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Abstract

A framework for automatically generating robot motion to execute various tasks

has been actively studied in the field of industrial robotics; in fact, it has been

a primary research topic in the field of artificial intelligence. However, it is diffi-

cult to automatically generate appropriate robot motion from only information on

the purpose of a task; thus, the Learning from Observation (LFO) paradigm has

recently been proposed.

In this paradigm, a robot system observes and recognizes a demonstration of a

task, builds an abstract representation of the task, and finally generates robot mo-

tion which consists of repetitions of movement primitives. Movement primitives

are essential operations to realize the situation corresponding to the abstract rep-

resentation. Here, the key to successful implementation of the paradigm depends

on the representation of the target tasks and the definition of sufficient movement

primitives.

The target tasks of this thesis are everyday manipulation tasks including an assem-

bly task, manipulation of linkages which are connected by a joint, and a knot-tying

task.

First, we propose a robot system to automatically generate robot motion to execute

assembly tasks using two rigid polyhedral objects. In the tasks, a contact relation

between the two objects is employed as the abstract representation. However, it

is very difficult to generate robot motion from only the representation because

numerous kinds of contact relations exist. To overcome this difficulty, we define a

Motion Degree of Freedom (DOF), which is an index that represents the quality

of legal local displacement of an object in each contact relation. In actuality, we

propose a method to calculate motion DOFs using 3D CAD models of the objects

and the contact relations. Using the concept of practical transitions of motion

DOFs, we can define sufficient movement primitives in advance and propose a

method to convert the task into a sequence of the movement primitives.

Furthermore, we try to improve calculation of the legal local displacement using

the second order approximation of the displacement. Although motion DOFs are

calculated using the first order approximation of the displacement in the system,

the approximation sometimes introduces erroneous solutions and cannot deal with

the curvature information because of the truncated errors. Therefore, we propose

a method to resolve these problems using the second order approximation.

Next, we propose a method to deal with manipulation of linkages which are con-

nected by a joint. In this case, a type of a joint corresponds to the abstract



representation. Consider the task of rotating a doorknob, which is connected to a

door by a revolute joint. In contrast to assembly tasks, it is very difficult to decide

how to rotate a doorknob from only its 3D CAD model. Fortunately, it is possible

to rotate the knob, if one knows: that the knob can rotate about some axis (a

kind of the joint); the axis direction; and the center of rotation (parameters of the

joint). Therefore, we propose a method to estimate the parameters from the result

of 3D object tracking. Our proposed method is robust to vision errors.

Finally, we propose a method to recognize a knot-tying task using one rope. We

employ the P-data representation as the abstract representation. The representa-

tion is reversible to the topological information of the knot. We define sufficient

movement primitives to execute any knot-tying tasks in advance and propose a

method to select the corresponding movement primitives from P-data transitions.

The theoretical background comes from the knot theory and the graph theory.
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Chapter 1

Introduction

1.1 Background

Although various kinds of robots have recently appeared in our everyday environ-

ment, almost all of them can be utilized only for a special purpose, for example,

entertainment[1], cleaning, surveillance, and so on. Of course, there are multi-

purpose robots like humanoid robots[2, 3, 4], but they are less available to us at

the present time. Even if one could possess them, one might not be able to utilize

them for various purposes because of the difficulty of operating them as one would

like, i.e., generating robot motion to execute a desired task.

Much research on the automatic generation using only information about the pur-

pose of the desired task has been proposed[5]. However, the generation is very

difficult, sometimes even impossible, because the necessity to solve several NP-

complete problems for the generation requires much computational time.

In order to overcome this difficulty, the Learning from Observation (LFO) paradigm

has been proposed[6, 7, 8, 9]. In this paradigm, a robot system generates robot

motion not only from information about the task’s purpose but also from observa-

tion of the task. Using information obtained from the observation, the system can

resolve the difficulty. Furthermore, the system may be able to acquire techniques

which the performer unconsciously utilizes. Therefore, a framework of the LFO

paradigm is focused on the field of artificial intelligence and neuroscience[10].

Concretely speaking, in the paradigm, the system generates robot motion through

the following steps[8]: First, it observes and recognizes a demonstration of a task.

Next, it builds an abstract representation of the task. Finally, it generates robot

motion which consists of repetitions of movement primitives. Movement primitives

are essential operations to realize the situation corresponding to the abstract rep-
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resentation. Here, the key to successful implementation of the paradigm depends

on the representation of the target tasks and the definition of sufficient movement

primitives.

1.2 Thesis Contribution

In this thesis, we propose novel methods that enable a robot to recognize tasks for

manipulating various kinds of objects from observation by a real-time stereo vision

system, which can obtain the distance to a target object. In this case, recognition

means to build an abstract representation of the tasks and to generate robot motion

which consists of repetitions of movement primitives.

We first overview such manipulation tasks with respect to the type of object. With

regard to the types of manipulated objects, there are the following two types:

• Rigid objects

• Deformable objects

Further, there are the following three types of deformable objects:

• String-like objects (strings, ropes, etc.)

• Plate-like objects (clothes, papers, etc.)

• Other types (clay, etc.)

In this thesis, our target objects include rigid objects and string-like deformable

objects. Therefore, tasks such as paper folding, clay modeling, and so on are

beyond the scope of this thesis. Because a string-like deformable object is more

flexible than other deformable objects, its manipulation can be employed for various

purposes, including making knots, binding together objects, and so on.

Next, we concretely consider manipulation tasks using these objects. We first

consider tasks for manipulating a rigid object. The state of only one object is

constant, because it is rigid. Therefore, a positional relationship among more than

one object is very important for the abstract task representation.

Almost all of the manipulation involves the constraint of motion by contacts. Then,

we focus on the constraint and propose a method for recognizing such manipulation

by using the information of such a constrained motion. We think that there is a

possibility that our proposed methods can deal with almost all of the manipulation.

2



With regard to how to extract the information, there are the following two meth-

ods: One method is to directly extract it from the contact relation, which just

corresponds to the abstract task representation in this case. This method also

requires us to know an object shape precisely. Concretely, we deal with assembly

tasks as the application. As a result, we can deal with tasks to pick-and-place an

object, to insert a key, a connector, etc, and so on. The key is to precisely formulate

and calculate the constrained motion. Then, we also propose a novel and powerful

mathematical tool which is available for that purpose.

The other method is to extract it from a primitive with respect to the constrained

motion, which is defined in advance. Of course, its type corresponds to the abstract

task representation. In this thesis, we focus on a so-called joint as such a primitive

and concretely deal with tasks for manipulating linkages connected by a joint as

the application. As a result, we can deal with tasks to open a door, a drawer, etc.,

to mill coffee beans using a coffee mill, to fix a screw using a screw driver, and so

on. The key is to enable a method to deal with sufficient types of joints. Although

we mainly deal with three types of joints in this thesis, our proposed method plays

an important role in dealing with various types of primitives, including joints.

Although unconstrained motion offers very important information for recognizing

the tasks, we do not explicitly deal with it in this thesis. As a result, in a task

to rotate a crank, our proposed method can rotate it, but the rotation is not

effective because the technique of effectively rotating should be extracted from un-

constrained motion. However, we propose a method to extract as much information

as possible about unconstrained motion from noise-contaminated observation.

Secondly we consider tasks for manipulating a string-like deformable object. In

contrast to manipulation of a rigid object, because transitions of states of only one

deformable object appear by deformation, we first propose a method to deal with

the states and their transitions which correspond to the abstract task representa-

tion. In this thesis, we describe how we concentrate on designing such an abstract

task representation. Although, as the result, our proposed method can deal only

with making a knot, we believe that it plays an important role as the first step

in manipulation for various other purposes. Concretely, we deal with knot-tying

tasks. Such tasks for manipulating between a rigid and a string-like deformable

object, for example, binding a package with a rope, are beyond the scope of the

thesis.

As mentioned above, we deal with the following typical manipulation tasks:

3



Manipulation of rigid objects

• Assembly tasks using two polyhedral objects

• Tasks for manipulating linkages connected by a joint

Manipulation of deformable objects

• Knot-tying tasks using one rope

We deal with assembly tasks where constrained motion can be formulated from

precise 3D CAD models of objects and contact relations between the objects. In

such tasks, a contact relation corresponds to the abstract task representation. We

define Motion Degrees of Freedom (DOF) to index the quality of the motion. Using

them, we can efficiently define sufficient movement primitives for any assembly

tasks. And we generate robot motion from transitions of motion DOFs.

Further, we try to improve calculation of the constrained motion using the sec-

ond order approximation of the motion. Although in the previous method, motion

DOFs are calculated using the first order approximation of the motion, the ap-

proximation sometimes introduces erroneous solutions and cannot deal with the

curvature information because of truncated errors; thus, we propose a mathemati-

cal tool for resolving these problems using the second order approximation of the

motion.

Next, we deal with tasks for manipulating linkages connected by some kind of a

joint, for example, rotating a doorknob, pulling open a drawer, inserting a screw

with a screw driver, etc. In this case, we determine the constrained motion from

a kind of a joint. Thus, it corresponds to the abstract task representation. Ma-

nipulation of linkages also requires us to know the parameters of the joint (in the

case of rotating a doorknob, we need to know the axis direction and the center

of rotation). These parameters are essential for executing movement primitives.

Then, we propose a method for obtaining the parameters from observation. Our

proposed method is robust to vision errors.

Finally, we deal with knot-tying tasks using one rope. We employ the P-data

representation as the abstract task representation. The P-data representation is

reversible to the topological information of a knot. We define sufficient movement

primitives to execute any knot-tying tasks and propose a method for selecting

the corresponding movement primitives from P-data transitions. The theoretical

background comes from the knot theory[11] and the graph theory.
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1.3 Related Works

In this section, we first survey research on the Learning from Observation (LFO)

paradigm based on the difference of the solution of the following two issues:

• How is a target task observed?

• How are movement primitives designed?

The implementation style deeply depends on these two issues. Next, we survey

research on our target tasks mentioned above, which are not basically based on the

LFO paradigm.

1.3.1 Learning from Observation Paradigm

First, we survey research on the LFO paradigm with respect to “How is a target

task observed?” In some of the research methods, the task is observed through

a haptic interface[12] or a robot arm[13]. These methods are similar to the so-

called teaching-pendant method. The difference between the two is that these

methods employ information which is obtained from a force/torque sensor attached

to the device. However, meaningless noise motion that the performer unconsciously

executes complicates the generation of robot motion. Thus, these methods require

a post-process to manually remove such noise motion.

In other research methods, the task is observed through the performer executing

the task in virtual reality (VR) space[14, 15]. In these methods, it is very easy

for the system to observe the task; however, it is very difficult for the performer

to execute the task in VR space if the system is not equipped with special haptic

devices or a smart user interface.

In most research methods, the task is observed by vision systems[6, 7, 16]. The

advantages of employing a vision system are as follows:

• The observation does not require a special device because a multi-purpose

robot is usually equipped with a vision system for visual feedback. Note

that such a vision system includes a real-time stereo-vision system which we

employ in the work described in this thesis.

• The performer can perform the task naturally as always.

Some of the research methods additionally employ a sensor grove[17, 18], which

is sometimes equipped with pressure sensors on the surface[19]. A sensor grove is
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very useful for observing motion and configurations of performer’s hands, which

helps in generating robot motion. However, because the grove prevents natural

execution by the performer, we do not employ it.

