeds, respectively.

Motion Comparison Using a Five-Layer Hierarchical B-Spline

The mean angle trajectories of left and right shoulders are shown in Fig-
ure 3.8. In this case, we could not find any other noticeable difference between
each joint angle trajectory.

Comparison of Variances of Joint Angle Trajectories

Figure 3.9 shows the variance of left shoulder angle trajectories reconstructed
using a five-layer hierarchical B-spline. According to this observation, it is
confirmed that there are some valleys where each variance sequence is locally
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Figure 3.9: Variance graph of joint angle and angular velocity sequences of left
shoulder reconstructed using a five-layer hierarchical B-spline. Top row: an-
glular variances, second row: angular velocity variances, third row: postures
whose joint angle variance is local minimum, and bottom row: keyposes speci-
fied by the dance masters. Green, yellow, light blue, and blue lines represent the
variances of motion sequences at normal, 1.2 times faster, 1.5 times faster music
playback speeds, and the variance of all sequences, respectively.

minimum, and that most valleys represent the keyposes specified by the dance
masters.

Figure 3.10 shows all the variance sequences. It is also confirmed that most
of the keypose instances have a low variance, even if we used fewer layers
to reconstruct the motions. However, using more number of B-spline layers
reduces the variance at the keypose instances. Additionally, each variance of
joint angular velocity has a local maximum value around each keypose. This
is because dancers naturally attempt to match their keyposes with the musical
rhythm.
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Figure 3.10: Variance graphs of left shoulder angle and angular velocity se-
quences. Green: using normal playback speed music, yellow: using 1.2 times
faster music, light blue: using 1.5 times faster music, and blue: variance calcu-
lated from all motions. From top to bottom: the number of B-spline layers is 1,
2, 3, 4, and 5, respectively.

53



Summary of Motion Observations

According to the observations of the mean motion, the motion performed
at faster music playback speed has fewer high frequency components. Addi-
tionally, according to the observations of the variance sequences, the keyposes
mentioned in Chapter 2 are preserved in all cases. In the above figures, we show
the trajectories of left and right shoulders, but the same is true for other joint
angle trajectories and the motions performed by other dancers. Considering
these insights, we assume the following aspects of human motion in order to
model modifications of upper body motion:

1. High frequency components of human motion should be attenuated when
the music playback speed is too quick to follow.

2. Keyposes will be preserved even if high frequency components are atten-
uated.

3.5 Motion Modification Based on Kinematic Constraints

Based on these observations, in this section, we design an algorithm to
modify upper body motion to follow input music playback speed. Our motion
modification method consists of two steps: hierarchical motion decomposition
considering keypose information, and motion reconstruction that satisfies kine-
matic constraints. A summarized algorithm of our motion modification method
is described in Algorithm 3.1.

3.5.1 Hierarchical Motion Decomposition Using Keypose Information

Remembering our insight that keyposes will be preserved even if high fre-
quency components become attenuated, we can improve the method of motion
decomposition described in Equation (3.13). To achieve this, our motion decom-
position method should consider the posture and velocity information of the
keyposes.

To consider posture information, we could apply an optimization method
which uses hard constraints such as the SVD-based optimization method [LH74].
However, in our case, most control points must satisfy these kinds of hard
constraints if this method is applied. Therefore, a better solution is that we can
densely sample input motion sequence around keyposes and sparsely sample it
in other parts, and then use these samples to form a linear system of equations.
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Algorithm 3.1 Motion modification

input: motion sequence q

input: musical rhythm information M

input: keypose information K

input: kinematic constraints C

output: modified motion sequence q′

local: motion segment s

local: hierarchical B-spline H

local: the number of hierarchical B-spline layers L

local: weighting factor w

1 for each joint of upper body

2 H← DecomposeMotion(q, M, K)

3 s← SegmentMotion(H, M)

4 for each motion segment

5 L, w← Initialize()

6 while

7 L, w← UpdateParameters(L, w)

8 until ComposeMotion(s, L, w) satisfies C

9 s← ComposeMotion(s, L, w)

10 end for

11 q′← InterpolateMotionSegments(s)

12 end for
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Figure 3.11: Illustration of our sampling method for motion decomposition. For
hierarchical B-spline construction, our method densely samples motion sequence
around the keyposes, while sparsely sampling motion sequence in other parts.
In this example, our method considers only the data represented by the vertical
solid lines, and ignores the data represented by the vertical broken lines, to
estimate control points of hierarchical B-spline.

Figure 3.11 provides an illustration of our data-sampling method for motion
decomposition. All vertical lines in this illustration represent originally sampled
data, and our method uses only the solid lines shown among them.

With regard to velocity information, the movements of a dancer’s arms
and hands are stopping around keyposes; velocity of the hands and arms are
approximately zero at keyposes. We exploit this useful property of keyposes as
velocity information in our motion decomposition method. The derivation of
B-spline curve is represented as

d f
dt
=

3∑
i=0

d
dt

Bi,4(t − ⌊t⌋)Q⌊t⌋+i−1, (3.22)
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where

d
dt

B0,4(t) = −1
2

(1 − t)2, (3.23a)

d
dt

B1,4(t) =
3t2 − 4t

2
, (3.23b)

d
dt

B2,4(t) =
−3t2 + 2t + 1

2
, (3.23c)

d
dt

B3,4(t) =
1
2

t2. (3.23d)

From all the keyposes, we form a linear system of equations to satisfy the velocity
constraints: 

0
0
...

0

 ≃ Nvel


Q̂0

Q̂1
...

Q̂n

 , (3.24)

where Nvel represents a (the number of keyposes)×(n+1) matrix whose elements
are given as

Nvel
i j =

 d
dt B j+1−⌊ti⌋,4(ti − ⌊ti⌋) if j ≤ ti < j + 1
0 otherwise

. (3.25)

Considering both the posture and velocity constraints, the motion decom-
position method is modified as

d(t1)
d(t2)
...

d(tm)

0


≃Nkeypose


Q̂0

Q̂1
...

Q̂n



=



Npos

Nvel




Q̂0

Q̂1
...

Q̂n

 , (3.26)
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where Npos represents a coefficient matrix of B-spline basis functions based on
our densely/sparsely sampling method. For each layer of hierarchical B-spline,
we can estimate the control points by solving Equation (3.26)


Q̂0

Q̂1
...

Q̂n

 =



Npos

Nvel



+ 

d(t1)
d(t2)
...

d(tm)

0


, (3.27)

and decompose the input motion sequence.

3.5.2 Motion Modification Based on Kinematic Constraints

Every body part has kinematic constraints: the joint angles and angular
speed of arms have natural limitations. Our motion modification method recon-
structs motion based on the kinematic constraints from our constructed hierar-
chical B-spline.

In this step, we first segment the motion sequence to correspond to music
rhythm frames, and then optimize each motion segment such that a resulting
motion sequence must satisfy certain kinematic constraints. A resulting joint
angle trajectory q′ of motion segmentM can be represented as

q′(t;M) = exp

 LM∑
l=1

wMl f l

(
2lt

) , (3.28)

where LM is the number of the hierarchical B-spline layers to be used for motion
reconstruction, and wMl is a weighting factor for each layer in the motion segment
M within the range [0, 1] for the currently considered joint. Our optimization
process involves determining the LM and wMl that can satisfy certain kinematic
constraints:

minimize ||voriginal(t) −
∑LM

l=1 wMl f l(2
lt)||

subject to θmin ≤ |v′| ≤ θmax,

θ̇min ≤ |v̇′| ≤ θ̇max,

etc.,

(3.29)
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Figure 3.12: Quintic polynomial equation α(t) = −6t5 + 15t4 − 10t3 + 1 for motion
interpolation. Using this polynomial equation, a resulting motion satisfies the
C2 continuity.

where voriginal = log
(
qoriginal

)
, v′ = log

(
q′

)
, and θmin, θmax, θ̇min, θ̇max, etc. are

predefined kinematic constraints.
First, LM and wMl are initialized with the maximum number of desired

hierarchical B-spline layers to consider and 1, respectively. The first step of
the optimization process is to determine the optimum number of layers LM.
According to our insights obtained through the observations, when musical
rhythm gets faster, the higher frequency components of a joint angle trajectory
will be attenuated to catch up with the musical rhythm. If a joint angle or
joint angular velocity of a body part is beyond a natural limit, the numbers of
hierarchical B-spline layers to be used for motion reconstruction are gradually
reduced, in successive passes, in order to satisfy all the constraints. In this
process, a discontinuity might develop between neighboring motion segments
if there ends up being a difference in the number of used layers. So we apply
motion blending around the discontinuities. LetA andB be neighboring motion
segments. To accomplish blending, we interpolate the joint angle sequence of
neighboring motion segments using SLERP interpolation (see Appendix D):

q j(t) = SLERP
(
qAj (t), qBj (t); α

( t − tst

L

))
, (3.30)
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where tst represents a starting frame of interpolation, L represents the duration
of interpolation, and α(t) is a quintic polynomial equation given as

α(t) = −6t5 + 15t4 − 10t3 + 1. (3.31)

This quintic polynomial equation is a C2 continuous function such that

α(0) = 1, (3.32a)

α(1) = 0, (3.32b)
d
dt
α(0) = 0, (3.32c)

d
dt
α(1) = 0, (3.32d)

d2

dt2α(0) = 0, (3.32e)

d2

dt2α(1) = 0. (3.32f)

The shape of α(t) is represented in Figure 3.12.
In the next phase of the algorithm, the weighting factors wMl are determined.

We have already determined LM, and a motion sequence reconstructed using
LM layers of the hierarchical B-spline always satisfies the kinematic constraints.
Thus, wMl for these layers should be 1. Then we update LM as

LM ← LM + 1, (3.33)

and try to determine the weighting factor for LM-th layer in order to reconstruct
joint angle trajectories as closely as possible to the original joint angle trajectories.
Through this step, there might also arise a discontinuity between neighboring
motion segments because of the different weighting factors. To solve this prob-
lem, we re-apply the same interpolation technique described in Equation (3.30).

It might seem that there is a possibility that some keyposes are violated by
this motion interpolation. However, the keypose constraint is mostly satisfied
through our motion decomposition method, and this proves not to be a serious
problem.

3.6 Experiments

3.6.1 Experimental Data

We tested our algorithm by modifying Aizu-bandaisan dance data per-
formed at a normal musical speed. Each motion data is captured at 120 fps
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Figure 3.13: Degrees of freedom of the upper body joints.

by an optical motion capture system produced by Vicon. The format of the input
motion data is VPM, in which each marker position is recorded, and we convert
the position data into the joint angle. The degrees of freedom of each joint is
shown in Figure 3.13.

For motion decomposition, we set the maximum number of hierarchical
B-spline layers to 5.

3.6.2 Results of Motion Decomposition

We first show results of the motion decomposition method described in Sec-
tion 3.5.1. Figure 3.14 (a) and Figure 3.14 (b) show comparisons of reconstructed
dance keyposes using a single-layer B-spline and a two-layer hierarchical B-
spline respectively. In these figures, top and bottom rows represent recon-
structed keyposes and joint angular velocity trajectories, respectively. Green,
and yellow lines represent motions reconstructed by our motion decomposition
method (Equation (3.27)), and the traditional hierarchical B-spline fitting method
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Joint Dancer1 [degree / sec] Dancer2 [degree / sec]

Shoulder 312.3 433.7

Elbow 244.7 304.8

Wrist 568.4 624.5

Table 3.1: Extracted joint angular speed limitations. The speed limitations of
Dancer1 and Dancer2 are calculated from motion data performed at 1.5 times
and 1.3 times faster musical playback speeds, respectively.

(Equation (3.13)) respectively, and the light blue articulated figure represents the
original motion after noise removal. As shown, the keyposes reconstructed by
our hierarchical B-spline method are more similar to the original ones than those
reconstructed by the traditional hierarchical B-spline. With regard to joint angu-
lar velocity, ours are closer to zero than the results of the traditional methods.
Altogether, these results validate the effectiveness of our proposed method.

3.6.3 Results of Motion Modification

We considered only the maximum speed of each joint angle extracted from
the original dance data performed at the faster musical playback speed as kine-
matic constraints. The speed limitation extraction was done after smoothing the
motion data in order to reduce noise. The extracted speed limitations are shown
in Table 3.1.