Next, we survey research on the LFO paradigm with respect to “How movement

primitives are designed?” When solving this question, one can select the following

two solutions:

• Predict and implement sufficient movement primitives for the target tasks in

advance

• Automatically extract and implement movement primitives through observa-

tion

The advantage of the former solution is that it is easy to implement the movement

primitives, because they are known in advance. The disadvantage of the solution is

that it is impossible to address the task which includes non-implemented movement

primitives. Because insufficiency of the predicted movement primitives causes this

disadvantage, we should fully take into account the sufficiency.

In contrast to the former solution, the advantage of the latter solution is that the

system can address the task by extracting such a movement primitive from the

observation and then dynamically implementing it on the system. Of course, the

disadvantage is that it is very difficult to establish a mechanism to dynamically

implement a movement primitive.

The reason why we select the former solution is that we believe that it is impossible

to apply the latter solution to our target tasks which involve manipulation, even if

all available techniques, hardwares, etc. could be employed. It is well-known that

such tasks require not only position control but also force control. That means

that we have to accommodate many parameters for position and force control.

Such accommodation is very difficult, even if we can utilize the expert knowledge

and are sufficiently familiar with the whole task in advance. Furthermore, the two

assumptions are usually not satisfied.

Now we present examples of implementing movement primitives. Almost all of the

research methods define the motion itself as a movement primitive, for example,

trajectories of limbs[20, 21, 22, 23, 24, 25] and a variation of a joint angle[26] of

the performer, a trajectory of a target object[27], and so on. Some of them edit

the motion to optimize an estimation function which is defined by the user. In

these methods, which we refer to as motion-based methods, a movement primitive

is executed by going over the original motion. They can deal with a task that does
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not require manipulation to an external world (for example, reach motion of a hand,

gesture, and so on); however, it is very difficult to deal with a manipulation task,

even if it is a pick-and-place task, which is a very simple task, because movement

primitives employed by the methods are based on position control.

Some of the research methods, e.g.,[28, 6, 7, 29, 15] define the motion for real-

izing a state, i.e., the abstract task representation, as a movement primitive. In

these methods, which we refer to as state-based methods, in order to implement

the movement primitives, we must first define the state and extract it from the

observation. It is well-known that a contact relation can be utilized as such a state

in assembly tasks. However, an appropriate definition of a state for other kinds

of tasks has not yet been established. The movement primitives must realize any

desired states. Of course, it is very difficult to implement the movement primitives

which satisfy the condition. However, we believe that only the state-based method

can realize the automatic generation of robot motion to execute the manipulation

tasks.

1.3.2 Assembly Tasks

Assembly tasks have been actively studied from various viewpoints because such

tasks are applicable not only for the field of industrial robotics but also for everyday

life, and because they require intelligent control, i.e., not only position control but

also force control[30].

Up to now, various research on assembly tasks has been proposed[31]. Generally

speaking, as a result of this research, robot motion for executing an assembly task

is generated through the following steps:

1. Represent contact relations and their transitions using a graph representa-

tion, of which a vertex represents each contact relation and an edge represents

validity of a transition between two contact relations

2. Decide on a preferred sequence of transitions to realize the task by searching

a path on the graph

3. Generate robot motion to realize the sequence

First we consider research on the first step, Hirai et al. proposed the method to ef-

fectively obtain such a graph representation by searching contact relations around

limit angles, that represent an object orientation at the exact moment to trans-

late another contact relation[32]. However, this method requires us to determine
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all limit angles. Xiao and Ji proposed the method of searching contact relations

with a fewer contact-elements around contact relations with more contact-elements

that the user manually assign[33]. However, this method requires contact relations

with more contact-elements. More recently, the methods[34, 35] to automatically

obtain the graph representation using the growth distance[36] and the non-linear

optimization method were proposed. However, these methods require much com-

putational time and sometimes fail to search some contact relations because of

incomplete convergence of the non-linear optimization method.

Next, we consider research on the second step. Generally speaking, a process of an

assembly task which corresponds to a path on the graph is realizable. However,

there are usually various processes to execute the same assembly task; obviously,

the process easiest to accomplish is preferred. The selection is easy, if the difficulty

is defined in advance. Various methods to define the difficulty from kinematic

properties have been proposed[37, 38]. Also, Uchiyama and Imahashi proposed a

method for deciding the difficulty using a dynamics simulator[39]. Of course, these

methods require us to obtain the graph representation in advance.

Then, we consider research on the third step, which may be somewhat remotely

related to the thesis. McCarragher and Asada proposed the method for generat-

ing the motion to realize the transition and for selecting one of the optimal mo-

tions with a higher possibility to achieve the task, when such a motion cannot be

uniquely determined[40]. However, the method can deal with only planer motion.

Hirukawa[41] proposed the method to formulate the condition which the motion

must satisfy and to solve by using the concept of the Gröbner basis. Generally

speaking, to generate the motion requires us to solve non-linear equations with six

variables. To solve them is so difficult that the method sometimes fail to generate

the motion. Ji and Xiao[42] proposed the method to solve the condition using

the Probabilistic Roadmap Method (PRM)[43], which is a kind of the randomized

algorithm. They efficiently generate the motion by selecting an appropriate coor-

dinate system. However, the method requires much calculation time and cannot

generate the optimal motion to realize the transition, when the motion cannot be

uniquely decided.

Applying the LFO paradigm, to solve the problems with respect to the first and

the second steps is easier, because one can obtain the bare minimum of the graph

representation and the preferred sequence of the transition from observation. Note

that the observation includes some errors, which usually complicate obtaining the

correct graph representation. We propose a method to correct the errors using

roughly estimated contact relations and the validity of their transitions.
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Figure 1.1: Lower pairs

Unfortunately, to solve the problem with respect to the third step is unavoidable

and essential. If one does not mind the computational time and the quality of the

motion, one can employ the past research. In Appendix A, we propose a method

to calculate the optimal motion using only the linear solution, i.e., this method

does not employ any non-linear optimization methods or randomized algorithms.

1.3.3 Manipulation of Linkages Connected by a Joint

Characteristics of joints have been actively studied in the field of the mechanism.

The main purposes of the field are 1) to investigate kinematic and dynamic proper-

ties of various types of joints and 2) to more effectively use multiple joints. Piston,

parallelogram linkages, etc. are good examples of effective use.

Research on manipulation of linkages which are connected by a joint has been

conducted. For example, Mason investigated kinematic properties of six lower

pairs as shown in Fig. 1.1 and illustrated a method for manipulating connected

linkages based on position/force hybrid control[44].

However, few researchers have proposed a method to estimate parameters of a joint

from observation. These parameters are essential for manipulating the connected

linkages. Considering estimation of parameters of a revolute joint, almost all of

them estimate only the center of rotation[45, 46] and cannot estimate the axis of
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rotation. We propose a method for estimating parameters of various kinds of joints

from noise-contaminated observation.

1.3.4 Knot-Tying Tasks

A knot-tying task is a kind of manipulation of a deformable object. Almost all

research concentrates on manipulation of a spring-like object, because it is well-

known that the dynamic properties can be represented by the hook’s law. However,

there has been little research on manipulation of other deformable objects, for

example, ropes, cloths, etc., because of the difficulty of modeling.

Wakamatsu and Wada[47] proposed the method to model dynamic properties of

a rope using the finite element method (FEM). However, this method dealt only

with the modelling.

As research on manipulating a rope, Inaba and Inoue proposed a hand-eye ma-

nipulation system to manipulate a rope[48]. Although they concentrated on visual

feedback for success of manipulation of a rope, they did not consider how to gen-

erate the motion for executing the manipulation.

Hopcroft et al. proposed a higher language to execute a knot-tying task[49]. Using

visual information, the compiler converts such a language into a robot command.

However the method permits only the motion that one of two ends of a rope crosses

over or under a part of a rope. Therefore, it must unnaturally tie a bow knot, which

requires Reidemeister move II as mentioned below.

As research on how to represent a state of a knot, Wolter and Kroll proposed a

method for representing a knotted rope using a graph representation[50]. This

research is well suited to represent a location of a knot, but, not good enough to

represent the process of tying a knot.

As mentioned above, there is the knot theory[11] for investigating characteristics of

various tangled loops. As an application of such a theory, Yamada et al. proposed

the method to define a state of a loop on a Cat’s Cradle[51], which is a traditional

Japanese play to design various figures from a simple loop. Each state on a Cat’s

Cradle is equivalent to a trivial knot, that is, it cannot be distinguished by the

conventional knot theory. To classify it, they improved the so-called polynomial

invariant.

As far as we know, sufficient movement primitives for knot-tying tasks have not

yet been proposed. First, we define the state of a knot in knot-tying tasks. Next

we introduce sufficient movement primitives for accomplishing the tasks. Then

we propose a method for obtaining a sequence of the corresponding movement
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primitives from the state transitions of a knot-tying task.

1.4 Thesis Organization

This thesis is organized as follows: First, we describe a method to recognize assem-

bly tasks using two polyhedral rigid objects from observation in Chapter 2. We

define Motion Degrees of Freedom (DOF) to index the quality of the motion. Using

them, we can efficiently define sufficient movement primitives for assembly tasks.

In actuality, we propose a method for representing an assembly task as a sequence

of corresponding sub-skills. In Appendix A we illustrate the actual implementation

of sub-skills, which may be somewhat remotely related to this thesis.

Next, in Chapter 3, we describe how we try to improve calculation of the con-

strained motion by using the second order approximation of the motion. It is

well-known that the first order approximation of the motion sometimes introduces

erroneous solutions and cannot deal with the curvature information, because of

truncated errors. Then, we propose a mathematical tool to resolve these problems

using the second order approximation of the motion.

In Chapter 4, we propose a method for robustly estimating the parameters of

joints from the observation under the existence of vision errors. The parameter is

essential to manipulate linkages which are connected by a joint.

In Chapter 5, we describe a method to recognize knot-tying tasks. We describe a

method to represent a knot state in the P-data representation and define sufficient

movement primitives for any knot-tying tasks. In Chapter 6 we finally conclude

this thesis.
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Chapter 2

Recognizing Assembly Tasks Using Two Rigid

Polyhedral Objects From Observation

In this chapter, we describe a method for recognizing assembly tasks using two

rigid polyhedral objects from observation. First, we assume that sufficient data

have been obtained from observation and concentrate on the recognition. The

observed data consist of the followings:

• Transitions of contact relations

• One configuration of each object for realizing each contact relation

A contact relation consists of a set of contact primitives. Each contact primitive

consists of two contacting object primitives. An object is composed of the object

primitives, i.e., vertices, edges, and faces.

As mentioned above, we recognize assembly tasks using information about con-

strained motion, i.e., indices of the legal infinitesimal displacement of a target

object. We describe a method for calculating indices from 3D CAD models of

objects and contact relations. By investigating practical transitions of the indices,

we define sufficient movement primitives for any assembly task. And we illustrate

a method to select the corresponding movement primitives from transitions of the

indices.

Next, we describe a method for extracting the observation data as mentioned above

from observations which include some errors. The errors complicate extraction of

the data. We propose methods for correcting the errors with respect to object

configurations using a contact relation and the errors with respect to the contact

relations using valid transitions of contact relations.
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Note that we assume that one object is grasped by the performer and moves (re-

ferred to as a grasping object), while the other is fixed to the environment (referred

to as an environmental object). Of course, the shape of each object is precisely

obtained in advance.

Our proposed method in this chapter is an improvement of the method proposed

by Ikeuchi and Suehiro[6]. Novelty of our method is that our method can deal with

rotation and any contact relations. Note that their method can deal only with

translation and face-contact relations. To realize such an improvement, we need to

solve the following problems:

• Index for rotational displacement

• Deal with more kinds of transitions of contact relations

2.1 Formulating Legal Infinitesimal Displacement

Hirukawa et al. proposed a method to formulate the legal infinitesimal displacement

from a contact relation and 3D CAD models of objects[52]. They showed that the

displacement can be formulated by simultaneous linear inequalities as shown in

Equation (2.1), where Fij is a surface normal of a separate plane defined in [52]

(For example, in a vertex-face-contact case, Fij is equal to a surface normal of

the face.), N is the number of contacting points, M(i) is the number of separate

planes in the i-th contacting point, ∆X and Ω are infinitesimal displacements with

respect to location and orientation, and Ji is a Jacobian matrix which represents

the relationship between the displacement of the i-th contacting point and the

displacement of the object [∆X,Ω].

N
⋂

i

M(i)
⋃

j

FT
ijJi





∆X

Ω



 ≥ 0 (2.1)

In this thesis, we represent the displacement in the screw representation[53]. In

the representation, the displacement can be represented as a pair of translation

along a screw axis and rotation about the same axis. Concretely speaking, the

displacement is represented as a six dimensional vector [S0,S1] (referred to as a

screw vector), where S0 (∈ R3) is the direction of the screw axis, S1 is equal to

P×S0 + pS0, P (∈ R3) is a position of the axis, and p (∈ R) is a proportion of an

amount of translation to rotation. When p = 0, the displacement represents pure

rotation. And when p = ∞, that is, the screw vector is [0,S0], the displacement

represents pure translation.
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Figure 2.1: Maintaining, detaching, and constraining displacement

Using the screw representation, Equation (2.1) is converted into Equation (2.2),

where Pi is a position of a contacting point[53]:

N
⋂

i

M(i)
⋃

j

Fij · S1 + (Pi × Fij) · S0 ≥ 0 (2.2)

2.2 Indexing Infinitesimal Displacement

First, we consider the case where M(i) = 1 for all i, that is, Equation (2.2) is one

system of simultaneous linear inequalities (we refer to the case as a non-singular

contact relation.). Next we consider another case (referred to as a singular contact

relation).

2.2.1 Indexing in Non-Singular Contact Relations

In the case of a non-singular contact relation, the infinitesimal displacement can

be classified into the following three types based on the transition of the contact

relation caused by the displacement (See Fig. 2.1)[6]:

Maintaining displacement Displacement to maintain a contact relation

Detaching displacement Displacement to translate a contact relation

Constraining displacement Displacement to be constrained by contacts

DOFs of maintaining, detaching, and constraining displacement in translation mt,

dt, and ct can be formulated by Equation (2.3), where Vt is the solution space of

Equation (2.2) when substituting S0 = 0, d(Vt) is the maximum dimension of faces
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of the space Vt[54], Rt = (F11 · · ·FN1), and Rank(Rt) returns the rank of a matrix

Rt.

mt = 3 − Rank(Rt)

dt = 3 − (mt + ct)

ct = 3 − d(Vt) (2.3)

The method for calculating d(Vt) has already been proposed by Kuhn and Tucker[54],

where they employ linear programming, and Hirukawa et al.[52], where they em-

ploy the singular value decomposition and convex hull. We refer to the three types

of DOFs as maintaining, detaching, and constraining DOFs in translation. Now,

we additionally define indices to deal with rotation.

First, we define DOFs of maintaining, detaching, and constraining displacement in

all motion ma, da, and ca which includes not only translation but also rotation as

Equation (2.4), where Va is the solution space of Equation (2.2) and

Ra =





F11 · · · FN1

P1 × F11 · · · PN × FN1



 .

ma = 6 − Rank(Ra)

da = 6 − (ma + ca)

ca = 6 − d(Va) (2.4)

We refer to the three types of DOFs as maintaining, detaching, and constraining

DOFs in all motion.

For improvement of the recognition, we index the displacement with respect to an

axis direction of rotation (See Fig. 2.1). We define the three types of DOFs as

follows:

Maintaining DOF in rotation DOF of an axis direction in maintaining dis-

placement.

Detaching DOF in rotation DOF of an axis direction in detaching displace-

ment.

Constraining DOF in rotation DOF of an axis direction in constraining dis-

placement.

Now, we consider a method for calculating such DOFs using Equation (2.1).
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Proposition 1 Let a subspace Vr = {S0|[S0,S1] ∈ Va},

cr = 3 − d(Vr),

where cr is the constraining DOF in rotation.

Proof This is trivial from the definition.

�

Proposition 2

dr = 3 − (mr + cr),

where mr and dr are the maintaining and the detaching DOFs in rotation, respec-

tively.

Proof The DOF of an axis direction is three and any displacement belongs to one

of the three types (maintaining, detaching, and constraining displacement).

�

Proposition 3

mr = ma − mt,

where mr is the maintaining DOF in rotation,

Proof Let {[s10, s11], . . . , [sma0, sma1]} be a set of bases of Equation (2.5). Then,

maintaining displacement can be represented as a linear combination of these bases.

N
⋂

i

Fi · S1 + (Pi × Fi) · S0 = 0 (2.5)

Next, by applying the algorithm as shown in Fig. 2.2 to the set of bases, we obtain

the equivalent set {[0, s11], . . . , [0, st1], [st+1,0, st+1,1], . . . , [sma0, sma1]}. Because a

linear combination of vectors in the set {[0, s11], . . . , [0, st1]} represents transla-

tional displacement, t is equal to mt. Because vectors in the set {st+1,0, . . . , sma0}

are linearly independent and the linear combinations represent the range of axis

directions of rotational displacement, mr is equal to ma − t. As the result, we can

conclude that mr = ma − mt.

�
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Given a set of bases B = {[s10, s11], . . . , [sma0, sma1]}.

1. Search a linearly dependent minimum combination C of {s10, . . . , sr0}, where

si0 6= 0 for all si0 ∈ C. If such a combination does not exist, return B.

2. From the combination, the following equation is obtained:

∑

si0∈C

aisi0 = 0 (ai 6= 0)

3. Remove one of elements in C from B.

4. Append [s′0, s
′
1] to B, where

[s′0, s
′
1] =

∑

si0∈C

ai[si0, si1].

5. Go to 1.

Figure 2.2: Algorithm to calculate the maintaining DOF in rotation

In contrast, dr = da − dt and cr = ca − ct are not always satisfied. From that, we

additionally determine the facts to be as follows:

Proposition 4 Considering some axis direction s0 in detaching displacement, there

are the following two types (See Fig. 2.1):

• Both s0 and −s0 are included in the subspace Vr.

• Only s0 is included in the subspace.

In the former type, a grasping object can infinitesimally rotate about the axis both

clockwise and counter-clockwise. In the latter type, however, it can infinitesimally

rotate either clockwise or counter-clockwise; it is obvious that the object can rotate

both clockwise and counter-clockwise with respect to maintaining displacement,

and cannot rotate with respect to constraining displacement.

We additionally define Type I and Type II detaching DOFs in rotation as follows:

Type I detaching DOF in rotation DOF of the former type of an axis direc-

tion in detaching displacement
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Type II detaching DOF in rotation DOF of the latter type of an axis direc-

tion in detaching displacement

Proposition 5 The type I detaching DOF in rotation dr1 can be calculated by

performing the following steps:

1. Generate Equation (2.6) of which the solution is equal to the subspace Va.

Note that the method to generate it has already been proposed[54, 52].

⋂

i

Gi · S0 ≥ 0 (2.6)

2. Calculate the rank of G = (G1 · · ·Gn). Then dr1 is equal to 3−Rank(G)−mr.

Proof The solution of Equation (2.6) represents any axis directions in the legal

(i.e., maintaining and detaching) displacement. 3−Rank(G) represents a DOF of

the solution of Equation (2.7). The solution represents the range of axis directions

about which a grasping object can rotate both clockwise and counterclockwise.

Thus, 3 − Rank(G) = mr + dr1 is always satisfied.

⋂

i

Gi · S0 = 0 (2.7)

�

Proposition 6

dr2 = dr − dr1,

where dr2 is the Type II detaching DOF in rotation.

Proof Trivial.

�

2.2.2 Indexing in Singular Contact Relations

In [52], when a contact relation which includes some of two types of contact prim-

itives as shown in Fig. 2.3 (referred to as singular contact primitives), multiple

separate planes exist as some contacting point; therefore, M(i) 6= 1 for some i.

In the contact relation, we cannot formulate the displacement as one system of

simultaneous linear inequalities.
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Figure 2.3: Two kinds of singular contact primitives

We define three additional indices as follows: singular maintaining, singular de-

taching, and singular constraining DOFs. These DOFs are equal to maintaining,

detaching, constraining DOFs in the contact relation which is obtained by remov-

ing all singular contact primitives from the original contact relation. That is, we

can calculate the indices by applying the method mentioned above to Equation

(2.8).
⋂

{i|M(i)=1}

Fi · S1 + (Pi × Fi) · S0 ≥ 0 (2.8)

Note that we define that maintaining, detaching, and constraining DOFs are zero

in a singular contact relation. Is the same way, singular maintaining, singular

detaching, and singular constraining DOFs are zero in a non-singular contact rela-

tion. The method proposed by Ikeuchi and Suehiro[6] does not explicitly deal with

singular contact relations.

2.3 Analysis of Transitions of Contact Relations

In this section, we define sufficient movement primitives (referred to as sub-skills)

and describe a method for obtaining a sequence of corresponding sub-skills from

transitions of contact relations. For the purpose, Ikeuchi and Suehiro[6] classified

all face-contact relations into ten kinds based on the difference of maintaining,

detaching, and constraining DOFs in translation. Next, they proved that only

13 kinds of transitions existed between the ten kinds. Then, they concretely in-

vestigated the 13 kinds of transitions, defined sufficient movement primitives, and

designed the method for selecting the corresponding movement primitive from the

transition.
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Figure 2.4: DOF-transition from a maintaining DOF to a constraining DOF

First, we tried to classify all non-singular contact relations based on the difference

of maintaining, detaching, and constraining DOFs in translation and rotation. As

a result, we found that 138 kinds of non-singular contact relations existed and

we concluded that it was not practical to concretely investigate every possible

transition. In this thesis, we propose a method for analyzing the transition based

on increase and decrease of six types of indices (referred to as motion DOFs) defined

above.

2.3.1 DOF-Transitions

From the definition, it is obvious that each sum of all motion DOFs in translation

and rotation is always constant, i.e., three. Therefore, if one of the indices increases,

another one decreases. Considering one pair of the increased and decreased indices,

6P2 = 30 kinds of pairs may exist. We refer to such an increase and a decrease

as a DOF-transition. We define a DOF-transition from an A DOF to a B DOF

as any transition between two contact relations which decreases an A DOF by one

and increases a B DOF by one.

Theoretically speaking, all the 30 kinds of DOF-transitions actually appear. How-

ever, we focus on 20 kinds of DOF-transitions as shown in Fig. 2.5 among the

30 kinds, because these 20 kinds of DOF-transitions frequently appear, while the

other 10 kinds of DOF-transitions seldom appear.