For comparison, we also synthesized motion from the motion capture data at
a normal musical playback speed by applying temporal scaling of the motion and
then a scaling of joint angle magnitude in order to satisfy the extracted speed
limitations. In the following, we denote motion synthesized by our method,
original motion performed at the faster musical playback speed, and motion
synthesized via the simple scaling as Synthesized Motion, Original Motion, and
Scaled Motion, respectively.
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(a)

(b)

Figure 3.14: Results of motion decomposition using Dancer1’s motion. (a):
Result using a single-layer B-spline, and (b): result using a two-layer hierarchi-
cal B-spline. Top: reconstructed keyposes, and bottom: joint angular velocity
trajectories of the left shoulder. Green and yellow lines represent motions recon-
structed via our motion decomposition method and the traditional hierarchical
B-spline fitting method, respectively. The light blue articulated figure represents
the original motion after noise removal. Time markers at keyposes are shown
inside white cycles inside the bottom figures.
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Results of Motion Modification for Dancer1

First, we show the results of the experiment in which Dancer1’s motion
at 1.5 times faster musical playback speed was synthesized using the motion
performed at the normal musical playback speed. The results are shown in
Figure 3.15, in which green, yellow, and light blue lines represent the hand tra-
jectories of the Synthesized Motion, Original Motion (performed at 1.5 times
faster musical playback speed), and Scaled Motion in the body center coordinate
system, respectively. Figure 3.16 shows a visualization of the layers and weight-
ing factors for motion modification estimated in order to satisfy the given speed
limitations. The high frequency components of the shoulder and wrist angles
are more attenuated than those of elbows. This is because shoulders and wrists
have more DOFs than elbows, and therefore, the movements of shoulders and
wrists contain more complex motion than those of elbows.

Figure 3.17 shows the shoulder angle trajectories of Dancer1’s motion. Fig-
ure 3.18 represents the frame-by-frame distance of the hand position in the
body center coordinate system between the Original Motion and the Synthe-
sized/Scaled Motion. From these results, it is confirmed that the trajectories of
the Synthesized Motion are much closer to those of the Original Motion than
those of the Scaled Motion.

Results of Motion Modification for Dancer2

Dancer2’s motion at 1.3 times faster musical playback speed was synthesized
using the motion performed at the normal musical playback speed.

The results are shown in Figure 3.19, in which green, yellow, and light blue
lines represent the hand trajectories of the Synthesized Motion, Original Motion
(performed at 1.3 times faster musical playback speed), and Scaled Motion in
the body center coordinate system, respectively. Figure 3.21 shows the shoulder
angle trajectories of Dancer2’s motion. Figure 3.22 represents the frame-by-frame
distance of the hand position in the body center coordinate system between the
Original Motion and the Synthesized/Scaled Motion. It is confirmed that the
trajectories of the Synthesized Motion are much closer to those of the Original
Motion than those of the Scaled Motion.

The differences between the Original Motion and Synthesized Motion of
Dancer2 is much larger than those of Dancer1. This is because Dancer2’s hand
motions are more complex than Dancer1’s. Figure 3.20 and Figure 3.16 also
enable us to conclude that when body parts have complex movements, their
hierarchical B-spline layers are greatly attenuated. This is derived from the fact
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Time

Figure 3.15: Result of the motion modification method using motion performed
by Dancer1. Figures on the left side and right side show the right and left hand
trajectories of the Synthesized Motion (green), Original Motion (yellow line) and
Scaled Motion (light blue line).
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Figure 3.16: Layers and weighting factors for motion modification of Dancer1.
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Figure 3.17: Result of the modified shoulder angle trajectories of Dancer1. Top:
left shoulder angle trajectories, and bottom: right shoulder angle trajectories.
Green, yellow, and light blue lines represent the shoulder angle trajectories of
the Synthesized Motion, Original motion, and Scaled Motion, respectively.
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Figure 3.18: Frame-by-frame distance of hand position in the body center coor-
dinate system of Dancer1. Top: difference of the left hand position, and bottom:
difference of the right hand position. The green and blue lines show the difference
between the Original Motion and the Synthesized Motion, and the difference be-
tween the Original Motion and the Scaled Motion. The vertical red broken lines
represent keypose frames.
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Time

Figure 3.19: Result of the motion modification method using motion performed
by Dancer2. Figures on the left side and right side show the right and left hand
trajectories of the Synthesized Motion (green), the Original Motion (yellow line)
and the Scaled Motion (light blue line).
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Figure 3.20: Layers and weighting factors for motion modification of Dancer2.
Each horizontal block represents a motion segment based on the estimated mu-
sical rhythm.
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Figure 3.21: Result of modified shoulder angle trajectories of Dancer2. Top:
left shoulder angle trajectories, and bottom: right shoulder angle trajectories.
Green, yellow, and light blue lines represent the shoulder angle trajectories of
the Synthesized Motion, Original motion, and Scaled Motion, respectively.
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Figure 3.22: Frame-by-frame distance of hand position in the body center coor-
dinate system of Dancer2. Top: difference of the left hand position, and bottom:
difference of the right hand position. The green and blue lines show the difference
between the Original Motion and the Synthesized Motion, and the difference be-
tween the Original Motion and the Scaled Motion. The vertical red broken lines
represent keypose frames.
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that complex trajectories make it difficult for a dancer to follow a faster music
speed. Therefore, our method works more effectively in the case of complex
motion trajectories.

3.6.4 Application for Humanoid Robot Motion Generation

Because a humanoid robot has kinematic constraints, humanoid robot mo-
tion generation is a suggested applications of our method. Here, we show
simulation results which apply the dance motions of Dancer1 and Dancer2 per-
formed at the normal musical speed to a biped humanoid robot. To evaluate
our method, we compare our method with Pollard et al.’s method [PHRA02],
which modifies joint angle and angular speed trajectories using a PD filter to
satisfy kinematic constraints. For lower body motion, we apply Nakaoka et al.’s
method [NNK∗05], which analyzes lower body motion, classifies the motion into
predefined four states: STAND, SQUAT, L-STEP, and R-STEP, and generates
balance-maintained lower body motion based on this classification.

Experimental Platform

Our experimental platform is an HRP-2 developed by Kaneko et al. [KKK∗02].
The HRP-2 consists of a whole body with 30-DOF joints; we are focusing on the
12 DOFs of HRP-2’s arms as shown in Figure 3.23. The height and weight of the
HRP-2 are 1.54 [m] and 54 [kg], which is quite similar to those of humans. We
use these limitations as kinematic constraints.

Simulation Results for Dancer1’s Motion

Figure 3.24 shows the simulation results for Dancer1’s motion. The red
sphere represents the Zero Moment Point (ZMP) proposed by Vukobratović et
al. [VJ69, VBSS90]. If there is a ZMP inside supporting area, a humanoid robot
will maintain its balance; otherwise the robot will fall down. Our simulated
motion satisfies this criterion for balance maintenance, and the humanoid robot
successfully performed the dance. Figure 3.25 illustrates the hierarchical B-spline
layers and weighting factors used to modify the original joint trajectories. Fig-
ure 3.26 and Figure 3.27 show the angle and angular speed trajectories of the
left shoulder roll and the left wrist pitch joint, respectively. In these figures, red,
green and blue solid lines denote the original trajectory, the trajectory modified
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Figure 3.23: Our humanoid robot experimental platform: HRP-2. Each arm of
the HRP-2 consists of 6-DOF joints.
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by Pollard et al.’s method, and the trajectory modified by our method, respec-
tively. Gray broken lines denote the maximum possible angle and angular speed
limitations of the HRP-2.

It is easily confirmed that both methods can modify the angle and angular
trajectories in order to satisfy kinematic constraints. In the case of left shoulder
roll, the original angle and angular speed trajectories mostly satisfy the kinematic
constraints, and do not need to be modified. While our method can re-generate
motion quite similar to the original one, the motion modified by Pollard et al.’s
method lacks high frequency components. This is because the original motion
was smoothed via PD control.

In the case of left wrist pitch, the original angular speed trajectory sometimes
violates the kinematic constraints. The trajectories resulting from our method
lack high frequency components around constraint-violating motion frames, but
keep their high frequency components in other frames. On the other hand, the
trajectories resulting from Pollard et al.’s method always lack high frequency
components, due to the PD control. Note, also, in Pollard et al.’s method, that the
speed around constraint-violating motion frames is a constant value. This can
create two problems. One is that the humanoid robot cannot clearly reproduce a
keypose if the posture and angular speed around the keypose violate kinematic
constraints. The other is that the humanoid robot may fall because of the rapid
changes in acceleration. Therefore, our method works better for humanoid robot
motion generation than Pollard et al.’s method.

Simulation Results for Dancer2’s Motion

Figure 3.28 shows other simulation results with Dancer2’s motion. This
simulated motion also satisfies balance maintenance requirements. Figure 3.29
illustrates the layers and weighting factors used to modify the original motion of
Dancer2. It is easily confirmed that Dancer1’s modified motion is quite different
from Dancer2’s modified motion, and that essential characteristics are preserved
despite high frequency component attenuation.

3.7 Discussion

Keyposes

Through the observations of human motion analyzed using a hierarchical B-
spline, we obtained the insight that keyposes are preserved even when the music
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playback speed is faster. This is shown by the fact that variances calculated from
Equation (3.20) around the keyposes are locally minimal.

Noting that Kang et al. [KI93] and Ogawara [Oga01] proposed a method
to extract the primitive characteristics of motion by detecting the local minima
of motion variance sequences, we can also validate definition of keyposes that
instants where motion variance gets locally minimal are likely to be keyposes.
In turn, the existence of keyposes depends upon the skill of dance performers.
Indeed, keyposes do not appear clearly in motion sequences performed by un-
trained dancers, while motions performed by Dancer1 and Dancer2, who are
masters of the Aizu-bandaisan dance, present very clear keyposes. Therefore,
we believe that variance around the keyposes enables us to recognize whether a
performer is well-skilled or not.

Applicability to Lower Body Motion

Generally, upper body motion performed by a single dancer is not con-
strained by the environment, such as contact with objects. In contrast, lower
body motion is often constrained. For example, lower body parts, especially
feet, experience impacts with the floor. When feet touch the ground, their high
frequency components are suddenly much larger [Ari06]. But these high fre-
quency components are not derived from a performer’s style. The violation of
high frequency components in synthesized foot motion produces an unnatural-
ness called foot-skating. Nakaoka et al. [NNK∗05] proposed a method to recognize
the states of lower body motion and to extract the style components of lower
body motion. We believe that our method is applicable to lower body motion if
Nakaoka et al.’s method is applied so that possible states “swing sole” for a leg
are properly recognized.

3.8 Summary

In this chapter, we proposed a method to modify upper body motion consid-
ering aspects of human motion and kinematic constraints. We analyzed motion
data captured at varying musical speeds by using a hierarchical motion decom-
position technique. Through this observation, we obtained the following two
insights:

1. High frequency components of human motion should be attenuated when
music playback speed is too fast to follow.
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Figure 3.24: Simulation result for Dancer1’s motion. Red sphere represents the
ZMP of the generated motion.
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Figure 3.25: Layers and weighting factors used to generate humanoid robot
motion from Dancer1’s motion.
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Figure 3.26: Comparisons of angle (top) and angular speed (bottom) of left
shoulder roll. Red, green, and blue solid lines represent the trajectories of the
original motion, the result of Pollard et al.’s method, and the result of our method,
respectively. Horizontal broken lines denote the limitations of the HRP-2.
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Figure 3.27: Comparisons of angle (top) and angular speed (bottom) of left wrist
pitch. Red, green, and blue solid lines represent the trajectories of the original
motion, the result of Pollard et al.’s method, and the result of our method,
respectively. Horizontal broken lines denote the limitations of the HRP-2.
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Figure 3.28: Simulation result for Dancer2’s motion. Red sphere represents the
ZMP of the generated motion.
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Figure 3.29: Layers and weighting factors used to generate humanoid robot
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82



2. Keyposes will be preserved even when high frequency components are
attenuated.

We applied these insights to model motion modification which can generate mo-
tion satisfying specified kinematic constraints. Our experimental results show
the effectiveness of our method. We also show an application of this method in
humanoid robot motion generation.
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Chapter 4

Dancing-to-Music Character Animation

Based on Aspects of Human Emotion

4.1 Introduction

Synthesizing realistic human motion is currently one of the most impor-
tant topics in computer graphics research. Most motion synthesis techniques
use motion capture data and synthesize new motion which is synchronized
with external input signals such as trajectories designed by users [KGP02], envi-
ronmental obstacles [LCR∗02], speech information [SDO∗04], motion of another
character [HGP04], and so on. The main issue surrounding these techniques is
the nature of the cues used to search and distinguish appropriate motions from
the typically large amount of data in a motion database. Animators need to
choose suitable cues in order to create the motion sequences they really want.
So, in this chapter, we propose a novel approach for synthesizing expressive dance
motion matched to music. Our approach uses music signals as a cue to synthe-
size new dance motion. The goal of this approach is the realization of a dance
algorithm that mimics human motions based on emotional aspects.