The 10 kinds of DOF-transitions are as follows:

• Six kinds of DOF-transitions which appear when a grasping object moves

while maintaining a singular contact relation

• Four kinds of DOF-transitions between a maintaining DOF and a (singular)

constraining DOF

The former seldom appears, because it is very difficult to move a grasping object

while maintaining a singular contact relation. The latter also seldom appears,

because such a DOF-transition appears only when directly translating between the
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Figure 2.5: Practical transition which appears in practical assembly tasks. Transi-

tions which are not shown in this figure are so impractical that they seldom appear

in the tasks.

two contact relations as shown in Fig. 2.4. Of course it is also very difficult to

realize such a transition.

The former corresponds to six kinds of DOF-transitions between two of singu-

lar maintaining, singular detaching, and singular constraining DOFs. The latter

corresponds to four kinds of DOF-transitions between a maintaining DOF and a

constraining DOF, and between a maintaining DOF and a singular constraining

DOF. As a result, we have only to consider the 20 kinds of DOF-transitions as

shown in Fig. 2.5.

2.3.2 Investigating the 20 Kinds of Practical DOF-Transitions

Based on the relationship between directions of displacement and of a basis cor-

responding to a DOF-transition, these 20 kinds of DOF-transitions are classified

into two types as follows: The first type includes the following six kinds of DOF-

transitions: maintaining DOF ↔ detaching DOF, maintaining DOF ↔ singular

maintaining DOF, and maintaining DOF ↔ singular detaching DOF. In these

cases, each direction is corresponding. We regard motion to realize these DOF-
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Figure 2.6: DOF-transition from a maintaining DOF to a detaching DOF

transitions as movement primitives and call them sub-skills.

The second type includes another 14 kinds of DOF-transitions. Of course, each

direction is different in these cases. They are useful to determine how execution

errors of a robot arm prevent the DOF-transition. We define the DOF-transition

seriously prevented by the errors as a critical transition. First, we will introduce

sub-skills. Next we will illustrate critical transitions.

2.4 Sub-skills

In all figures of the following three sections, let the white object and the gray object

represent the grasping object and the environmental object, respectively.

2.4.1 From Maintaining DOF to Detaching DOF

The left in Fig. 2.6 shows an example of motion to lead to the DOF-transition

from a maintaining DOF to a detaching DOF in translation. Before and after the

transition, translational displacement along the horizontal direction, which corre-

sponds to the direction of the motion, translates from maintaining displacement

to detaching displacement. As a result, the motion leads to the DOF-transition in

translation. We define motion to lead to the DOF-transition as a make-contact

sub-skill in translation.

The top right and the bottom right in Fig. 2.6 show examples of motion to lead

to the DOF-transition from a maintaining DOF to Type I and Type II detaching

DOFs in rotation, respectively. Before and after the transition, rotational displace-

ment about the perpendicular direction in this thesis translates from maintaining

displacement to Type I or Type II detaching displacement. As a result, each mo-

tion leads to the DOF-transition from a maintaining DOF to a Type I or Type II
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Figure 2.7: DOF-transition from a maintaining DOF to a singular maintaining

DOF

detaching DOF in rotation. We define motion to lead the DOF-transitions as Type

I and Type II make-contact sub-skills in rotation, respectively. Note that,

in the example shown at the bottom right in the figure, a DOF-transition from a

detaching DOF to a constraining DOF also appears along the vertical direction.

These sub-skills can be realized to move the grasping object while maintaining the

contact relation until it contacts the dead-end contact primitive. This characteristic

is useful for implementation.

2.4.2 From Maintaining DOF to Singular Maintaining DOF

The left in Fig. 2.7 shows an example of motion to lead to a DOF-transition from

a maintaining DOF to a singular maintaining DOF in translation. In this example,

the DOF-transition appears along the horizontal direction. We define motion to

lead to the DOF-transition in translation as a slide sub-skill in translation.

Note that, in this example, a DOF-transition from a detaching DOF to a singular

maintaining DOF in translation also appears along the vertical direction.

The right in Fig. 2.7 shows an example of motion to lead to the DOF-transition

in rotation. In this example, the DOF-transition appears about the perpendicular

direction to this thesis. We define motion to lead the DOF-transition in rotation

as a slide sub-skill in rotation. Note that, in this example, DOF-transitions

from a detaching DOF to a singular maintaining DOF in translation also appear

along the horizontal and vertical directions.

In contrast to a make-contact sub-skill, there is no dead-end contact primitive after

the transition. The DOF-transition is always accompanied by a DOF-transition

from a detaching DOF to a singular maintaining DOF in translation. That is,

these sub-skills can be realized to move the grasping object while maintaining the

contact relation until the support contact primitives disappear.
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Figure 2.8: DOF-transition from a maintaining DOF to a singular detaching DOF
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Figure 2.9: DOF-transition from a detaching DOF to a maintaining DOF

2.4.3 From Maintaining DOF to Singular Detaching DOF

Figure 2.8 shows an example of motion to lead to a DOF-transition from a main-

taining DOF to a singular detaching DOF in translation. In this example, the

DOF-transition appears along the horizontal direction. The motion resembles a

make-contact sub-skill and a slide sub-skill in translation. Actually, the contact

relation before the transition includes a support contact primitive and the contact

relation after the transition includes a dead-end contact primitive. Motion to lead

to the DOF-transition in translation can be substituted by a make-contact sub-skill

in translation. Therefore, we do not additionally define a sub-skill corresponding

to it.

In the case of rotation, that is the same. Therefore, motion to lead to the DOF-

transition in rotation is substituted for by a make-contact sub-skill in rotation.

2.4.4 Another DOF-Transition

The left and the right in Fig. 2.9 show examples of motion to lead to DOF-

transitions from a detaching DOF to a maintaining DOF in translation and rota-

tion, respectively. Such motion is the inverse motion of a make-contact sub-skill
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Figure 2.10: DOF-transition from a singular maintaining DOF to a detaching DOF

Figure 2.11: DOF-transition from a singular maintaining DOF to a constraining

DOF

in translation or rotation. We define motion to lead to the DOF-transition in

translation and/or rotation as detach-contact sub-skills in translation and/or

rotation, respectively. However, the process of an assembly task usually decreases

maintaining DOFs. Therefore, such sub-skills seldom appear. And motion to lead

to a DOF-transition from a singular detaching DOF to a maintaining DOF can be

substituted for by a detach-contact sub-skill, and seldom appears.

Figure 2.10 shows an example of motion to lead to a DOF-transition from a singular

maintaining DOF to a maintaining DOF. Such motion is the inverse motion of a

slide sub-skill and regarded as a part of the successive sub-skill. Therefore, we do

not additionally define a sub-skill.

2.5 Critical Transitions

2.5.1 From Singular Maintaining DOF to Constraining DOF

Figure 2.11 shows an example of the transition to involve DOF-transitions from

a singular maintaining DOF to a constraining DOF. In this example, the DOF-

transitions appear along the horizontal direction in translation and about the per-

pendicular direction to this thesis in rotation.

The DOF-transition requires us to precisely control an object configuration with

respect to the DOF-transition, because the grasping object must move through

a narrow entrance for the transition. That is, the DOF-transition is a critical

transition. This critical transition corresponds to the critical dimension defined by

Miura et al. [55]. They controlled the configuration using visual feedback.
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Figure 2.12: DOF-transition from a singular detaching DOF to a constraining DOF

Figure 2.13: DOF-transition from a singular maintaining DOF to a detaching DOF

2.5.2 From Singular Detaching DOF to Constraining DOF

Figure 2.12 shows an example of the transition to involve DOF-transitions from

a singular detaching DOF to a constraining DOF. In this example, the DOF-

transitions appear along the horizontal direction in translation and about the per-

pendicular direction to this thesis in rotation.

Because the DOF-transition also requires us to precisely control an object config-

uration with respect to the DOF-transition, it is a critical transition. However,

in this case, the grasping object before the transition can move along only one

way with respect to the direction of the DOF-transition because of contacts. The

constraint eases to precisely control the object configuration.

2.5.3 From Singular Maintaining DOF to Detaching DOF

Figure 2.13 shows an example of the transition to involve DOF-transitions from a

singular maintaining DOF to a detaching DOF. Of course, it is difficult to realize

the singular contact relation before the transition; however, the transition is not

prevented by small execution errors. Therefore, this DOF-transition is not a critical

transition.

2.5.4 Singular Detaching DOF ↔ Detaching DOF and Singular Con-

straining DOF ↔ Constraining DOF

Figure 2.14 shows an example of the transition to involve DOF-transitions between

a singular detaching DOF and a detaching DOF. The legal displacement with re-
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Figure 2.14: DOF-transitions between a singular detaching DOF and a detaching

DOF

Figure 2.15: DOF-transition from a detaching DOF to a constraining DOF

spect to such DOF-transitions is one-sided before the transition, and the errors

seldom occur in that direction. Therefore, the DOF-transitions are not critical

transitions. As the same manner, the DOF-transitions between a singular con-

straining DOF and a constraining DOF are not critical transitions.

2.5.5 Another DOF-Transition

Figure 2.15 shows an example of the transition to involve a DOF-transition from

a detaching DOF to a constraining DOF. The DOF-transition is accompanied by

a Type II make-contact sub-skill in rotation. The legal displacement with respect

to such DOF-transitions is one-sided before the transition and the errors seldom

occur in the direction. Therefore, the DOF-transition is not a critical transition.

Figure 2.16 shows examples of the transitions to involve the following DOF-transitions:

1. From a constraining DOF to a singular maintaining DOF

2. From a constraining DOF to a singular detaching DOF

3. From a detaching DOF to a singular maintaining DOF

These DOF-transitions are accompanied by a slide sub-skill. The displacement

with respect to the first and second DOF-transitions is completely constrained,

i.e., the errors cannot arise in that direction. The displacement with respect to the
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Figure 2.16: DOF-Transitions accompanied by a slide sub-skill

Figure 2.17: True singular maintaining DOF or not

third DOF-transition is one-sided before the transition and the errors seldom occur

in the direction. Therefore, these three DOF-transitions are not critical transitions.

2.6 Selection of Corresponding Sub-Skills and Extraction of Crit-

ical Transitions from DOF-Transitions

From the definition of sub-skills, the selection rule can be estimated as follows:

• Select a make-contact sub-skill in translation and/or rotation, when a DOF-

transition from a maintaining DOF to a detaching DOF in translation and/or

rotation appears, respectively.

• Select a detach-contact sub-skill in translation and/or rotation, when a DOF-

transition from a detaching or singular detaching DOF to a maintaining DOF

in translation and/or rotation appears, respectively.

• Select a slide sub-skill in translation and/or rotation, when a DOF-transition

from a maintaining DOF to a singular maintaining DOF in translation and/or

rotation appears, respectively.

The first and the second rules are correct; however, the third one is not correct.

Over-simplification in analysis of a singular contact relation causes this result.

For example, consider a parallel edge-edge contact as shown in Fig. 2.17. Of

course, this is a singular contact relation. Because the singular maintaining DOF
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in translation is three, any translational displacement should have an equivalent

characteristic. The grasping object maintains the contact relation while it trans-

lates along the edge. However it does not maintain the relation while it translates

along the direction perpendicular to the edge. For selecting a slide sub-skill, we

need to classify these two types of singular maintaining DOFs.

Now, we consider how to classify singular maintaining DOFs into these two types.

The former singular maintaining DOF resembles a maintaining DOF, that is, the

grasping object maintains a contact relation while it moves along the corresponding

direction. We focus on such a characteristic, and additionally define restricted

DOFs in translation, rotation, and all motion.

A restricted DOF is a DOF of restricted displacement. Restricted displacement

is defined as the displacement which cannot maintain a contact relation despite a

singular or not-singular contact relation1.

When the legal infinitesimal displacement is represented by Equation (2.2), from

the definition restricted DOFs in translation, rotation, and all motion are calculated

as follows:

Restricted DOF in translation rt = Rank(Rt)

Restricted DOF in rotation rr = ra − rt

Restricted DOF in all motion ra = Rank(Ra)

where,

Rt =
(

F11 · · ·FNM(N)

)

Ra =





F11 · · · FNM(N)

P1 × F11 · · · PN × FNM(N)



 .

Using restricted DOFs, the correct rule to select the corresponding sub-skill is as

follows:

• Select a make-contact sub-skill in translation and/or rotation, when a DOF-

transition from a maintaining DOF to a detaching DOF in translation and/or

rotation appears, respectively.

1From the definition, each restricted DOF is equal to the sum of detaching and constraining

DOFs with respect to translation, rotation, and all motion in a not-singular contact relation,

respectively. However, each restricted DOF is not equal to the sum of singular detaching and

singular constraining DOFs in a singular contact relation.
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• Select a detach-contact sub-skill in translation and/or rotation, when a DOF-

transition from a detaching or singular detaching DOF to a maintaining DOF

in translation and/or rotation appears, respectively.

• Select a slide sub-skill in translation and/or rotation, when a DOF-transition

from a maintaining DOF to a singular maintaining DOF in translation and/or

rotation appears and a restricted DOF increases in translation and/or ro-

tation, respectively.

The rule for extracting critical transitions is as follows:

• The transitions to involve a DOF-transition from a singular maintaining DOF

to a constraining DOF.

• The transitions to involve a DOF-transition from a singular detaching DOF

to a constraining DOF.

2.7 Extracting Assembly Task Information from Observation

In this section, we describe the actual implementation to extract assembly task

information from the observation. Unfortunately, data obtained from the observa-

tion usually include some errors. As a result, erroneous assembly task information,

i.e., object configurations and contact relations, may be obtained.

Then, we propose two methods to correct the errors with respect to object con-

figurations using a contact relation and a method to correct errors with respect

to contact relations using the validity of the transition. Generally speaking, to

decide the validity requires much computational time because the calculation is

NP-complete[5]. Therefore, we propose a fast method to practically determine the

validity.

2.7.1 Outline

We employ a multi-baseline real-time stereo vision system which can obtain aligned

intensity and disparity images at 30 fps[56] as the observation device. The top left

and the top center in Fig. 2.18 show examples of intensity and disparity images

which were actually obtained from the vision system.

We extract assembly task information from the obtained images through perform-

ing the following steps:
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Figure 2.18: Robot vision system

1. Extract only target objects from obtained images and estimate 6-DOF object

trajectories.

2. Calculate contact relations and their transitions using the obtained trajecto-

ries and 3D CAD models of the target objects.

As mentioned above, estimated 6-DOF trajectories usually include some errors.

For correcting the errors, our system first roughly estimates a contact relation

using the noise-contaminated trajectories. Next, the system corrects the errors

with respect to object configurations using the estimated contact relation. Finally,

it removes the contact relations erroneously estimated using the idea of the validity

of the transition.

2.7.2 Extraction of Target Objects

First, our system extracts only target objects from images obtained by the vision

system. We assume that illumination does not dramatically change and object

color is white. Therefore our system extracts the objects using the background

subtraction and the white area detection on the intensity image. The disparity
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image has already been aligned to the intensity image; therefore, our system can

easily extract only the objects on the disparity image (See Fig. 2.18).

Next, our system classifies these objects into grasping and environmental objects

by using histograms which represent duration of existence of objects on a pixel.

Note that an environmental object is always fixed.

Then our system obtains 6-DOF trajectories of a grasping object and a 6-DOF con-

figuration of an environmental object using the three dimensional template match-

ing (3DTM) method proposed by Wheeler et al.[57]. The 3DTM method is a kind of

the iterative closest point (ICP) method[58]. The advantage of the 3DTM method

is that it is robust to noises because it employs the weighted least square method,

while the conventional ICP method employs the normal least square method on

the other.

2.7.3 Correct Errors With Respect to Object Configurations

Next, we describe two methods for correcting errors with respect to object config-

urations using a contact relation. One is an improvement of the method proposed

by Suehiro et al.[59]. Although their method can deal only with a face-contact

relation, our method can deal with any contact relation. We refer to our method

as a non-linear vision error correction.

The other is an application for calculating the optimal trajectory (We illustrate the

method in Appendix A.). We refer to the method as a linear vision error correction.

The method corrects errors by calculating the optimal trajectory for realizing the

transition from a contact relation with no contact primitive to a desired contact

relation.

The advantage of a non-linear vision error correction is that it requires only an

initial guess with respect to the configurations, which are usually obtained from

the observation. The disadvantage is to not always be able to correct the errors.

Use of the non-linear optimization method causes the disadvantage. Fortunately,

to recognize assembly tasks, we have to extract at most only one configuration of

each object against each contact relation.

In contrast, the advantage of a linear vision error correction is to always be able

to correct the errors. However the disadvantage is to require one configuration of

each object to realize the contact relation, which we would like to extract from

the observation. That means that the method is not available to extract assembly

task information. However, by using this method, one can extract information

about the unconstrained motion. Because our current system employs only the
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constrained motion, it extracts assembly task information using only a non-linear

vision error correction.

Estimation of Contact Relations From Observation

The methods which we will propose in this section require us to roughly estimate

contact relations from 3D CAD models and object configurations which include

some errors. To estimate the relation, our system calculates the distance between

every pair of two object-elements (a vertex, an edge, or a face). If the distance is less

than the proper threshold, our system determines that these two object-elements

contact each other2.

Non-linear Vision Error Correction

Next, our system corrects the errors using the roughly estimated contact relation.

Generally speaking, calculating configuration of each object which realizes some

contact relation is equivalent to solving one system of simultaneous non-linear

equations. It is very difficult to solve3. Our system calculates such a configuration

by using the non-linear optimization method. The method requires the initial

guess. Fortunately, a configuration obtained from the vision can be employed as

the initial guess[59]. In actuality, the method to correct the errors using a contact

relation is as follows:

1. Formulate the relationship between the distance ∆i between two object-

primitives in the i-th contact primitive and the object configurations q as

shown in Equation (2.9).

∆i = fi(q) (2.9)

2. Solve
⋂

i

∆i = 0 using the iterative non-linear optimization method.

Our system employs the following optimization, where q0 is the initial guess, which

is obtained from the vision:

1. qc = q0.

2. Answer qc, if max
i

fi(qc) is sufficiently small.

2Xiao and Ji proposed the method to more exactly calculate a contact relation following the

metrics of vision errors which they defined[60]. However the method requires much computational

time. That is why we employ such a simple calculation.
3However, such a problem can be analytically solved in the planer case[61].
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3. Linearize fi(q) using the zeroth and the first order terms of the Taylor series

of the equation.

4. Solve one system of simultaneous linearized equations using the singular value

decomposition and substitute such a solution to qc.

5. Go to Step 2.

Linear Vision Error Correction

To correct the errors with respect to object configurations is equivalent to calcu-

lating trajectories from them to one of the configurations which realize a desired

contact relation. That means that the calculation of the optimal trajectory as

mentioned in Appendix A can be employed for such a purpose. When correcting

the errors, we can assume that the contact state before the transition includes no

contact primitive, because only the end of the trajectory is important.

The advantage of the method is to be able to always correct the errors. Therefore,

the method can save the observed configurations of which non-linear vision error

correction fails to correct the errors. The data are not directly employed to recog-

nize the assembly task. However, one can extract information of the unconstrained

motion using the method. In actuality, the method tends to reduce the amount

of the displacement for correcting the error as compared with a non-linear vision

error correction.

2.7.4 Correcting Errors With Respect to the Transition

In the previous section, we described two methods for correcting errors with respect

to object configurations using roughly estimated contact relations. However, there

is a possibility that the contact relation includes some errors. To be more robust

to vision errors, our system corrects such estimation errors using the validity of

obtained transitions of contact relations, that is, every transition should be valid.

Donald proved that, if the translation between two given contact relations A and

B is valid, B must include every contact primitive in A, or A must include every

contact primitive in B[62]. Note that the inverse condition is not always satisfied.

Each contact relation can be represented by a set of the following three contact

primitives: vertex-face, face-vertex, and edge-edge contacts. In polyhedral objects,

every contact primitive can be represented as a combination of the three contact

primitives.
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Figure 2.19: Peg-insertion task

To determine the validity of the transitions requires the calculation of connections

of c-surfaces which are sets of all object configurations to maintain some contact

relation[63]. It is well-known that calculation of c-surfaces is NP-complete[5].

To overcome such a difficulty, our system determines the validity using practical

DOF-transitions as shown in Fig. 2.5. If DOF-transitions except for the 20 kinds as

shown in Fig. 2.5 appear, the system decides that the transition is invalid. The fig-

ure represents only DOF-transitions which practically appear when the performer

executes assembly tasks, that is, other DOF-transitions do not practically appear.

Because motion DOFs are calculated on the recognition, our system can practically

decide the validity of the transitions with less calculation time.

2.8 Experiment

In this section, we illustrate the results of recognizing an assembly task using sub-

skills and critical transitions based on DOF-transitions from the observation.

We employ a peg-insertion task as shown in Fig. 2.19 which looks like a two

dimensional case, for verifying our system. We select this example, because 1)

various contact relations and their transitions appear and 2) the result is easy to

watch and understand. Of course, our system can also recognize three dimensional

peg-insertion, etc.

2.8.1 Extracting Assembly Task Information

In this section, we show the result of extracting assembly task information from

observation. First, we show the results of correcting the errors using a non-linear

vision error correction in Fig. 2.20. Because rough estimation tends to adopt a con-

tact relation with more contact primitives, the system could find a singular contact

relation as shown in Fig. 2.20 (b), which plays an important role in recognizing

the task.
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(a) (b)

Figure 2.20: Correct errors with respect to object configurations using a contact

relation: success cases

(a) (b)

Figure 2.21: Correct errors with respect to object configurations using a contact

relation: failure cases

However, the system sometimes failed to correct the errors as shown in Fig. 2.21 (a)

and (b), because of failure of rough estimation of a contact relation or inappropri-

ateness of the initial guess employed by the non-linear optimization. In particular,

more failures appeared when the performer was just inserting a peg into a hole as

shown in Fig. 2.21 (b).

Then, the system determined the validity of the transitions. The system could have

obtained the correct transitions shown by outline arrows in Fig. 2.22 by correcting

invalid transitions. Note that in Fig. 2.22, two-direction arrows show other valid

transitions to be found by the method proposed by Donald[62] and black marks

show the transitions rejected by our proposed method4.

4We investigated only transitions between two contact relations obtained from the vision sys-

tem.
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Figure 2.22: Valid transitions of contact relations

2.8.2 Recognizing Assembly Tasks From Assembly Task Information

Figure 2.23 shows the result of recognizing the peg-insertion. Note that numbers

under each contact relation represent maintaining, detaching, and constraining

DOFs in translation, maintaining, detaching, and constraining DOFs in rotation,

and restricted DOFs in translation and rotation from the left. However, in singular

contact relations C and F, they represent singular maintaining, singular detach-

ing, and singular constraining DOFs in translation, singular maintaining, singular

detaching, and singular constraining DOFs in rotation, and restricted DOFs in

translation and rotation. An outline arrow shows a critical transition.