The ability to dance to music is a natural skill for a human. Everyone has
experienced a desire to move their bodies while listening to a rhythmic song.
Some dances are formal and specified a priori, but this is not necessary: hip-hop
dancers can immediately compose a dance motion corresponding to the musical
sounds they are hearing. Although this ability may appear amazing; actually,
these performers do not create these motions, but instead combine appropriate
pre-existing motion segments from their personal knowledge database with mu-
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sic. Considering this ability, we are led to believe that dance motion has strong
connections with music in the two following aspects:

• The rhythm of dance motions is synchronized to that of music.

• The intensity of dance motions is synchronized to that of music.

The first assumption is derived from the fact that almost all people can recognize
the rhythm of music; they can clap or wave their hands, and dance to music. The
second assumption is derived from the fact that people feel quiet and relaxed
when listening to relaxing music such as a ballad, and they feel excited when
listening to intense music such as hard rock.

Our approach consists of three steps: motion analysis, music analysis, and
motion synthesis based on the extracted features.

In the motion analysis step, we analyze the rhythm and intensity features
of input dance motions, and assign these features to each motion in a database.
Our analysis method depends on recent studies regarding the emotional aspects
of human motions. Using these features, our system finds a sequence of motion
segments matched to the input music sequence with respect to the rhythm and
the intensity of the music.

In the music analysis step, first, we analyze the structure of an input music
sequence, and extract music segments based on the structure analysis results.
Second, musical rhythm and intensity features are extracted, and are assigned
to each music segment.

In the motion synthesis step, our method automatically synthesizes new
dance motion by interpolating between the motion segments. Additionally, our
system has a user interface that enables animators to control the synthesis process
by choosing the motion segments best matched to their intentions during music
segments. For example, animators can set key motions in the motion database
for desired music segments, such as setting a jumping motion to the final scene
of the song, or a punch motion to a particular sudden sound in the music.

4.2 Prior Work

In this section we introduce related work on data-driven character animation
and auditory scene analysis, both of which are very important for our approach.
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4.2.1 Data-driven Character Animation

The proposed method is based on motion synthesis using a data-driven ani-
mation synthesis technique. Data-driven character animation is mainly derived
from two domains: synthesizing motion by editing motion data, and synthesiz-
ing motion by extracting segments from a motion database.

Animation Synthesis by Editing

A typical approach to editing motion data is to apply a signal processing
method to motion capture data. Bruderlin et al. [BW95] proposed methods
to edit motion data using signal processing techniques such as a filter bank or
dynamic programming for blending motions. Witkin et al. [WP95] tried to modify
motion data by warping the end-effectors’ trajectories with displacement maps
approximated by B-spline curves, and this technique is called the motion-warping
method. Wang etal [WDAC06] presented a new filtering technique called the
cartoon animation filter that could make an input motion sequence appear to be
more animated. This method could be applied to not only motion capture data,
but also to layered video sequences.

Another common way to edit motion is spacetime constraints, a method of
generating motion under the constraint that a specified body part is in a specified
position at a specified time. This method was proposed by Witkin et al. [WK88].
The technique was designed for a general articulated object including a human
figure; it calculates the required external forces and joint torques so that an object
can exist in a specified position at a specified time. This technique was extended
for the retargeting problem, in which motion capture data are transferred to new
characters while retaining important constraints. A simple approach to retarget-
ing involves traditional inverse kinematics such as the calculation of a Jacobian,
but unfortunately, temporal consistency may be violated; i.e., an end-effector
may be required to move impossibly fast in order to satisfy all the motion con-
straints. Gleicher [Gle98] solved this problem with an optimization based on the
motion-warping method. Lee et al. [LS99] improved this method by parameter-
izing motion with a hierarchical B-spline in order to reduce computational cost.
In these methods, constraints such as contact between the character’s feet and
the ground must be specified by users. Shin et al. [SLSG01] presented a real-time
retargeting method in which the constraints were automatically analyzed via
their proposed importance analysis; the retargeting issue was then addressed via
their quick inverse kinematics solver.
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Animation Synthesis from Motion Database

Recently, many researchers are focusing on the advantages of using a mo-
tion database. One typical method of using a motion database is a motion graph
algorithm, in which motion capture data segments are connected to each other.
This method also includes the idea of tracing a motion graph to satisfy users’
inputs; path or environmental obstacles can thereby be used to force the syn-
thesis of new motions [KGP02, AF02, LCR∗02, LWS02, AFO03, SO06, HG06].
Lai et al. [LCF05] extended this algorithm to synthesize crowd animation. Lee et
al. [LCL06] developed a method to annotate environments with motion capture
data, and to thereby synthesize new motion by integrating the annotated small
environments with interpolated transition motion between the environments.
Reitsma et al. [RP04] proposed a method to evaluate whether or not input char-
acter’s path can be satisfied through constructed motion graphs.

The standard problem of spacetime constraints can also be solved using mul-
tiple motion capture data sets. Wiley et al. [WH97] proposed a method to find
an optimal set for motion capture data whose end-effectors’ positions are near
to positions specified by users, and to thereafter linearly interpolate the motion
capture data’s positions to satisfy the specified positions. Rose et al. [RBC98]
considered motion data to be analogous to verbs and important features of a mo-
tion data set to be adverbs. By adjusting their “adverbs,” new motion adequately
satisfying spacetime constraints was generated. They also developed a method
to interpolate motion sequences using a radial basis function [RSC01]. Kovar et
al. [KG04] extended these methods to select the best motion data set to be used
for interpolation and to estimate the needed weighting parameters automati-
cally and effectively. Mukai et al. [MK05] proposed an automated method to
interpolate motion data using geostatistics.

Unfortunately, interpolated motions do not always realistically portray real
human motion. Some researchers have focused on evaluating the degree of syn-
thesized motion naturalness. Tak et al. [TSK00] presented a method to re-create
a balance-maintained motion by calculating and adjusting a zero moment point
(ZMP); this ZMP can be used to test whether a desired motion can be executed
without falling down [VJ69]. Reitsma et al. [RP03] paid attention to character’s
changes in horizontal and vertical velocity, and evaluated whether synthesized
motion appeared natural. Safonova et al. [SH05] developed a method to analyze
human physical correctness from the aspects of changes in momentum and an-
gular momentum during flight, foot contact, balance maintenance, and friction.
Ren et al. [RPE∗05] proposed a method to evaluate human-motion naturalness
using a motion capture database and stochastic models.
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Motion Synthesis Considering Human Perceptual Models

There are several existing methods to synthesize human animation based on
human perception which are very similar to our approach. Peters et al. [PO03]
proposed a method of human animation synthesis based on a CG character’s
focus of visual attention. In their method, from the visual information, a CG
character can “perceive” its surrounding environment and “plan” to perform a
movement. Sakuma et al. [SMK05] proposed a psychological paradigm model
for human crowd simulation in which neighboring CG characters impose mental
stress each other, and therefore, they move in order to avoid too much closeness
to each other.

Stone et al. [SDO∗04] proposed a method whose approach is quite similar to
ours in that input sound signals are considered. The goal of their method was to
synthesize speech motion by extracting emphasis features of motion and speech
data and synchronizing them; however, this method is not applicable to dance
performance synthesis. Their feature extraction method requires many manual
steps and is accordingly a very time-consuming system for synthesizing new
speech motions. In contrast, our method can automatically extract motion and
musical features and synthesize dance motion from musical input.

Kim et al. [KPS03] proposed a rhythmic motion synthesis method using the
results of motion rhythm analysis. When using their method, music data input
must have a rhythm interval that is similar to that of the resulting motion. It
is quite difficult to apply this method with diverse music data. Alankus et
al. [ABB05] and Lee et al. [LL05] also proposed a method to synthesize dance
motion by considering the rhythm of input music. The drawback of both these
methods is to consider only musical rhythm; because of this, it is very difficult
to synthesize expressive dance motion.

4.2.2 Auditory Scene Analysis

Computational analysis methods for a music scene are important for under-
standing how humans recognize musical features; the topic is called computa-
tional auditory scene analysis [Bre90, CB93]. In this field, many researchers have
focused on separating acoustic signals into each instrument’s sound, and con-
verting them into a musical score. Recently, however, their interests are shifting
to how people recognize musical features in acoustic signals and apply such
features to music signal processing [GH04].

One such method of music analysis is musical structure analysis. Most musi-
cal songs have repeating patterns and a prominent structure. Musical structure
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analysis methods have been used to accomplish applications such as music
summarization. In general, repeating patterns are considered as melody simi-
larity. In order to extract the melodic similarity, musical intensity features are
extracted from spectral components [LC00, WLZ04, SXWK04], or amplitude en-
velopes [LZ03] may be used.

Another extraction possibility involves mood analysis. People may feel a
mood when listening to a song, such as sadness, happiness, and so on. However,
few studies have touched this field. Katayose et al. [KII88] presented a sentiment
extraction system for pop music from MIDI signals. Liu et al. [LLZ06] proposed
a method to analyze the mood of classical music; their four possible moods are
exuberance, anxious, contentment, or depression.

4.3 Approach

Our approach uses musical information as a cue to retrieve motion segments
from a motion capture database. We start by discussing a human perception
model based on the relationship between human motion and music. To define
this music and motion relationship model, previous studies of human dance
motion analysis are of great help.

Laban, who is famous for his novel dance description method called Laban-
otation, is a pioneer in the study of this topic. He has studied the emotional
aspects of body movements [LU60]. According to his theory, the emotion of
human motion comes from motion features consisting of Effort and Shape com-
ponents. The Effort component is defined as the movements of body portions,
and the Shape component is defined as the shape of elements he calls keyposes.
Chi et al. [CCZB00] have developed a method to synthesize character animation
based on these concepts. More recently, Nakata et al. [NMS02] have tested the
validity of Laban’s theory using a small robot and user studies. Although they
could not find a significant relationship between the shape component and emo-
tions, they found that the Weight Effort component, one of the Effort components,
is closely related to the excitement of the motion. Laban defined the Weight
Effort component as the strength of a movement, and Nakata considered them
physically as the linear sum of rotation velocities of each body joint. We use
these metrics to define the motion intensity component FMotion

I .
As described in Chapter 2, we have developed a method that analyzes the

relationship between stop motions and musical rhythm. The results indicate that
musical rhythm has a strong connection with motion elements we call keyposes.
Accordingly, our motion analysis method extracts the local minimums of the
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Weight Effort component in order to extract the motion rhythm feature FMotion
R .

A motion feature vector for each frame is obtained via the motion feature analysis:

MotionFeature( f ) =

 FMotion
R ( f )

FMotion
I ( f )

 . (4.1)

The next issue is to extract musical features. We believe that there are three
important musical features for dance performance. One is musical rhythm. As
everyone has experienced, there is a very close relationship between musical
rhythm and motion rhythm. We consider musical principle about what is called
“the onset component” to estimate musical rhythm FMusic

R . Another important
factor is music structure, which consists of several musical phrases. Both music
players and dancers try to keep the structure from being violated during their
performances. We extract repeating patterns to detect the musical structure,
and obtain music segments from the music sequence. The other important
component is music intensity. People feel various emotions depending on the
mood set in music, and the same is often true for dance. In music mood analysis,
we mainly focus on music intensity as it is one of the more important factors
in establishing musical mood. We extract the music intensity component FMusic

I
using the energy of the melody line. Accordingly, a music feature vector for each
music segmentM is obtained:

MusicFeature( f ;M) =

 FMusic
R ( f ;M)

FMusic
I ( f ;M)

 . (4.2)

Our motion synthesis step extracts the most appropriate motion segment
sequence by evaluating motion and music features. This step has two types of
algorithms: a Motion Graph-based locally optimal algorithm, and a segment-
based globally optimal algorithm. Both of them have a common approach in
which first motion segment sequences are selected by matching rhythm features,
and then the best motion sequence is selected by evaluating the similarity of
intensity features.

4.4 Motion Feature Analysis

As described in Section 4.3, our motion analysis method strongly relies on
Laban’s Weight Effort component. In this section, we describe our definition of
the Weight Effort component and how to extract motion features.
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Figure 4.1: Our human body model for motion feature extraction. The shape and
pose are described by the base matrix {R, t} and the 17 vectors vn. The lengths of
the body links are given by ln. Our method converts the pose at each frame into
this coordinate system.

4.4.1 Human Model for Motion Feature Extraction

We first convert motion capture data into our simple human body model
for motion feature extraction. Figure 4.1 illustrates our human model. In our
model, a human pose at each frame is converted into body center coordinate
system as described in Section 2.5.1. In the following, the x-axis, the y-axis and
z-axis are referred to as rx, ry and rz, respectively, and the origin position of the
body center coordinate system is denoted as t. vn is a unit vector representing
the direction of the n-th body link in the body center coordinate system {R, t},
and ln represents the length of the n-th body link.

4.4.2 Weight Effort

According to Laban’s definition, the Weight Effort component represents the
strength of motion. Thus, we define the Weight Effort component W as the linear
sum of the approximated instantaneous momentum magnitude calculated from
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the link and body directions:

W( f ) =
∑

i

αi arccos
(

vi( f )
|vi( f )| ·

vi( f + 1)
|vi( f + 1)|

)
+

∑
j∈{x,y,z}

arccos
(

r j( f )
|r j( f )| ·

r j( f + 1)
|r j( f + 1)|

)
, (4.3)

where αi is a regularization parameter for the i-th link. These regularization pa-
rameters depend on which parts we recognize as important for dance expression.
For example, if we recognize the hands and feet as important, α corresponding
to the hands and feet will be greater than those corresponding to other parts.

4.4.3 Motion Rhythm Feature

Considering the characteristics of the Weight Effort component, the local
minimums of this component indicate stop motions, which are important mo-
ments in dance performance. We recognize these local minimums as motion
keyposes, and define the motion rhythm features FMotion

R as follows:

FMotion
R ( f ) =

 1 if W( f ) is around the local minimum
0 otherwise

. (4.4)

4.4.4 Motion Intensity Feature

Motion intensity is related to not only momentum but also forward transla-
tion. We obtain instant motion intensity I from the momentum W and the speed
of the forward direction rx · ṫ:

I( f ) =W( f ) ·
(
1.0 + k · rx( f ) · ṫ( f )

)
(4.5)

in which k is a regularization parameter between the Weight Effort and the speed.
Finally, we calculate the average of the instantaneous motion intensity from the
previous motion keypose f R

i to the next one f R
i+1, and set it to the motion intensity:

FMotion
I ( f ) =

f R
i+1∑

i= f R
i

I(i)
f R
i+1 − f R

i

. (4.6)
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Figure 4.2: Motion feature vector of an example motion. Motion rhythm and
intensity components are obtained from Weight Effort of body movement. The
motion rhythm component is the local minimum of the Weight Effort component
(dashed lines), and motion intensity comes from the average of Weight Effort and
forward translation of the body within the neighboring motion rhythm frame.

4.5 Music Feature Analysis

When people listen or dance to music, they extract musical features from an
audio signal. The important features for dance performance are music structure,
rhythm, and intensity. This section describes how to acquire music segments,
and how to extract the music rhythm and intensity features. In the following,
X(t, k) denotes the spectral power of k-th note at t-th temporal frame.

4.5.1 Music Segment Acquisition

With respect to music structure, we first note the following key principle:

Principle 3: Music structure consists of the repetition of several phrases.

The goal of this analysis is to extract the patterns of the repeating phrases and to
segment the music by the extracted repeating patterns.

Some phrases may be repeated by different instruments; e.g., one phrase
is performed by a vocalist, and a repetition of the phrase is performed by a
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Figure 4.3: Example of fundamental tone ‘A’ and its overtones. When a sound ‘A’
whose frequency is around 110Hz is produced, its overtones, whose frequencies
are integral multiples of the fundamental tone, are also produced.

guitar). However, people can easily recognize that they are the same phrases,
and therefore the structure analysis method should depend on the sequence of
the notes, but not be affected by the timbre of the instruments.

Figure 4.3 shows a mechanism of timbre. The timbre of every instrument has
a basic characteristic that it always consists of a fundamental tone and its over-
tones, whose frequencies are integral multiples of the fundamental frequency,
but the energies of the overtones differ from one instrument to another. Be-
cause of this, it is difficult to extract accurate repeating patterns directly in the
frequency domain.

In order to find repeating patterns, we use CQT feature vectors and eval-
uate these with a structure-based similarity measurement that is independent
of timbre effects, as proposed by Lie et al. [WLZ04]. First, we calculate the
auto-correlation of the elements of the difference vector:

ri j(m) =
N−m−1∑

n=0

∆vi j(n +m) · ∆vi j(n), (4.7)
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where ∆vi j(n) is the absolute difference of the n-th CQT feature vector element
between the i-th and j-th temporal frames:

∆vi j(n) = |X(i,n) − X( j,n)|, (4.8)

and N is the number of the elements of CQT feature vectors. If the CQT feature
vectors contain the same pitch sound, the peaks of ri j(m) will have harmonic
intervals that are based on the characteristics of the overtones, and if not, the
peaks will appear without this interval. In detail, if the vectors contain the same
pitch, the peak of ri j(m) will strongly appear at m = 0, 12, 19, 24, 29 etc., which
represent the fundamental frequency fb and its integral multiples 2 fb, 3 fb, 4 fb, 5 fb.
This characteristic is modeled as the spiral array [Che01], and the elements of
the weighting vector w(m) for r(i, j) = [ri j(0), ri j(1), · · · , ri j(N)]T are represented
as

w(m) =
1
A
|p(7m mod 12) − p(0)|, (4.9)

where A is a normalization factor to satisfy
∑

m w(m) = 1, and

p(m) =


sin mπ

2
cos mπ

2
mπ
2

 . (4.10)

Accordingly, the distance D between two CQT feature vectors is considered the
neighboring frames and evaluated as follows:

D(i, j) =
1

2Nr

Nr−1∑
k=−Nr

w · r(i + k, j + k), (4.11)

where w represents the weighting vector, and 2Nr is the range for the distance
calculation.

Once the distance function is defined, we can get the similarity matrix S
whose elements are the similarity measurements 1/D(i, j), and then convert it to
time-lag matrix T:

Ti j = Si,i+ j =
1

D(i, i + j)
. (4.12)

Figure 4.4 shows examples of these matrices. In this figure, the brighter regions
show the greater similarity, and several white horizontal lines appear clearly in
the time-lag matrix. These lines denote the repeating patterns. By extracting
them, we can acquire the repeating phrases, and analyze the structure of the
input music. More specifically, the Erosion and Dilation operators often used
in image processing [GW02] are applied to make the lines more clear; the lines
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(a) (b) (c) (d)

Figure 4.4: Repeating pattern analysis steps. (a) Similarity matrix, (b) time-lag
matrix, (c) time-lag matrix after Erosion and Dilation operations, and (d) result
of repeating phrases extraction.

can then be extracted with a thresholding process. Finally, music segments are
extracted by dividing the music sequence at the boundaries of resulting repeating
phrases. The other musical features are extracted and assigned to each music
segment.

4.5.2 Music Rhythm Feature

To extract music rhythm, we employ the onset component-based rhythm
estimation described in Section 2.4. After the music rhythm estimation process,
the musical rhythm feature FMusic

R is defined as follows:

FMusic
R ( f ;M) =

 1 if f inM is estimated rhythm time
0 otherwise

. (4.13)

4.5.3 Music Intensity Feature

To extract music intensity, we first note the following principles:

Principle 4: The spectral power of a melody line is likely to increase during
increasing intensity in the music.

Principle 5: A melody line is likely to be performed using a higher range than
the C4 note.
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Many surveys on auditory psychology [Roa96] say that our ears tend to
recognize only the sound whose spectral power is the strongest among the
neighboring frequency sounds. Application of this principle is used in many
audio signal compression algorithms such as MP3. Accordingly, a temporally
average spectral power X̄ of k-th note within a music segmentM is calculated
to figure out which note sounds are produced in the music segment:

X̄(M, k) =
1
|M|

∑
t∈M

X(t, k), (4.14)

where |M| denotes the number of the CQT feature vectors in M, and then the
local peaks Xpeak of each average CQT feature vectors are picked up:

Xpeak(M, k) =
 X̄(M, k) if X̄(M, k) > X̄(M, k ± 1)

0 otherwise
. (4.15)

In order to extract music intensity feature FMusic
I , we approximately calculate the

sound pressure level, which considers human auditory properties, and is related
to both the amplitude and the frequency:

FMusic
I ( f ;M) = log10

 ∑
k∈[C4,C6]

Xpeak(M, k)2 · f 2
k

 . (4.16)

4.6 Motion Synthesis Considering Motion and Music Fea-

tures

The final step of our approach is to synthesize new dance motion considering
both the motion and music feature vectors. The main purpose and problem of
this step is to select the motion segment set from the motion database with as
low a loss of correlation as possible. Toward this goal, we propose two methods
to synthesize new dance motion:

1. A locally optimal search based on the motion graph algorithm.

2. A segment-based globally optimal search.

The first method locally evaluates the similarity between motion and music
features, and finds the optimal path of the constructed motion graph. The
second method extracts motion candidate segments by evaluating the similarity
of the rhythm features, and finds the optimal sequence of these segments.
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4.6.1 Locally Optimal Motion Synthesis

Motion Graph Algorithm

The motion graph algorithm [KGP02] connects similar poses among existing
motion sequences and indicates all possible transitions among the existing mo-
tion sequence. New synthesized transitions as well as existing motion sequences
are included. The analysis step generates such possible new transition paths,
and the synthesis step chooses appropriate ones according to the features of the
input music. First, we calculate pose similarity between each pair of motion
sequences and connect them based on the degree of pose similarity by creating
transition motions. This graph structure of a motion data set is called a motion
graph. We assign the extracted motion features in the motion graph, and a new
dance motion is synthesized by calculating the correlation of the music features
and the motion features, and tracing the motion graph based on the correlation
results.

The pose distance between frame fA in the motion sequence SA and frame
fB in the motion sequence SB is given by following:

Dist
(
SA

(
fA

)
, SB

(
fB

))
=

∑
i

(
vAi

(
fA

)
· vBi

(
fB

)
+ αi · v̇Ai

(
fA

)
· v̇Bi

(
fB

))
, (4.17)

where αi is the regularization parameter indicating the importance of i-th body
portion. The first term can calculate the similarity of pose, and the second term
can calculate the similarity of movement of the links. The value of the distance
function Equation (4.17) is maximized if the poses and movements at fA and fB

are similar. In order to detect the connection frames, we apply thresholding to
the value of the distance function and generate a new transition motion between
selected frames.

Transition Motion Synthesis

Transition motions are calculated using 3rd order interpolation of body links.
This interpolation can consider the smoothness of position, velocity, and acceler-
ation. For example, assume that we would like to interpolate the motion between
the pose SA( f A) and the pose SB( f B) with given duration T (frames), then the
vectors {vi( f )|0 ≤ f ≤ T, 0 ≤ i ≤ 16} are given by the following:

vi( f ) = f 3 · ai + f 2 · bi + f · ci + di, (4.18)
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Transition motion Transition motion 

A

B

A

B

Figure 4.5: Illustration of motion graph construction. The motion graph al-
gorithm tries to find the transition frames whose postures and movements are
similar to those in other motion sequences. In this example, a new motion repre-
sented by the orange-colored arrows is generated from motion sequence A and
B. The transition frame search is applied to all the possible frame pairs, and an
oriented graph structure consisting of motion sequences is constructed.
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where

ai =
{
T
(
v̇B

i − v̇A
i

)
− 2 ·

(
vB

i − vA
i − v̇A

i T
)}
/T3, (4.19a)

bi =
{
−T

(
v̇B

i − v̇A
i

)
+ 3 ·

(
vB

i − vA
i − v̇A

i T
)}
/T2, (4.19b)

ci = v̇A
i , (4.19c)

di = vA
i . (4.19d)

As for the root motion, we also use 3rd order interpolation for body center
coordinates {ṫA,RA, ṘA} and {ṫB,RB, ṘB}. In order to maintain relative posture
as well as maintain both feet in a state of contact with the ground, a vertical
translation tz and a vertical angle of the body center coordinate system θz =

arccos(rz · z), where z is the vertical axis in the global coordinate system, must be
maintained at the destination frame. To accomplish this, we first determine the
frontal direction of the body center coordinate by using third order interpolation,
then tilt and translate these parameters to satisfy the constraint.

The duration for a transition is determined by the angular distance of the
concatenated frames and the maximum velocity of the concatenated motions. In
the motion analysis step, we determine the maximum angular velocities of all
body portions for all motion data. The duration is determined within the range
in which the angular velocities during transition do not exceed these maximums.
This process is used to avoid unnatural transitions such as the hands moving too
fast compared to neighboring motion sequences.