Transition (1) decreases maintaining DOFs in both translation and rotation by one

and increases detaching DOFs in both translation and rotation by one, respectively.

Therefore the system selects make-contact sub-skills in translation and rotation.

These sub-skills align the edge of the peg and the face of the hole. Because an

increased detaching DOF in rotation is Type I, the make-contact sub-skill in ro-

tation is Type I. The same DOF-transitions appear in Transition (4) and (7), and

the system selects the same sub-skills in the two transitions.

Transition (2) decreases maintaining DOFs in both translation and rotation by

two and increases singular maintaining DOFs in both translation and rotation
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Figure 2.23: Result of assembly-task recognition

by two and restricted DOFs in both translation and rotation by one, respectively.

Therefore, the system selects slide sub-skills in translation and rotation. These sub-

skills align the edge of the peg and the edge of the hole. Furthermore, the transition

decreases detaching DOFs in both translation and rotation by one and increases

singular maintaining DOFs in both translation and rotation by one, respectively.

These DOF-transitions are accompanied by the slide sub-skills.

Transition (5) decreases maintaining DOFs in both translation and rotation by one

and increases singular maintaining DOFs in both translation and rotation by one,

respectively. However, this transition increases a restricted DOF only in rotation.

Therefore, the system selects only a slide sub-skill in rotation.

Transition (3) decreases singular maintaining DOFs in both translation and rota-

tion by two and increases maintaining DOFs in both translation and rotation by

two, respectively. Therefore, the system regards these DOF-transitions as a part

of the next sub-skill. And this transition decreases singular maintaining DOFs in

both translation and rotation by one and increases detaching DOFs in both trans-

lation and rotation by one, respectively. Therefore, this transition is not a critical

transition.

Transition (6) decreases a singular maintaining DOF in translation by one and a

singular maintaining DOF in rotation by two, and increases a constraining DOF

in translation by one and a constraining DOF in rotation by two. Therefore this

transition is a critical transition.

2.8.3 Efficiency of Linear Vision Error Correction

Finally, we show the efficiency of the linear vision error correction. As mentioned

above, the method is basically useless for recognizing assembly tasks, because the
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Figure 2.24: Result of Vision error correction 1

method cannot explore an unexplored contact relation from the observation at all.

However, the configurations corrected by the method possess preferable character-

istics and we can extract information about the unconstrained motion.

The efficiency of the linear vision error correction is as follows:

• Always correct vision errors

• Reduce an amount of the displacement to correct vision errors

Figure 2.24, 2.25 and 2.26 show the efficiency of the linear vision error correction. In

each figure, the left represents object configurations obtained from the observation,

the top right represents the result of the non-linear vision error correction, and the

bottom right represents the result of the linear vision error correction.

In the case shown in Fig. 2.24, the non-linear method can correct the errors.

Of course, the linear method can also correct them. However, in the non-linear

method, the orientation widely changes to correct the errors. The linear method

minimizes the change of the orientation.

In the cases shown in Fig. 2.25 and 2.26, the non-linear method cannot correct

the errors. However, the linear method can correct the errors. The method always

works well in spite of the difference of restricted DOFs, which is relative to the

difficulty of the vision error correction.
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Figure 2.25: Result of Vision error correction 2
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Figure 2.26: Result of Vision error correction 3
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Figure 2.27: Three contact relations which are employed for comparing the non-

linear method to the linear method

Next, we show the reduction of an amount of the displacement in the linear vision

error correction. In this experiment, we contaminate the correct configurations

which satisfy some contact relation, and then correct them using the non-linear

and the linear method. Section 4.5.2 describes how to contaminate in detail.

We employed the three contact relations as shown in Fig. 2.27. In every contact

relation, the linear method always succeeded in correcting the errors. And the

average of an amount of the displacement to correct errors in the linear method

was less than one in the non-linear method as shown in Table 2.1. Note that the

average was calculated using only the successful case. However the average of an

amount of the orientation displacement in the linear method was a little greater

than the one in the linear method. The result means that, the non-linear method

cannot correct the bigger errors.

In the linear correction, the displacement with respect to the orientation and lo-

cation was less than the average of amounts of the noises (5[deg] and 10[mm],

respectively). Especially, in Contact relation (C), the average of an amount of

the displacement with respect to the orientation was equal to the average of an

amount of the noise, because the restricted DOF in rotation is three. Of course,

the smaller the restricted DOF is, the smaller an amount of the displacement is.

The non-linear method often failed to correct the errors, when a restricted DOF

in all motion was three or four. It is easier to solve the non-redundant equation or

sparse equation.
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Table 2.1: Comparison between the linear method and the non-linear vision error

correction. Average is calculated using only the successful case.

Contact Relation (A)

The non-linear vision The linear vision

error correction error correction

Successful rate [%] 84.6 100.0

Orientation (Average) [deg] 6.80 1.24

Location (Average) [mm] 4.44 2.41

Contact Relation (B)

The non-linear vision The linear vision

error correction error correction

Successful rate [%] 49.4 100.0

Orientation (Average) [deg] 2.84 1.97

Location (Average) [mm] 4.35 3.79

Contact Relation (C)

The non-linear vision The linear vision

error correction error correction

Successful rate [%] 82.7 100.0

Orientation (Average)[deg] 2.43 2.51

Location (Average) [mm] 4.82 3.77
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Chapter 3

Mathematical Tools For Calculating

Constrained Motion Using its Second Order

Approximation

In this chapter, we describe our attempt to improve calculation of the constrained

motion using the second order approximation of the motion. In the previous chap-

ter, motion DOFs were calculated using the first order approximation (i.e., lin-

earization) of the motion. The linearization characteristics are good because a pow-

erful tool to solve such inequalities, the theory of the polyhedral convex cones[54],

has already been established. The facility of the solution generates various appli-

cations, for example, determining the grasping stability[64] and the difficulty of

assembly tasks[31, 37, 38], calculating feasible paths[52, 65], generating a contact

relation graph[33, 35], recognizing assembly tasks[6], and so on.

However, the linearization sometimes introduces erroneous solutions[66] and cannot

deal with the curvature information, i.e., the applications mentioned above are

useless for curved objects. For example, the linearization introduces that the legal

displacement of a cubic object in each contact relation as shown in Fig. 3.1 is the

same. That is much different from the truth. The purpose of this chapter is to

resolve these problems using the second order approximation of the motion.

For the purpose, we first need to formulate the second order approximation of a

function which represents the relationship between the motion, i.e., displacement

and the distance between two of the following three object primitives: a vertex, an

edge, and a face. Next, we introduce a method for calculating maintaining and legal

displacement using the second order approximation. In actuality, we examine the

effectiveness of the second order approximation as compared with the linearization
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Figure 3.1: Same legal displacement?

through two examples.

Our work described in this thesis is similar to the work of Rimon and Burdick[67].

The novelty of our work is as follows:

• Our work deals with any basic contact relations, the definition of which is

presented below, while their work deals only with contact relations which

consist of only several face-face contacts, which are included by basic contact

relations.

• The purpose of our work is to calculate maintaining or legal displacement

itself rather than to index maintaining or legal displacement. Therefore, our

work can be employed not only for indexing grasping stability – Rimon and

Burdick’s purpose – but also for the other purposes mentioned above.

Note that, the contact relation which usually appears is a basic contact relation.

One example of a contact relation that is not basic is a singular contact relation

as described in Chapter 2.

We concentrate on a two-object relation. One is freely movable (referred to as a

moving object) and the other is fixed (referred to as a fixed object).

The method proposed in this thesis sometimes cannot calculate the displacement.

Experimental results show that our method is sufficient to calculate maintaining

displacement. The calculation plays a particularly important role for the various

applications mentioned above. If a method to deal with a quadratic form with

multi-variables is proposed, the complete calculation can be established.

3.1 Preliminaries

3.1.1 Notation

In this chapter, we represent attributes of the moving object or the fixed object

by using small letters or capital letters, respectively. For example, a vertex of the
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moving object is represented by v and an edge of the fixed object is represented by

E.

We represent names of vertices, edges, and faces (these three are referred to as

object primitives) using v, e, and f . Note that the function name which represents

a shape of an edge or a face is the same as the name itself. These symbols sometimes

have an index. In particular, we employ the symbol with an index for representing

an object primitive which is adjacent to another object primitive.

Every edge e has two adjacent faces f1 and f2. Every vertex v has n adjacent edges

ei and n adjacent faces fi. An edge ei has two adjacent faces fi and fi+1, where a

face fn+1 is the same as a face f1. Two edges ei−1 and ei are adjacent to a face fi,

where an edge e0 is the same as an edge en.

We employ symbols si for representing local displacement of an object and ∗d repre-

sents the value of ∗ after the displacement. Because we often employ the derivative

with respect to ∆θ, such a derivative is represented by ′

(

for example s′1 =
∂s1

∂∆θ

)

.

3.1.2 Curved Lines and Surfaces

Every edge e is an arbitrary simple curved line, but, we locally substitute its second

order approximation. Therefore, any point x on the edge about a point xc is locally

represented by Equation (3.1), where t and p are tangent and principle normals

of the edge at a point xc, respectively, k is a curvature at a point xc, and l is the

length of the curved line between two points x and xc. The range of l is from −ε

to ε, where ε is sufficiently small positive real number.

x = e(l) = xc + tl +
1

2
kpl2 (3.1)

Every face f is an arbitrary simple curved surface, but we locally substitute its

second order approximation. Therefore, any point x on the face is locally rep-

resented by an implicit function as Equation (3.2), where n and m are an outer

surface normal and a curvature matrix at a point xc, respectively. The range of x

is limited by ρ(xc,x) < ε, where ρ(xc,x) returns the distance between two points

xc and x.

f(x) = n · (x − xc) +
1

2
(x− xc)

T m(x − xc) = 0 (3.2)

Note that the distance between the face and some point x is locally equal to f(x)

with respect to the second order approximation.
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3.1.3 Convexity

Let A be a set of all inside points of an object. Let f1 and f2 be two adjacent faces

to an edge e. Then we naturally define the second order convexity of the edge at

the neighborhood of a point xc on the edge as Equation (3.3).

f1(x) < 0 ∩ f2(x) < 0 (∀x|x ∈ A ∩ ρ(xc,x) < ε) (3.3)

Let fi be the i-th adjacent face to a vertex v, of which position is xc. As the same

manner, we define the second order convexity of the vertex at its neighborhood as

Equation (3.4).
⋂

i

fi(x) < 0 (∀x|x ∈ A ∩ ρ(xc,x) < ε) (3.4)

Every object is represented by a union of several convex objects which include only

convex vertices and convex edges. From now on in this thesis, we assume that all

vertices and edges are convex.

3.1.4 Screw Representation

To represent local displacement, we employ the screw representation[53]. As men-

tioned above, in the representation, the displacement is represented as a pair of

translation along a screw axis and rotation about the same axis. Every displace-

ment can be represented by the screw representation. In this chapter, direction,

position, etc. are usually represented with respect to the base coordinate system.