Dance Motion Synthesis Using Motion Graph

Now we have the motion graph and motion features from a set of motion
sequences, and we also have extracted musical features from input music data.
Paths of the motion graph are selected by calculating the correlation between the
music rhythm feature FMusic

R and the motion rhythm feature FMotion
R . In theory,

all the frames of motion sequence in the motion graph and all the music frames
should be considered to detect the best motion graph path. But this would have
a heavy computational cost. So our algorithm considers every motion graph
path from the current time t to t + T, where T is the search range and is set
to 3 seconds in our experiments. The motion and music similarity of rhythm
component Srhythm is described as follows:

Srhythm(t, path) =
T∑
τ=0

(
FMotion

R (t + τ; path) · FMusic
R (t + τ)

)
, (4.20)
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Figure 4.6: Overview of our locally optimal motion synthesis algorithm. Motion
is generated by tracing a particular motion graph in the database. Evaluation of
the synthesized motion is the sum of the convolution between the motion feature
vectors and the music feature vectors. The system chooses the path evaluated at
the largest possible value.
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where FMotion
R (t+τ; path) is the motion rhythm component along the motion graph

path path. We choose several motion graph paths whose Srhythm are highest. We
define these chosen motion graph paths as “RP.”

The final step in synthesizing a dance motion is to detect the best motion
graph path from RP. In this step, the highest evaluation path is found, and the
resulting motion is produced. However, a problem remains because the evalua-
tion values accumulated on each path depend on the selection of previous paths.
This is addressed by calculating the following correlation function between the
music intensity feature FMusic

I and the motion intensity feature FMotion
I ; the locally

optimal path p̂ of the motion graph is then obtained as follows:

p̂ = arg max
p∈RP

T∑
τ=0

{
FMotion

I (t + τ; p) · FMusic
I (t + τ)

}
. (4.21)

On each transition path, we calculate a matching evaluation between the
music feature and the motion feature of the destination path, and thus the locally
optimized path is obtained.

4.6.2 Globally Optimal Motion Synthesis

In order to find a globally optimal solution, we perform three steps to synthe-
size a new dance motion. Figure 4.7 gives an overview of our motion synthesis
algorithm. First, we evaluate the similarity of the rhythm components and detect
candidate motion segments which strongly correspond to each music segment.
Next, connectivity analysis is applied to determine whether or not transition
motions between the neighboring motion segments look natural. Then, possible
sequences of motion segments are extracted. Finally, we analyze the similarity
of the intensity components of the music segments and the selected motion seg-
ment sequences, and thereby synthesize new dance motions by connecting the
motion segments with each other.

Similarity Evaluation of Rhythm Features

In this step, we extract the candidate motion segments from every input mo-
tion sequence, considering motion and music rhythm components. To include
more detail, we focus on one input motion sequence whose length is Lmotion

and a music segment M whose length is Lmusic. In our method, we allow a
slight stretching of the duration of the input motion sequence. When calculating
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Figure 4.7: Overview of our globally optimal motion synthesis algorithm. For
each music segment, candidate motion segments are obtained from a motion
database by evaluating the similarity with music rhythm components. All possi-
ble motion segment sequences can be acquired by connectivity analysis between
neighboring motion segments. Finally, we evaluate the similarity of the inten-
sity components of the motion segment sequences and the music segments, and
thereby synthesize new dance motions by connecting the motion segments with
each other.
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Figure 4.8: Procedure for rhythm feature similarity evaluation. For each music
segment, Equation (4.22) is applied to each motion sequence, and candidate
motion segments are acquired.

the similarity evaluation of two rhythm components, we consider not only the
rhythm components themselves but also the scaling parameter s ∈ [0.9 1.1] and
the offset parameter fo, which represents the frame from which a motion seg-
ment starts. We extract the scaling parameter ŝ, which maximizes the similarity
measurement

ŝ = arg max
s

Lmusic∑
f=0

FMusic
R ( f ;M) · FMotion

R (s · f + fo)

FMusic
R ( f ;M) + FMotion

R (s · f + fo)
(4.22)

for each fo ∈ [0, Lmotion − Lmusic].
We extract all possible sets of (s, fo) for each motion sequence, and apply a

simple thresholding process to the parameter sets. Using the remaining param-
eters, we can extract candidate motion segments for each music segment.

Connectivity Evaluation of Motion Segments

Whether or not synthesized motion looks natural strongly depends on con-
nectivity analysis. In this step, we consider both posture similarity Spose and
movement similarity Smove.
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Motion segment A

Motion segment 1

Motion segment 2

Motion segment n

Motion segment A Motion segment 1 Motion segment 2 Motion segment n

Figure 4.9: Procedure for connectivity evaluation between motion segments.
This procedure is based on the two similarity measurements: posture similar-
ity and movement similarity. Posture similarity is evaluated with each link’s
direction vectors (red arrows), while movement similarity is evaluated from
each link’s movements (yellow arrows). In this example, Motion segment A is
connected with Motion segment 1.

Posture similarity Spose between the iA-th frame of the motion segment A
and the jB-th frame of the motion segment B is defined as the angular similarity
of the link direction vectors:

Spose(iA, jB) =
∑

l

βl · vl(iA) · vl( jB), (4.23)

where βl is a regularization factor for the l-th link.
With regard to movement similarity Smove, we use velocity vectors in homo-

geneous coordinates. This is possible because the angular distance measure of
their unit vectors in the homogeneous coordinates accounts for the differences
in both direction and magnitude. Specifically, movement similarity Smove is
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calculated as follows:

Smove(iA, jB) =
∏

l

g
[
h
(
vl( jB) − vl(iA)

)
· h

(
v̇l(iA)

)]
· g

[
h
(
vl( jB) − vl(iA)

)
· h

(
v̇l( jB)

)]
, (4.24)

where

g[x] =
 x if x ≥ 0

0 otherwise
, (4.25)

and v̇ is calculated from the original input motion sequence, not the candidate
motion segment. Through h, an input 3D vector is converted to the 4D unit
vector, which represents the direction vector in 4D homogeneous coordinates.

h(v) =

(
vT, 1

)T

|vT , 1|
(4.26)

Thanks to this conversion, Equation (4.24) can account for differences in both
direction and magnitude [BFB94, SMKT06]. That is, Equation (4.24) evaluates
the similarity of the directions between the original movement in the input
motion sequence and the motion to be synthesized.

Finally, connectivity is analyzed from both Spose and Smove between the
end frame of one motion segment and the beginning frame of the neighboring
motion segments. From the results of the connectivity evaluation, we obtain the
candidate sequences of the motion segments that satisfy the requirements for
similarity with the rhythm features and naturalness of the synthesized motion.

Similarity Evaluation of Intensity Features

Next, we evaluate the intensity components of the candidate sequences
of the motion segments and input music. In order to find a globally optimal
solution, we consider the time series of the intensity features as a histogram,
and the Bhattacharyya coefficient [Kai67] is considered to relatively evaluate
the similarity between the motion and music intensity histograms. Hence, we
finally obtain the motion segment sequence D̂ that maximizes the Bhattacharyya
coefficient:

D̂ = arg max
D∈CS

∑
j

√√
FMusic

I ( j)∑
k FMusic

I (k)
·

FMotion
I ( j)∑

k∈D FMotion
I (k)

, (4.27)

where CS represents the candidate sequences of the motion segments after the
analyses of rhythm similarity and connectivity.

107



Transition Motion Generation

The resulting motion sequence is acquired by connecting the neighboring
motion segments. For posture, we use a spline function with a first and sec-
ond order differential to interpolate motion segments. This is slightly different
from the interpolation described in Section 4.6.1 in that the transition motion
generation method described here is a blending process, while that described
in Section 4.6.1 is a interpolation technique. For the position of a character, we
pay attention to the position and posture relative to the ground in order to avoid
effects such as sliding or being stuck in one position.

Interface for Designing Dance Motions

Our method can synthesize new dance performances that match the input
music well. However, the resulting motion sequence may not reflect a given
animator’s intention. For example, an animator may want a character to jump
when vocal input music says, “Jump!”

Our system supports many common animator designs. Figure 4.10 shows
our interface that enables animators to design motions. The left list shows
the music segment sequence, and the central list shows the extracted motion
segments corresponding to the currently assigned music segment. A user can
confirm the music segments and the motion segments by selecting and double-
clicking an item from the lists.

Using our system, a desired motion segment can be assigned to a music
segment as an animator wishes. However, it is conceivable that there are no
candidate sets of motion segments that satisfy a desired design. If so, our system
re-evaluates the motion and music features under this new constraint.

4.7 Experiments

4.7.1 Experimental Data

We have tested our proposed method on six Japanese dances; the Aizu-
bandaisan dance, the Jongara-bushi dance, the Kansho-odori dance, the Soran-bushi
dance, the Mikagura dance, and the Nishimonai-ondo dance. The first three dances,
the Aizu-bandaisan dance, the Jongara-bushi dance and the Kansho-odori dance,
were captured with an optical motion capture system produced by Vicon at a
sampling rate of 120 Hz. The other three dances, the Soran-bushi dance, the
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Figure 4.10: Our user interface for designing motion. A user can confirm the
music and motion segments by selecting and double-clicking an item out of the
lists in which the music segments and their corresponding motion segments are
displayed from left to center, respectively. The process of designing motion is
accomplished by assigning the desired motion segment to the music segment.
The resulting motion is displayed in the top-right window.
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Mikagura dance and the Nishimonai-ondo dance, were captured using a mag-
netic motion capture system produced by Ascension Technology Corporation at
a sampling rate of 30 Hz (see Appendix B.2) in cooperation with Warabi-za [War].
These magnetic motion data required conversion to the same format as that of
the optical data before it could be inserted in our motion database. The total
length of the motion capture data set is about 180 seconds.

The input music data for dance motion synthesis was the Kansho-odori dance.
The length of this musical input data was approximately 40 seconds, with 16-bit
sampling at 32 kHz.

4.7.2 Results of Japanese Original Dance Synthesis

We estimated the rhythm of the Kansho-odori dance music; its average
rhythm interval was approximately 0.504 seconds. Additionally, when a vocalist
sings more loudly, this increased volume results in increased musical intensity
via our music intensity analysis.

The result of dance performance synthesis is shown in Figure 4.11, and
the result of our proposed method’s capability at motion and music feature
matching is shown in Figure 4.12. In this figure, the yellow and light blue lines
show the motion and music rhythm components, and the blue and red lines
are the intensity histograms of motion and music segments, respectively. The
synthesized dance performance seems to be well matched to the rhythm of the
music. In addition to the results of rhythm feature matching, the increased
music intensity results in the increased motion intensity and the resulting dance
motion seems to be more exciting. Thus, we conclude that our proposed method
is effective.

4.7.3 Results of Original Dance Synthesis with Various Motion Database

Our proposed method is applicable not only to Japanese folk dance but also
different styles of dance such as break dancing. We have tested our proposed
method on portions of a large motion database consisting of break dance, Indian
dance, and dance motion with simple arm and leg movement; these data are all
downloadable from the CMU Motion Capture Database [CMU]. All the motion
data were captured with an optical motion-capture system produced by Vicon
running at a sampling rate of 120 Hz. The input music data we used for our
experiments was approximately 60 seconds long; the sampling format was 16-bit
stereo at 44.1 kHz.
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Figure 4.11: Synthesis result for Japanese dance music Kansho-odori.

0 600 1200 1800 2400 3000 3600 4200 4800 5400
Frame

Figure 4.12: Feature matching result for Japanese dance music Kansho-odori. Yel-
low and light blue lines represent motion and music rhythm components and
blue and red lines represent motion and music intensity components, respec-
tively.
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Title (Genre) Rhythm [sec] ([bpm])

La Cumparsita (tango) 0.454 (132)

Tonite (pops) 0.476 (126)

Carmen Suite (classic) 0.417 (144)

Nutcracker Suite (classic) 0.714 (84)

Table 4.1: Results of music feature analysis.

Results of Music Feature Analysis

We first show the results of our proposed method’s capability in music
feature analysis. We applied the rhythm tracking method to 13 music data sets
that contain classical music, rock, tango music and so on. Of these 13 input
types, 10 correctly tracked the rhythm and 3 were considered unsuccessful.
These errors were derived from the fact that sound onset of string instruments
such as violin is very slow. Table 4.1 shows a part of the successful rhythm
tracking results. Additionally, our proposed method’s music intensity analysis
was also successful.

Results of Original Dance Synthesis

Figure 4.13 shows the synthesized motion for tango music “La Cumparsita.”
Figure 4.14 shows the features of the synthesized motion and the input music.
In this figure, the yellow and light blue lines show the motion and music rhythm
components, and the blue and red lines are the intensity histograms of motion
and music segments, respectively. We can easily confirm that most of the mu-
sical rhythm is matched to the motion rhythm, and that the distributions of the
intensity components are quite similar.