Let some displacement be represented in the screw representation, that is, the

direction of the screw axis is a = (ax, ay, az)
T , its position is c, an amount of

rotation is ∆θ (≥ 0), and an amount of translation is p∆θ, where |a| = 1. Note

that all variables of the screw representation except for ∆θ are functions with

respect to ∆θ. After the displacement, a position of a point x is calculated by

Equation (3.5), where I is a unit matrix.

xd = d(x) = R(x − c) + c + pa (3.5)

R = exp([a]×∆θ) = I + [a]×∆θ +
[a]2×
2!

∆θ2 + · · ·

[a]× =









0 −az ay

az 0 −ax

−ay ax 0









Note that when p → ∞, the displacement is equivalent to pure translation.
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After the displacement, any curved line x = e(l) and any curved surface f(x) = 0

are represented by Equation (3.6) and Equation (3.7), respectively.

ed(l) = d(xc) + Rtl +
1

2
kRpl2 (3.6)

fd(x) = (Rn) · (x − d(xc)) +
1

2
(x− d(xc))

T RmRT (x− d(xc)) (3.7)

3.1.5 Derivatives

To formulate the second order approximation, we often employ the derivatives

of the functions mentioned above. This section shows derivatives of important

functions. The first and second derivatives of R with respect to ∆θ are represented

by Equation (3.8) and (3.9), respectively.

R′ = ([a′]×∆θ + [a]×) exp([a]×∆θ) (3.8)

R′′ = ([a′′]×∆θ + 2[a′]×) exp([a]×∆θ)

+ ([a′]×∆θ + [a]×)2 exp([a]×∆θ) (3.9)

By substituting ∆θ = 0 to Equation (3.8) and (3.9), Equation (3.10) and (3.11)

are obtained, where s1 = a(0) and s3 = 2s′1 = 2a′(0).

R′(0) = [s1]× (3.10)

R′′(0) = [s3]× + [s1]
2
× (3.11)

The first and second derivatives of d(x) with respect to ∆θ are represented by

Equation (3.12) and (3.13), respectively, where x is constant with respect to ∆θ.

d′(x) = R′(x − c) − Rc′ + c′ + p′a + pa′ (3.12)

d′′(x) = R′′(x − c) − 2R′c′ − Rc′′ + c′′ + p′′a + 2p′a′ + pa′′ (3.13)

By substituting ∆θ = 0 to Equation (3.12) and (3.13), Equation (3.14) and (3.15)

are obtained, where s2 = c(0)× s1 + p′(0)s1 and s4 = 2s′2 − p′′(0)s1 = 2c′(0)× s1 +

c(0) × s3 + p′′(0)s1 + p′(0)s3. Note that p(0) = 0.

d′(x)|∆θ=0 = s1 × x + s2 (3.14)

d′′(x)|∆θ=0 = s3 × x + s4 + s1 × (s1 × x + s2) (3.15)

We define the vector [s1, s2, s3, s4] as the screw vector. We also define two vectors

[s1, s2] and [s3, s4] as the first and second order screw vectors, respectively. When
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p′(0) → ∞, i.e., s1 = s3 = 0, the screw vector represents pure translation. Any

screw vectors are valid if s1 = 0 ∩ s3 6= 0 is not satisfied.

The derivative of a curved line e(l) with respect to ∆θ is represented by Equation

(3.16), where l is a function with respect to ∆θ.

(ed(l))
′ = e′d(l) +

∂ed(l)

∂l
l′ (3.16)

Note that

e′d(l) = d′(xc) + R′tl +
1

2
kR′pl2 (3.17)

∂ed(l)

∂l
= Rt + kRpl. (3.18)

By substituting ∆θ = 0 and l = 0 to Equation (3.17) and (3.18), Equation (3.19)

and (3.20) are obtained, respectively.

e′d(l)
∣

∣

∆θ=0,l=0
= d′(xc)|∆θ=0 (3.19)

∂ed(l)

∂l

∣

∣

∣

∣

∆θ=0,l=0

= t (3.20)

The derivative of fd(x) with respect to ∆θ is represented by Equation (3.21), where

x is a function with respect to ∆θ.

fd(x) = f ′
d(x) +

∂fd(x)

∂x
x′ (3.21)

Note that

f ′
d(x) = (R′n) · (x − d(xc)) − (Rn) · d′(xc) + d′(xc)

T RmRT (x− d(xc))

+(x− d(xc))
T R′mRT (x − d(xc)) (3.22)

∂f ′
d(x)

∂x
= Rn + RmRT (x − d(xc)). (3.23)

By substituting ∆θ = 0 and x = xc to Equation (3.22) and (3.23), Equation (3.24)

and (3.25) are obtained, respectively.

f ′
d(x)

∣

∣

∆θ=0,x=xc
= −n · d′(xc)|∆θ=0 (3.24)

∂f ′
d(x)

∂x

∣

∣

∣

∣

∆θ=0,x=xc

= n (3.25)
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Figure 3.2: Nine types of point-contact primitives

3.2 Formulating the Second Order approximation

In this thesis, we deal with only a basic contact relation between two objects, which

is defined below. An arbitrary object is composed of object primitives as follows:

vertices, edges (curved lines), and faces (curved surfaces). Basically, every contact

relation between two objects can be represented as a set of contact primitives,

which are pairs of contacting object primitives. Because three types of object

primitives exist, nine types of contact primitives exist as shown in Fig. 3.2. A

vertex-face contact means that a vertex of the moving object contacts a face of the

fixed object.

To achieve the purpose of this chapter, we must formulate the second order approx-

imation of a function which represents the relationship between the displacement

and the distance between two contacting object primitives. First, we consider the

formulation with respect to point-contact primitives which realize a point-contact.

These nine contact primitives realize point-contacts. In this chapter, we formulate

the approximation for the following six point-contact primitives: vertex-face, edge-

edge, edge-face, face-vertex, face-edge, and face-face point-contacts. We refer to

these six point-contact primitives as basic point-contact primitives. We define a ba-

sic contact relation as a contact relation which is represented as a set of only basic

point-contact primitives. Next we formulate the approximation for a line-contact
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Figure 3.3: A vertex-face point-contact

primitive and a face-contact primitive.

Through the formulation, we found that we had to formulate the approximation

not only for point-contact primitives except for basic point-contact primitives, but

also for several singular point-contact primitives which include at least one singu-

lar object primitive as follows: a half edge, a half face, and a quarter face. The

singular object primitives are defined in Appendix B. Fortunately, the second or-

der approximation in any contact primitive is basically formulated by a union of

some products of the approximations for basic contact primitives. We describe the

formulation in Appendix B.

3.2.1 Vertex-Face Point-Contact

Consider the case that a vertex v contacts a face F at a point xc as shown in Fig.

3.3. Because these two do not penetrate each other before the displacement in

normal use of the approximation, Equation (3.26) must be satisfied.
⋂

i

ti · N ≥ 0 (3.26)

Now we assume that
⋂

i

ti ·N > 0. After the displacement, a point xc is represented

by d(xc). The distance ∆vF between the vertex and the face after the displacement

is calculated by Equation (3.27).

∆vF = F (d(xc))

= N · (d(xc) − xc) +
1

2
(d(xc) − xc)

T M(d(xc) − xc) (3.27)

The first and second derivatives of Equation (3.27) are represented by Equation

(3.28) and (3.29), respectively.

∆′
vF = N · d′(xc) + d′(xc)

T M(d(xc) − xc) (3.28)

∆′′
vF = N · d′′(xc) + d′(xc)

T Md′(xc) + d′′(xc)
T M(d(xc) − xc) (3.29)
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Applying the Taylor expansion to Equation (3.27) about ∆θ = 0, Equation (3.30)

is obtained, where R3(∆θ) is the third order remainder term.

∆vF = N · (s1 × xc + s2)∆θ

+ (N · (s3 × xc + s4) + (N × s1) · (s1 × xc + s2)

+ (s1 × xc + s2)
T M(s1 × xc + s2)

) ∆θ2

2
+ R3(∆θ) (3.30)

Now we consider the legal displacement, i.e., the two objects do not locally pen-

etrate each other about a point xc. The condition that the vertex is not inside

the face is formulated by ∆vf ≥ 0. If two objects penetrate each other under the

condition, only a part of some adjacent half edge ei or quarter face fi of a vertex

v must be inside the fixed object. As the result, Equation (3.31) must be satisfied

(See Fig. 3.3).

(Rti) ·N < 0 (3.31)

Because (Rti) · N is continuous with respect to ∆θ and the equation is greater

than zero from the assumption when ∆θ = 0. Therefore (Rti) · N > 0 for all i,

when ∆θ is sufficiently small. Therefore, the displacement which satisfy ∆vF ≥ 0

is obviously legal.

If ti · N = 0 for some i, we should consider the singular point-contact primitive

which consists of a half edge ei and a face F . Furthermore, if ti−1 ·N = 0∩ti ·N = 0

for some i, we should consider the singular point-contact primitive which consists

of a quarter face fi and a face F , where two half edges ei−1 and ei is adjacent to

a quarter face fi. As mentioned above, we describe the formulations with respect

to the singular contact primitives in Appendix B.

3.2.2 Edge-Face Point-Contact

Consider the case that an edge e contacts a face F at a point xc as shown in Fig.

3.4. Because these two do not penetrate each other before the displacement in

normal use, Equation (3.32) must be satisfied.

t · N = 0 (3.32)

In this case, we concentrate on the case
⋂

i

ni×N 6= 0. If ni×N = 0 for some i, we

should consider the singular point-contact primitive which consists of a half face

fi and a face F (See Fig. 3.4).
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Figure 3.4: An edge-face point-contact

After the displacement, the edge is represented by x = ed(l). The distance ∆ef

between a point on the edge x = ed(l) and the face is represented by Equation

(3.33).

∆eF = F (ed(l))

= N · (ed(l) − xc) +
1

2
(ed(l) − xc)

T M(ed(l) − xc) (3.33)

The distance between the edge and the face is naturally defined as the minimum

value of ∆eF . When ∆eF is minimum, Equation (3.34) = 0 must be satisfied.

∂∆eF

∂l
= N ·

∂ed(l)

∂l
+

∂ed(l)

∂l

T

M(ed(l) − xc) (3.34)

The derivative of Equation (3.34) with respect to ∆θ is represented by Equation

(3.35).
(

∂∆eF

∂l

)′

= N ·
∂e′d(l)

∂l
+ N ·

∂2ed(l)

∂l2
l′ +

∂ed(l)

∂l

T

M

(

e′d(l) +
∂ed(l)

∂l
l′
)

+ (· · · )M(ed(l) − xc) (3.35)

By substituting ∆θ = 0 to Equation (3.35), Equation (3.36) is obtained. Note that

ed(l)|∆θ=0 = xc, because l(0) = 0.
(

∂∆eF

∂l

)′∣
∣

∣

∣

∆θ=0

= N · (s1 × t) + kN · pl′(0)

+ tT M(s1 × xc + s2) + tT Mtl′(0) (3.36)

First, we consider the case that kN · p + tTMt 6= 0. Next we consider the case

that kN · p + tT Mt = 0.

Because kN · p + tTMt 6= 0, Equation (3.33) is minimum, when l′(0) is equal to

leF in Equation (3.37).

leF = −
N · (s1 × t) + tTM(s1 × xc + s2)

kN · p + tT Mt
(3.37)
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The derivative of Equation (3.33) with respect to ∆θ is represented by Equation

(3.38).