Figure 4.15 shows another synthesized motion for popular music “Tonite.”
Figure 4.16 shows the features of the synthesized motion and the input music.
In this figure, the yellow and light blue lines show the motion and music rhythm
components, and the blue and red lines are the intensity histograms of motion
and music segments, respectively. We can also easily confirm that most of the
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musical rhythm is matched to the motion rhythm, and that the distributions of
the intensity components are quite similar.

4.7.4 Quantitative Evaluation

When we employed our motion graph-based motion synthesis method, we
obtained the motion graph shown in Figure 4.17. In the case of the globally
optimal motion synthesis method, we obtained approximately 2500 candidate
motion segments through our rhythm matching procedure, and approximately
500 candidate motion sequences after our connectivity evaluation procedure.
Note that these numbers can be affected by computing environment factors
such as memory limitations. A more powerful computing environment could
conceivably arrive at more matching segments.

Computational Cost

Both the locally optimal and globally optimal motion synthesis take much
longer than the other analysis steps. Connectivity analysis between neighboring
candidate motion segments is the most time-consuming process, because all
possible sets of the neighboring segments are checked. In the case of the one-
minute-long music Tonite, it took approximately 10 minutes to synthesize motion
with our globally optimal method, and approximately 30 minutes with our
locally optimal method. This resulting motion was generated from 27 input
motion data sets (about 520 sec in total) using a Pentium-D 2.8GHz PC without
any multi-threaded programming.

4.8 Discussion

Our algorithm can synthesize new dance motion taking into consideration
musical and motion rhythms, and musical and motion intensities. This is based
on empirical observations that motion rhythm is correlated with musical rhythm,
and that music intensity and motion intensity have a direct correlation. Our con-
tribution is, with regard to CG animation, to automatically synthesize motion
that synchronizes input music signals, and to take motion expressions extracted
from Laban’s Weight Effort component into consideration. With regard to ar-
tificial intelligence, we have been able to imitate the simple models of human
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Figure 4.13: Synthesis result for tango music La Cumparsita.

Frame
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Figure 4.14: Feature matching result for tango music La Cumparsita. Yellow and
light blue lines represent motion and music rhythm components, and blue and
red lines represent motion and music intensity components, respectively.
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Figure 4.15: Synthesis result for pops music Tonite.
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Figure 4.16: Feature matching result for pops music Tonite. Yellow and light blue
lines represent motion and music rhythm components, and blue and red lines
represent motion and music intensity components, respectively.
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Figure 4.17: Part of the motion graph constructed from 24 input motion se-
quences.

emotional aspects and the human ability to recognize music features for dance
performance while listening to music.

We believe that it is possible to introduce other features for matching, such as
relationships between a music chord or key (major/minor) and mood of motion,
or a category of music and its appropriate expression in dance. For example,
people tend to feel gloomy when listening to music in a minor key, and feel
happy when listening to music in a major key. To improve our approach, music
psychology could be incorporated. Additionally, motion expressions, which
have not been well studied in CG animation, might also be important factors. As
future work, we intend to develop a motion expressions analysis method, and
introduce this into our method along with corresponding music psychology.

Additionally, we are now developing another application to synthesize
dance motions in real time; a character composes new dance motion while
listening to music. The purpose of this application is to imitate the ability of
ad-lib dance which all people, and particularly children, have. This application
will also enable a humanoid robot to dance to music as an entertainment robot.
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Locally optimal method Globally optimal method

Pros It is always possible to find a
solution.

The result is always well
matched to input music.

Cons The resulting motion is not al-
ways matched to input music.

It may fail to synthesize a new
motion.

Applications Real-time entertainment sys-
tem such as video games.

CG animation system such as
movie production.

Table 4.2: Locally optimal method vs. Globally optimal method.

4.8.1 Comparison

We have proposed two motion synthesis methods: locally optimal motion
synthesis and globally optimal motion synthesis. As for the locally optimal
method, we can always obtain a new dance motion because of the motion graph
algorithm. However, the features of the resulting motion are not always matched
to the features of the input music, because we only obtain the motion sequence
with the motion features along the path of the constructed motion graph.

If we obtain the resulting dance motion using our globally optimal method,
this motion is always well matched to the features of the input music. However,
the problem of the globally optimal method is that this method does not always
have a solution. Because this method may not find an optimal motion segments
whose features are matched to those of the input music, it may fail to produce a
new dance motion.

Therefore, we believe that the locally optimal method would be suitable
for real-time entertainment systems such as video games, while the globally
optimal method would be more suitable for the creation of CG animation as
used in movie production.

4.9 Summary

This chapter presented a method for synthesizing new motion synchronized
to music. Our idea is to consider the musical rhythm and intensity components
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to be matched to motion rhythm and intensity components. This is an imitation
of a dancer’s skill in performing motions as they listen to music. Our method
can automatically retrieve music features from input music signals and motion
features from motion sequences, and synthesize new dance motions whose fea-
tures are closely matched to those of the music. From the results, it is confirmed
that we can successfully synthesize expressive dance performance.
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Chapter 5

Conclusions

5.1 Summary

The ultimate purpose of this dissertation is to apply human perceptional
models to human motion synthesis. This purpose is strongly motivated by
the fact that, although most previous work did not consider the perceptions of
performers, human motion is highly affected by these aspects. In particular,
because dance performance is so strongly affected by the features of music, in
considering Japanese folk dancing as an experimental subject we have sought
to imitate our human exploitation of hearing and apply this to CG characters
and humanoid robots. To accomplish this, we have developed three methods to
analyze and synthesize human dance motion.

Keypose Extraction for Dance Structure Analysis

The first aspect of our proposed method, as described in Chapter 2, is to
analyze the keyposes in dance motion. We empirically know that dance motion
is always performed to be matched to musical rhythm. We exploit this knowl-
edge by detecting the stop motions in the dance motion data and by estimating
the musical rhythm itself, in the form of its onset components. By integrating
these information, we can detect keyposes in the dance motion with higher accu-
racy than has been possible using previous methods. Dancers themselves have
corroborated the results of our methods.
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Synthesis of Temporally-Scaled Upper Body Motion Based on Aspects of Hu-

man Motion

The second aspect of our proposed method, as described in Chapter 3, is to
model how upper body motion can be modified depending on musical playback
speed. Research in this arena is motivated by the observation that, as music
speeds up, dancers omit details of dances in order to keep up with the musi-
cal rhythm. To perform this research, we have applied a hierarchical B-spline
technique to joint angle sequences in order to analyze them in the frequency
domain. From our analysis, we have obtained two insights: (1) keyposes are
preserved independently of music speed, and (2) high frequency components of
joint angle sequences are gradually attenuated as music speeds up. Using these
insights, we modeled our proposed algorithm for modification of upper body
motion based on music speed, and we demonstrated that the applications of our
technique to CG animation and humanoid robots can result in synthetic motion
which is much more realistic than that obtained using previous methods.

Dancing-to-Music Character Animation Based on Aspects of Human Emotion

The third aspect of our proposed method, as described in Chapter 4, is to
synthesize expressive dance motion using motion and musical features. Our al-
gorithm arises from the observation that people feel quiet and relaxed when
listening to relaxing music whereas they feel excited when listening to intense
music. Our algorithm is designed such that motion rhythm is synchronized
with musical rhythm, and that motion intensity is synchronized with musical
intensity. The method can automatically extract musical structure, rhythm, and
intensity components from musical signals, motion rhythm and intensity com-
ponents from motion capture data, and synthesize new dance motion which
matches input musical features with realism and high fidelity.

5.2 Contributions

The contributions of this dissertation to this field of research can be summa-
rized as follows:

• We have converted human perceptual models into frameworks for human
motion analysis and synthesis. While previous work has considered certain
human visual aspects, our method has greatly augmented research on
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human motion synthesis by considering auditory aspects as well. This
has enabled us to synthesize dance motion very close to actual dancers’
understandings of a piece.

• We have proposed a method to extract keyposes from dance motion. Ex-
isting methods of keypose extraction or dance structure analysis used only
motion capture data, whereas our proposed method considers both motion
and musical information. This has enabled us not only to extract the most
important aspects of dance performances, but also to understand dance
motion structure and generate the most important prescribed motions for
a given dance.

• Through our analysis of dance motion performed at varying musical
speeds, we have arrived at the two crucial insights mentioned above,
which, to our knowledge, have never been formally stated before. Our
method’s success in generating dance motion confirmed that keyposes are
very important musical-speed-independent features.

• We have proposed a method to modify upper body motion based on our
obtained insights. Our proposed method can not only synthesize dance
performance based on the properties of human motion for CG animation,
but can also be applied to humanoid robot motion generation in order to
satisfy kinematics constraints.

• We have proposed a method to characterize the emotional features of both
motion and music for human motion synthesis. In particular, we have
considered a new component, intensity, which no studies have previously
considered. Most previous methods have proposed analysis methods to
evaluate the degree to which multiple motion sequences are seamlessly
connected depending on their numerical or physical properties. However,
we have discovered that by considering semantic features, much more
expressive and realistic dance performances can be synthesized.

• We have proposed a method which can solve the complex optimization
issue presented when motion features are to be matched to musical features
without the many manual steps required in previous methods. To achieve
this, we have proposed two types of optimization; a globally optimal solver
using music segments, and a locally optimal solver using the motion graph
algorithm. A user can select the most appropriate algorithms depending
on his/her needs.
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5.3 Future Directions

We conclude this dissertation with a frank discussion of open problems
and future improvements in our proposed method which we are interested in
pursuing and would like to see pursued by other researchers.

Symbolization of dance performance Via our keypose extraction method, as
described in Chapter 2, we can extract or condense important features
of dance performance. Traditional motion description methods such as
Labanotation can roughly archive dance motion, but they cannot describe
the details of dance motion, e.g. which postures are most important for the
performance. A complete description of a dance – which would include
all the dance’s crucial features plus its details – is necessary for archiving
and to implement a proper dance teaching system. Recently, intangible
cultural heritage in the form of traditional dances such as those we have
analyzed is disappearing due to the lack of properly trained successors
to our current masters of this art, so demand for a dance teaching system
is increasing. Our method should make it possible to preserve important
dance performances with complete features.

Style analysis using our hierarchical decomposition technique Through the hi-
erarchical motion analysis discussed in Chapter 3, we have found that the
high frequency components – detailed movements of the hands and other
extremities – are attenuated depending on the musical playback speed.
Additionally, it is clearly confirmed that dance motions between different
dancers, e.g. men and women, will vary; all such differences in the de-
tails of individual performance can be attributed to style. As described in
Section 3.2, most previous methods relied on various stochastic models to
analyze human motion style. By extending our hierarchical decomposition
technique, we believe that it is possible to analyze motion and to decom-
pose the motion into a base motion vs. style features even if we have only
one motion sequence.

Combination of motion modification and dance performance synthesis Our
dancing-to-music motion synthesis method considers the rhythm of exist-
ing motion data. That is, we cannot guarantee that we synthesize an op-
timal dance performance in the case that the input musical rhythm varies
widely from the motion rhythm. We believe that by combining our hi-
erarchical motion modification method and our dance motion synthesis
algorithm in a new way, we will solve this issue and obtain widely varying
kinds of new dance performance.
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Consideration of other motion and musical features As has been discussed in
Section 4.8, it is surely possible to introduce other features for motion/music
matching, such as the relationship between a music chord (major/minor)
and the mood of the dance motion, or a category of music and its ap-
propriate expression in dance. Currently, if we want to synthesize ballet
motion, we must start with a motion database which contains only ballet
motion primitives. However, we believe that human motion will contain
some unidentified, yet essential, characterization of the mood of human
emotion, because all humans can easily recognize a mood when expressed
as a motion. Therefore, there might be some aspects of the psychology of
music which could be incorporated. It might be quite fruitful to research
and develop some form of a motion expressions analysis method, and to
integrate such methodology into our method.

Real-time dance motion synthesis As has also been discussed in Section 4.8,
both the globally optimal and the locally optimal methods cannot currently
run in real-time. We are currently developing another application which
would synthesize dance motions in real-time: a character composing new
dance motion while listening to music. The purpose of this application
is to imitate the ability of ad-lib dance which all people, and particularly
children, have. This application would also enable a humanoid robot to
dance to music; one can easily imagine how this could be used to create an
entertainment robot.
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Appendix A

Constant Q Transform

A.1 Fourier Transform

A Fourier transform decomposes a function into a continuous spectrum of
its frequency components. In mathematical physics, the Fourier transform of an
input signal x(t) can be thought of as that signal in the frequency domain [Mit98].
The formulation is as follows:

X( f ) =
1√
2π

∫ ∞

−∞
x(t) exp

(− j f t
)

dt (A.1)

for each frequency f , where j represents
√
−1, and X( f ) represents the spectral

power at the frequency f .
When the input signal is discrete, such as audio wave signals or the color

values of images, the input signal xd(n) is formulated as follows:

xd(n) = x(t) · δ(t − nT), (A.2)

where T is the sampling interval. From Equation (A.1) and Equation (A.2), the
discrete Fourier transform is given as follows:

X(k) =
N−1∑
n=0

xd(n) exp
(
− j

2π
N

kn
)

(A.3)

for k ∈ [0,N − 1], where X(k) is the spectral power at k-th frequency, and N
represents the number of the sampled data.
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This equation assumes that the input signal xd(n) is repeating. If there is a
discontinuity between xd(N − 1) and xd(0), the resulting frequency components
include undesirably strong dense spectral power in the high frequency range.
To avoid this problem, a window function W(n) that smoothes the gap between
xd(N − 1) and xd(0) can be applied to the sampled data [Har78]:

X(k) =
N−1∑
n=0

W(n)xd(n) exp
(
− j

2π
N

kn
)
. (A.4)

The Hanning window, Hamming window, and Blackman window are well-
known window function for the Fourier transform. Especially, widely used for
speech/music signal processing is the Hamming window.

A.2 Constant Q Transform

Music is different from speech in that music consists of a sequence of musical
notes whose frequencies are already sharply defined. Ideally, it is most appro-
priate for the extraction of musical features that music signals are converted into
a note sequence. But most of the frequency component extraction methods, such
as Fourier transforms, do not consider this property of music. In order to extract
frequency components representing musical notes more accurately, the constant
Q transform (CQT) was proposed by Brown [Bro90]. The CQT method sets up
a bank of filters whose center frequencies represent musical notes, and enables
extraction of the spectral energy of each note.

In our implementation, we extract the spectral energies of the 37 semi-tones
(over three octaves from the C3 note to the C6 note) from audio signal x(n) as
follows:

X(k) =
1

Nk

Nk−1∑
n=0

x(n) exp
(
− j

2πQn
Nk

)
, (A.5)

where j represents
√
−1, X(k) represents the spectral power of the k-th note, and

Nk is the window size.According to music theory, the frequency of the k-th note
is calculated as

fk = f0 · 2k/Noctave , (A.6)

where f0 is the minimal frequency that we are interested in for analysis and is
set to 130.8 Hz, the pitch of the C3 note, and Noctave denotes the number of semi-
tones in one octave and is typically set to 12. Q is a constant ratio of frequency
to resolution:

Q =
fk

fk+1 − fk
=

1
21/Noctave − 1

. (A.7)
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Accordingly the window size Nk is set to be

Nk = ⌊ fsQ/ fk⌋, (A.8)

in which fs represents the sampling rate of the input audio signal. Our method
uses the Hamming window function, shifts it by a certain interval, and then
calculates the CQT component until the window reaches the end of the music,
similar to the technique used when computing the short-time FFT.
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Appendix B

Motion Capture Systems

In this thesis, we use motion capture systems to precisely record a per-
former’s motion. There are two types of motion capture systems; optical motion
capture systems and a magnetic motion capture systems. In this appendix, we
explain some details regarding these two types of motion capture systems and
the implications of these technologies for our obtained data.

B.1 Optical Motion Capture Systems

There are several makers of optical motion capture systems; we used one
produced by Vicon. Figure B.1 shows a scene where the motion of a performer
is being captured using this type of optical motion capture system. The system
consists of eight infra-red cameras that generate infra-red illumination and many
markers that reflect infra-red rays. The system calculates the 3D position of all
the markers through triangulation. In order that the cameras can see the markers,
a performer must wear a special suit that is closely fitted to the performer’s body;
the markers must not be occluded by clothes.

The marker model we used is shown in Figure B.2. An optical motion capture
system can only capture the 3D position of the markers, and not their spatial
orientations. Most computer graphics and robotics applications, however, need
joint angle information to manipulate CG characters and robots. Therefore, they
need to calculate the implied joint angles from marker position data. So many
markers are typically attached to joints such as wrist and ankle which have high
degrees of freedom . Using an optical motion capture system, a motion capture
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data contains all the markers’ position data frame by frame, and does not contain
their orientation data.

B.2 Magnetic Motion Capture Systems

The magnetic motion capture system we used is produced by Ascension
Technology Corporation. Figure B.3 shows a scene where the motion of a per-
former is being captured via this kind of magnetic motion capture system. This
system consists of one or two transmitters from which the magnetic field is gen-
erated, and ten or more magnetic markers. The system captures the magnetic
markers’ position with respect to the generated magnetic field. Unfortunately,
a magnetic field is easily affected by the ambient environment. For example,
using a magnetic motion capture system in rebar buildings is not appropriate
because the generated magnetic fields are much affected by the iron of the rebar;
captured data under this condition contains too much noise. It is most appro-
priate to capture motion with this kind of system inside wooden buildings, or
outdoors.

The marker model we used is shown in Figure B.4. Unlike an optical motion
capture system, a magnetic capture system records not only the markers’ 3D
positions but also their spatial orientations, albeit at lower frequency (30 Hz)
than the optical system (120 Hz). From magnetic marker data, we can directly
calculate joint angle data even though the magnetic system does not employ
many markers. In our implementation, motion capture data obtained from a
magnetic motion capture system is converted to the data format of an optical
motion capture system using its orientation data.
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Figure B.1: Optical motion capture system. Red points are infra-red cameras,
and white shining points on the human body are the optical markers.
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Figure B.2: Optical markers. Each box represents an optical marker with a
marker name, and gray-colored boxes represent markers behind the body from
this viewpoint.
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Figure B.3: Magnetic motion capture system. A black box on the right hand side
is a transmitter. The performer is carrying a backpack, and magnetic markers
are attached to the performer’s body and are connected to the backpack.
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data as shown in the left bottom figure.
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Appendix C

Calculation of Joint Angles

In Chapter 3, we focused on upper body motion. This appendix describes
our inverse kinematics method to calculate joint angles in the upper body de-
rived from marker position data. In the following, x, y, and z denote normalized
vectors representing the direction of the x-axis, y-axis, and z-axis in local coor-
dinates, respectively, and we refer to marker position data as pi, where i is a
marker label denoted in Figure B.2. We also use the notation xtemp, ytemp, and
ztemp to represent temporary vectors that are not always orthogonal to each other.
Additionally, we define the function that normalizes an input vector as

Normalize(a) =
a
|a| . (C.1)

C.1 Calculation of Joint Angles for CG Characters

All the body links used in our hierarchical motion modification method
are shown in Figure C.1. When calculating the joint angles of CG characters,
we use quaternion in order to avoid a well-known gimbal lock problem. In our
implementation, we first extract the local coordinates of each body link, and then
calculate the rotation matrix that converts the local coordinates of the parent link
to those of the currently focused link of current interest. We then convert each of
the rotation matrices to quaternions as described in Appendix D. We define the
function “q(·)” that converts a rotation matrix to a quaternion.

Body With regard to the body, first, the y-axis whose direction is from the waist
toward the breast is determined and fixed, and then the x- and z-axes are
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Figure C.1: Local coordinate systems of a CG character’s body links.

determined:

yB = Normalize
(pCLAV + pC7

2
−

pLFWT + pLBWT + pRFWT + pRBWT

4

)
,

(C.2a)

xtemp =
(pLFWT + pLBWT

2
−

pRFWT + pRBWT

2

)
, (C.2b)

zB = Normalize
(
xtemp × yB

)
, (C.2c)

xB = Normalize
(
yB × zB

)
. (C.2d)

Thus, the local coordinate system of the body 0RB is determined as

0RB =
(

xB yB zB

)
. (C.3)

Neck In the region of the neck, first, the y-axis whose direction is from the breast
toward the head is determined and fixed, and then the z- and x-axes are
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determined:

yN = Normalize
(pLFHD + pLBHD + pRFHD + pRBHD

4
−

pCLAV + pC7

2

)
,

(C.4a)

xtemp =
(pLFHD + pLBHD

2
−

pRFHD + pRBHD

2

)
, (C.4b)

zN = Normalize
(
xtemp × yN

)
, (C.4c)

xN = Normalize
(
yN × zN

)
. (C.4d)

Thus, the local coordinate system of the neck 0RN is determined as

0RN =
(

xN yN zN

)
, (C.5)

and the joint angle of the neck qN is determined as

qN = q
(

0RT
B

0RN

)
. (C.6)

Left collar With regard to the left clavicle, first, the x-axis whose direction is
from the breast toward the left shoulder is determined and fixed, and then
the y- and z-axes are determined:

xLC = Normalize
(
pLSHO −

pCLAV + pC7

2

)
, (C.7a)

ytemp =
(
pRSHO −

pCLAV + pC7

2

)
, (C.7b)

zLC = Normalize
(
xLC × ytemp

)
, (C.7c)

yLC = Normalize (zLC × xLC) . (C.7d)

Thus, the local coordinate system of the left clavicle 0RLC is determined as

0RLC =
(

xLC yLC zLC

)
, (C.8)

and the joint angle of the left collar qLC is determined as

qLC = q
(

0RT
B

0RLC

)
. (C.9)

Left shoulder With regard to the left upper arm, first, the x-axis whose direction
is from the left shoulder toward the left elbow is determined and fixed. The
y-axis is independently determined and fixed in order that the left elbow
joint retains 1 DOF, and finally the z-axis is determined:

xLUA = Normalize
(
pLELB − pLSHO

)
, (C.10a)

yLUA = Normalize
(
xLUA ×

(pLWRA + pLWRB

2
− pLELB

))
, (C.10b)

zLUA = Normalize
(
xLUA × yLUA

)
, (C.10c)
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Thus, the local coordinate of the left upper arm 0RLUA is determined as

0RLUA =
(

xLUA yLUA zLUA

)
, (C.11)

and the joint angle of the left shoulder qLS is determined as

qLS = q
(

0RT
LC

0RLUA

)
. (C.12)

Left elbow With regard to the left forearm, first, the x-axis whose direction is
from the left elbow toward the left wrist is determined and fixed. The
y-axis is independently determined and fixed in order that the left elbow
joint retains 1 DOF, and finally the z-axis is determined:

xLFA = Normalize
(pLWRA + pLWRB

2
− pLELB

)
, (C.13a)

yLFA = Normalize
((

pLELB − pLSHO

)
× xLFA

)
, (C.13b)

zLFA = Normalize
(
xLFA × yLFA

)
. (C.13c)

Thus, the local coordinate system of the left forearm 0RLFA is determined
as

0RLFA =
(

xLFA yLFA zLFA

)
, (C.14)

and the joint angle of the left elbow qLE is determined as

qLE = q
(

0RT
LUA

0RLFA

)
. (C.15)

Left wrist With regard to the left hand, first, the x-axis whose direction is from
the left wrist toward the left finger is determined and fixed, and then the
y-axis is determined to be the direction perpendicular to the back of the
left hand, and the z-axis is determined:

xLH = Normalize
(
pLFIN −

pLWRA + pLWRB

2

)
, (C.16a)

yLH = Normalize
((

pLWRA − pLWRB

)
× xLH

)
, (C.16b)

zLH = Normalize
(
xLH × yLH

)
. (C.16c)

Thus, the local coordinate system of the left hand 0RLH is determined as

0RLH =
(

xLH yLH zLH

)
, (C.17)

and the joint angle of the left wrist qLW is determined as

qLW = q
(

0RT
LFA

0RLW

)
. (C.18)
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Right collar With regard to the right clavicle, first, the x-axis whose direction
is from the right shoulder toward the breast is determined and fixed, and
then the y- and z-axes are determined:

xRC = Normalize
(pCLAV + pC7

2
− pRSHO

)
, (C.19a)

ytemp =
(pCLAV + pC7

2
− pLSHO

)
, (C.19b)

zRC = Normalize
(
xRC × ytemp

)
, (C.19c)

yRC = Normalize (zRC × xRC) . (C.19d)

Thus, the local coordinate system of the right clavicle 0RRC is determined
as

0RRC =
(

xRC yRC zRC

)
, (C.20)

and the joint angle of the right collar qRC is determined as

qRC = q
(

0RT
B

0RRC

)
. (C.21)

Right shoulder With regard to the right upper arm, first, the x-axis whose direc-
tion is from the right elbow toward the right shoulder is determined and
fixed. The y-axis is independently determined and fixed in order that the
right elbow joint retains 1 DOF, and finally the z-axis is determined:

xRUA = Normalize
(
pRSHO − pRELB

)
, (C.22a)

yRUA = Normalize
(
xRUA ×

(
pRELB −

pRWRA + pRWRB

2

))
, (C.22b)

zRUA = Normalize
(
xRUA × yRUA

)
. (C.22c)

Thus, the local coordinate system of the right upper arm 0RRUA is deter-
mined as

0RRUA =
(

xRUA yRUA zRUA

)
, (C.23)

and the joint angle of the right shoulder qRS is determined as

qRS = q
(

0RT
RC

0RRUA

)
. (C.24)

Right elbow With regard to the right forearm, first, the x-axis whose direction
is from the right wrist toward the right elbow is determined and fixed. The
y-axis is independently determined and fixed in order that the right elbow
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joint retains 1 DOF, and finally the z-axis is determined:

xRFA = Normalize
(
pRELB −

pRWRA + pRWRB

2

)
, (C.25a)

yRFA = Normalize
(
xRFA ×

(
pRSHO − pRELB

))
, (C.25b)

zRFA = Normalize
(
xRFA × yRFA

)
. (C.25c)

Thus, the local coordinate system of the right forearm 0RRFA is determined
as

0RRFA =
(

xRFA yRFA zRFA

)
, (C.26)

and the joint angle of the right elbow qRE is determined as

qRE = q
(

0RT
RUA

0RRFA

)
. (C.27)

Right wrist With regard to the right hand, first, the x-axis whose direction is
from the right finger to the right wrist is determined and fixed, and then
the y-axis is determined to be the direction perpendicular to the back of
the right hand, and the z-axis is determined:

xRH = Normalize
(pRWRA + pRWRB

2
− pRFIN

)
, (C.28a)

yRH = Normalize
(
xRH ×

(
pRWRB − pRWRA

))
, (C.28b)

zRH = Normalize
(
xRH × yRH

)
. (C.28c)

Thus, the local coordinate system of the right hand 0RRH is determined as

0RRH =
(

xRH yRH zRH

)
, (C.29)

and the joint angle of the right wrist qRW is determined as

qRW = q
(

0RT
RFA

0RRW

)
. (C.30)

C.2 Calculation of Joint Angles for the HRP-2

Each joint of the HRP-2 has a 1-DOF actuator; all the joint angles are repre-
sented in Roll-Pitch-Yaw format. We calculate each joint angle from a body link’s
direction in its local coordinate system. Each local coordinate of the HRP-2’s arm
joint is illustrated in Figure C.2. We use the function “atan2( x, y )” that returns
tan−1 (

x/y
)

within the range (−π, π).

140



Local coordinate system of chest Since the HRP-2’s torso consists of a rigid-
body chest and a rigid-body lower chest, or loins, first the local coordinate
system of the chest 0R1 is determined as

y = Normalize
(
pLSHO − pRSHO

)
, (C.31a)

ztemp =
pLSHO + pRSHO

2
−

pLFWT + pRFWT + pLBWT + pRBWT

4
, (C.31b)

x = Normalize
(
y × ztemp

)
, (C.31c)

z = Normalize
(
x × y

)
, (C.31d)

0R1 =
(
x, y, z

)
. (C.31e)

Left shoulder pitch Rotation of the left shoulder in pitch is about the y-axis of
the chest local coordinate system. The direction vector of the upper arm in
the global coordinate system v0 is calculated as

v0 = pLELB − pLSHO , (C.32)

and the direction in the chest local coordinate system v1 is calculated as

v1 =
0RT

1 v0 . (C.33)

The joint angle representing pitch rotation of the left shoulder θLSP is
therefore determined as

θLSP = atan2 (−v1x ,−v1z) . (C.34)

Left shoulder roll Rotation of the left shoulder in roll is about the x-axis of the
local coordinate system of the left shoulder pitch. The direction vector of
the upper arm in the local coordinate system of the left shoulder pitch v2

is calculated as
v2 = Ry (θLSP) v1 , (C.35)

where Ry (θLSP) represents the matrix that rotates θLSP degrees around the
y-axis of the chest local coordinate system. The joint angle representing
roll rotation of the left shoulder θLSR is therefore determined as

θLSR = atan2
(
v2y ,−v2z

)
. (C.36)

Left shoulder yaw Rotation of the left shoulder in yaw is about the z-axis of the
local coordinate system of the left shoulder roll. The direction vector of the
forearm in the global coordinate system v′3 is calculated as

v′3 =
pLWRA + pLWRB

2
− pLELB . (C.37)
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Figure C.2: Local coordinate systems of the HRP-2’s left upper body. Axes
surrounded by rotation arrows represent the central axes of the rotation relative
to parent joints.

This vector is converted into the local coordinate system of the left shoulder
roll as

v3 = Rx (θLSR) Ry (θLSP) 0RT
1 v′3 , (C.38)

where Rx (θLSR) represents the matrix that rotates θLSR degrees around the
x-axis of the local coordinate system of the left shoulder roll. The joint angle
representing yaw rotation of the left shoulder θLSY is therefore determined
as

θLSY = atan2
(
−v3y , v3x

)
. (C.39)

Note that when the arm is stretched all the way out, the atan2 function
becomes singular so the joint angle cannot be computed. This problem
does occur, but we solve it by assigning the answer as being the joint angle
of the previous frame.
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Left elbow pitch Rotation of the left elbow in pitch is about the y-axis of the
local coordinate system of the left shoulder yaw. The direction vector of
the forearm in the local coordinate system of the left shoulder yaw v4 is
calculated as

v4 = Rz (θLSY) v3 . (C.40)

where Rz (θLSY) represents the matrix that rotates θLSY degrees around the
z-axis of the local coordinate system of the left shoulder yaw. The joint
angle representing pitch rotation of the left should elbow θLEP is therefore
determined as

θLEP = atan2 (−v4x , v4z) . (C.41)

Left wrist yaw Rotation of the left wrist in yaw is about the z-axis of the local
coordinate system of the left elbow pitch. The sideward direction vector of
the wrist in the global coordinate system v′5 is calculated as

v′5 = pLWRA − pLWRB. (C.42)

This vector is converted into the local coordinate system of the left elbow
pitch as

v5 = Ry (θLEP) Rz (θLSY) Rx (θLSR) Ry (θLSP) 0RT
1 v′5, (C.43)

where Ry (θLEP) represents the matrix that rotates θLEP degrees around the
y-axis of the local coordinate system of the left elbow pitch. The joint angle
representing yaw rotation of the left wrist θLWY is therefore determined as

θLWY = atan2 (−v5x , v5z) . (C.44)

Left wrist pitch Rotation of the left wrist in pitch is about the y-axis of the local
coordinate system of the left wrist yaw. The forward direction vector of
the hand in the global coordinate system v′6 is calculated as

v′6 = pLFIN −
pLWRA + pLWRB

2
. (C.45)

This vector is converted into the local coordinate system of the left wrist
yaw as

v6 = Rz (θLWY) Ry (θLEP) Rz (θLSY) Rx (θLSR) Ry (θLSP) 0RT
1 v′6, (C.46)

where Rz (θLWY) represents the matrix that rotates θLWY degrees around the
z-axis of the local coordinate system of the left elbow pitch. The joint angle
representing pitch rotation of the left wrist θLWP is therefore determined as

θLWP = atan2 (−v6x ,−v6z) . (C.47)
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Joint angles of the right arm are determined in a similar way.
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Appendix D

Quaternions for Rotation Representation

In Chapter 3, we used a quaternion to represent joint angle rotation. This
appendix explains the use of quaternions for representation of the object rotation
in detail.

D.1 Definition of a Quaternion

A quaternion is a non-commutative extension of a complex number. While
a complex number consists of a real part and an imaginary part, a quaternion
consists of a real part and three imaginary parts In terms of the elements i, j, and
k, a quaternion q is represented as

q = w + xi + yj + zk (D.1)

=

w
v

 , (D.2)

where
v ≡ (x, y, z)T, (D.3)

and w, x, y, and z are real numbers. In the following, we use Equation (D.2)
to represent a quaternion. Its imaginary elements i, j, and k have the following
fundamental relationships:

i2 = j2 = k2 = i jk = −1,
i j = k, ji = k,
jk = i, kj = −i,
ki = j, ik = − j.

(D.4)
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The conjugate quaternion q∗ is defined as follows:

q∗ =

 w
−v

 . (D.5)

D.2 Quaternion Operation

The addition of two quaternions q1 = (w1, v1) and q2 = (w2, v2) is equivalent
to summing the elements together:

q1 + q2 =

w1 + w2

v1 + v2

 . (D.6)

The subtraction of quaternions is defined as

q1 − q2 = q1 + (−q2)

=

w1 − w2

v1 − v2

 . (D.7)

The multiplication of quaternions, which is non-commutative, is termed the
Grassman product:

q1q2 =

 w1w2 − v1 · v2

w1v1 + w2v2 + v1 × v2

 . (D.8)

The norm of a quaternion |q| is defined as

|q| = √
qq∗

=
√

w2 + v · v. (D.9)

Using the norm, an inverse quaternion q−1 is defined as

q−1 =
q∗

|q|2 . (D.10)

D.3 Rotation Representation Using Quaternions

Consider the case when the 3D point p is rotated around an axis represented
as a normalized vector n = (n1,n2, n3)T by θ radians, and is thereby moved to
a new position p′. In geometrical terms, the relationship between p and p′ is
represented as

p′ = (p · n)n + (p − (p · n)n) cosθ + n × p sinθ, (D.11)
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This can be written as a matrix equation:

p′ = (I cosθ + nnT(1 − cosθ) + An sinθ)p, (D.12)

where

A =


0 n3 −n2

−n3 0 n1

n2 −n1 0

 , (D.13)

and I is a 3D identity matrix.
Let q = (c,u)T be a unit quaternion. We can define the following equation:

q

0
p

 q∗ =

c
u

 0
p

  c
−u


=

 0
−u × (u × p) + 2c(u × p) + c2p + (p · u)u


=

 0
(c2 − u · u)p + 2(p · u)u + 2c(u × p)

 .
(D.14)

Because q is a unit quaternion, the following is true:

q =

 cosθ
n sinθ

 , (D.15)

and Equation (D.14) can therefore be modified as:

q

0
p

 q∗ =

 0
p cos 2θ + (1 − cos 2θ)(n · p)n + (n × p) sin 2θ

 (D.16)

From Equation (D.12) and Equation (D.16), a unit quaternion represented as

q =

 cos(θ/2)
n sin(θ/2)

 (D.17)

can be interpreted as the rotation of angle θ around the axis n. The following
relationship between a rotation matrix and a quaternion can be also obtained:

R =


s2 + u2 − w2 − v2 2(uv − sw) 2(sv + uw)

2(sw + uv) s2 + v2 − u2 − w2 2(vw − su)
2(uw − sv) 2(su + vw) s2 + w2 − v2 − u2

 , (D.18)

where a unit quaternion is represented as (s, u, v,w)T.
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Figure D.1: Conceptual illustration of SLERP calculation.

Because Equation (D.17) is quite similar to Euler’s formula for a complex
number:

exp(iθ) = cosθ + i sinθ, (D.19)

we can obtain the following relationship by extending Euler’s formula to a
quaternion:

exp(nθ) = cosθ + n sinθ. (D.20)

Therefore, we can also define the following relationship:

log(cosθ + n sinθ) = nθ ∈ R3. (D.21)

D.4 Spherical Linear Interpolation

Spherical linear interpolation, called SLERP, is a famous interpolation tech-
nique in computer graphics. SLERP in quaternion space was introduced by
Shoemake [Sho85] for the purpose of animating 3D rotation; it calculates the
interpolated position between two points that are on a 4D unit sphere along a
great circle arc of the sphere.
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Let q0 and q1 be quaternions located on the 4D unit sphere, and t ∈ [0, 1] be
an interpolation parameter. SLERP is defined as

SLERP
(
q0, q1; t

)
= q0

(
q−1

0 q1

)t
. (D.22)

Using Equation (D.21), Equation (D.22) is referred to as

log(qslerp(t)) = log
(
q0

(
q−1

0 q1

)t
)

= log
(
exp (θ0v0)

(
exp (−θ0v0) exp (θ1v1)

)t
)

= log
(
exp ((1 − t)θ0v0) exp (tθ1v1)

)
= (1 − t) (θ0v0) + t (θ1v1) .

(D.23)

where q0 = exp (θ0v0) and q1 = exp (θ1v1). Accordingly, SLERP in quaternion
space is simply calculated as the simple linear interpolation between two 3D
vectors.
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