∆′
eF = N · e′d(l) + e′d(l)

T M(ed(l) − xc) +
∂∆eF

∂l
l′

= N · e′d(l) + e′d(l)
T M(ed(l) − xc) (3.38)

The second derivative of Equation (3.33) with respect to ∆θ is represented by

Equation (3.39).

∆′′
eF = N · e′′d(l) + N ·

∂e′d(l)

∂l
l′ + e′d(l)

T Me′d(l) + e′d(l)
T M

∂e′d(l)

∂l

T

l′

+ (· · · )M(ed(l) − xc) (3.39)

Applying the Taylor expansion to Equation (3.33) about ∆θ = 0, we obtain Equa-

tion (3.40).

∆eF = N · (s1 × xc + t2)∆θ

+ (N · (s3 × xc + s2) + (N × s1) · (s1 × xc + s2)

+(s1 × xc + s2)
T M(s1 × xc + s2) − l′(0)2(kN · p + tT Mt)

) ∆θ2

2
+ R3(∆θ) (3.40)

Consider the case that kN · p + tTMt = 0. Now, we formulate only the legal

displacement. Of course, the displacement must satisfy ∆eF ≥ 0. Note that

the term which includes l′(0) is eliminated in the equation. Furthermore, because

Equation (3.36) 6= 0 means that the edge penetrates the face, the legal displacement

must additionally satisfy Equation (3.41).

N · (s1 × t) + tTM(s1 × xc + s2) = 0 (3.41)

However, this case seldom appears. We do not regard the edge-face point-contact

as a basic point-contact primitive.

3.2.3 Face-Face Point-Contact

Consider the case that a face f contacts a face F at a point xc. Now let the surface

normal of a face f be −N, because it is easy to understand the difference of the

formulations between in a face-face point-contact and in another point-contact

primitives. Note that −n = N is always satisfied because two objects do not

penetrate each other before the displacement in normal use.
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We consider the sum of two distances ∆fF between some point x and both of two

faces as Equation (3.42) after the displacement.

∆fF = fd(x) + F (x)

= −(RN) · (x− d(xc)) +
1

2
(x − d(xc))

T RmRT (x − d(xc))

+ N · (x− xc) +
1

2
(x − xc)

T M(x − xc) (3.42)

Because any line of which the direction is N contacts each face at only one point

when ∆θ is sufficiently small, the distance between the two faces is defined as the

minimum value of ∆fF . When ∆fF is minimum, Equation (3.43) = 0 must be

satisfied.

∂∆fF

∂x
= −(RN) + N + RmRT (x − d(xc)) + M(x − xc) (3.43)

The derivative of Equation (3.43) with respect to ∆θ is represented by Equation

(3.44).
(

∂∆fF

∂x

)′

= −R′N + RmRT (x′ − d′(xc)) + Mx′

+ (· · · )(x − d(xc)) + (· · · )(x − xc) (3.44)

By substituting ∆θ = 0 to Equation (3.44), Equation (3.45) is obtained. Note that

x(0) = xc.
(

∂∆fF

∂x

)′∣
∣

∣

∣

∆θ=0

= N × s1 + m(x′(0) − (s1 × xc + s2)) + Mx′(0) (3.45)

Equation (3.42) is minimum, when x′(0) is equal to xmin as Equation (3.46).

xmin = (m + M)−1(m(s1 × xc + s2) − N × s1) (3.46)

Note that m + M is not a full-rank matrix, because (m + M)N = 0 is always

satisfied. Therefore, we calculate a quasi-inverse matrix (m + M)−1 using the idea

of the singular value decomposition.

The derivative of Equation (3.42) with respect to ∆θ is represented by Equation

(3.47).

∆′
fF = −(R′N) · (x− d(xc)) − (RN) · (x′ − d′(xc))

+ (x′ − d′(xc))
T RmRT (x − d(xc)) + (x − d(xc))

T R′mRT (x − d(xc))

+ N · x′ + x′T M(x − xc)

= −(R′N) · (x− d(xc)) + (RN) · d′(xc)

− d′(xc)
T RmRT (x − d(xc)) + (x− d(xc))

T R′mRT (x − d(xc)) (3.47)
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The second derivative of Equation (3.42) with respect to ∆θ is represented by

Equation (3.48).

∆′′
fF = −(R′N) · x′ + 2(R′N) · d′(xc) + (RN) · d′′(xc)

− d′(xc)
T RmRT (x′ − d′(xc)) + (· · · )(x − d(xc)) (3.48)

Therefore, by applying the Taylor expansion to Equation (3.42) about ∆θ = 0,

Equation (3.49) is obtained.

∆fF = N · (s1 × xc + s2)∆θ

+
(

N · (s3 × xc + s4) − x′(0)T (m + M)x′(0)

+ x′(0)T (m + M)(s1 × xc + s2)
) ∆θ2

2
+ R3(∆θ) (3.49)

Note that the legal displacement is formulated by ∆fF |x′(0)=xmin
≥ 0 and the for-

mulation is essentially equal to the formulation in [67], although the representation

of the displacement is different.

3.2.4 Edge-Edge Point-Contact

Consider the case that an edge e contacts an edge E at a point xc. In this thesis,

we define the distance between two edges as Equation (3.50), where x and X are

points on edges of the moving and the fixed objects, respectively, t and T are

tangent vectors on points x and X, respectively, and the direction of the vector

t×T (6= 0) is set up in order to be outward to the fixed object. Note that −t×T

must be inward to the fixed object in this case.

min
x,X

(t × T) · (x − X) (3.50)

When the equation is equal to zero, two edges contact each other. And when the

equation is less than zero, each edge is inside the opposite object. Otherwise, they

detach from each other.

First, we consider the case that t × T 6= 0. Note that when the direction of a

vector t × T is not outward to the fixed object, −t is substituted for t, because

the direction of a vector −t×T is always outward to the fixed object in this case.

Because each edge does not penetrate the opposite object before the displacement

in normal use, Equation (3.51) must be satisfied.
(

⋂

i

t · Ni ≥ 0

)

∩

(

⋂

i

ni ·T ≥ 0

)

(3.51)
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Now we concentrate on the case where Equation (3.52) is satisfied.
(

⋂

i

t ·Ni > 0

)

∩

(

⋂

i

ni ·T > 0

)

(3.52)

If Equation (3.53) is satisfied for some i, we should consider the singular point-

contact primitive which consists of an edge e and a half face Fi.

t ·Ni = 0 (3.53)

As the same way, if Equation (3.54) is satisfied for some i, we should consider the

singular point-contact primitive which consists of a half face fi and an edge E.

ni · T = 0 (3.54)

Furthermore, if Equation (3.55) is satisfied for some i and j, we should consider

the singular point-contact primitive which consists of a half face fi and a half face

Fj .

ni ×Nj = 0 (3.55)

After the displacement, the distance between the two edges is equal to the minimum

value of ∆eE as Equation (3.56).

∆eE =

(

∂ed(l)

∂l
×

∂E(L)

∂L

)

· (ed(l) − E(L)) (3.56)

The derivatives of Equation (3.56) with respect to l and L are represented by

Equation (3.57) and (3.58), respectively. ∆eE is minimum with respect to l and L,

when these two equations are equal to zero.

∂∆eE

∂l
=

(

∂2ed(l)

∂l2
×

∂E(L)

∂L

)

· (ed(l) −E(L)) (3.57)

∂∆eE

∂L
=

(

∂ed(l)

∂l
×

∂2E(L)

∂L2

)

· (ed(l) −E(L)) (3.58)

The derivatives of Equation (3.57) and (3.58) with respect to ∆θ are represented

by Equation (3.59) and (3.60), respectively.

(

∂∆eE

∂l

)′∣
∣

∣

∣

∆θ=0

=

(

∂2ed(l)

∂l2
×

∂E(L)

∂L

)

·

(

e′d(l) +
∂ed(l)

∂l
l′
)

+ (· · · )(ed(l) − E(L)) (3.59)
(

∂∆eE

∂L

)′∣
∣

∣

∣

∆θ=0

=

(

∂ed(l)

∂l
×

∂2E(L)

∂L2

)

·

(

e′d(l) +
∂E(L)

∂L
L′

)

+ (· · · )(ed(l) − E(L)) (3.60)
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By substituting ∆θ = 0 to Equation (3.59) and (3.60), Equation (3.61) and (3.62)

are obtained, respectively.
(

∂∆eE

∂l

)′∣
∣

∣

∣

∆θ=0

= (p × T) · (s1 × xc + s2 + tl′(0)) (3.61)

(

∂∆eE

∂L

)′∣
∣

∣

∣

∆θ=0

= (t × P) · (s1 × xc + s2 + TL′(0)) (3.62)

First, we consider the case that N ·p 6= 0 and N ·P 6= 0, where N = t×T. In this

case, Equation (3.56) is minimum, when l′(0) is equal to leE in Equation (3.63)

and L′(0) is equal to LeE in Equation (3.64).

leE =
(p × T) · (s1 × xc + s2)

N · p
(3.63)

LeE =
(t × P) · (s1 × xc + s2)

N · P
(3.64)

The derivative of Equation (3.56) with respect to ∆θ is represented by Equation

(3.65)

∆′
eE =

(

∂e′d(l)

∂l
×

∂E(L)

∂L

)

· (ed(l) − E(L))

+

(

∂ed(l)

∂l
×

∂E(L)

∂L

)

· e′d(l) +
∂∆eE

∂l
l′ +

∂∆eE

∂L
L′

=

(

∂e′d(l)

∂l
×

∂E(L)

∂L

)

· (ed(l) − E(L)) +

(

∂ed(l)

∂l
×

∂E(L)

∂L

)

· e′d(l)(3.65)

The second derivative of Equation (3.56) with respect to ∆θ is represented by

Equation (3.66).

∆′′
eE =

(

∂e′d(l)

∂l
×

∂E(L)

∂L

)

·

(

e′d(l) +
∂ed(l)

∂l
l′
)

+

((

∂e′d(l)

∂l
+

∂2ed(l)

∂l2
l′
)

×
∂E(L)

∂L

)

· e′d(l)

+

(

∂ed(l)

∂l
×

∂2E(L)

∂L2
L′

)

· e′d(l)

+

(

∂ed(l)

∂l
×

∂E(L)

∂L

)

·

(

e′′d(l) +
∂e′d(l)

∂l
l′
)

+ (· · · )(ed(l) − E(L))

= 2

(

∂e′d(l)

∂l
×

∂E(L)

∂L

)

· e′d(l) +

(

∂ed(l)

∂l
×

∂2E(L)

∂L2

)

· e′d(l)L
′

+

(

∂2ed(l)

∂l2
×

∂E(L)

∂L

)

· e′d(l)l
′ +

(

∂ed(l)

∂l
×

∂E(L)

∂L

)

· e′′d(l)

+ (· · · )(ed(l) − E(L)) (3.66)
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By applying the Taylor expansion to Equation (3.56), Equation (3.67) is obtained.

∆eE = N · (s1 × xc + t2)∆θ

+ (N · (s3 × xc + s4)

+((s1 × t) × T) · (s1 × xc + s2) + ((s1 ×T) × t) · (s1 × xc + s2)

− N · (kl′(0)2p − KL′(0)2P)
) ∆θ2

2
+ R3(∆θ) (3.67)

Next, we consider the cases that N · p = 0 and/or N · P = 0. Now, we formulate

only the legal displacement. Let N · p be equal to zero. In this case, of course,

∆eE|L′(0)=LeE
≥ 0 must be satisfied. Note that the term which includes l′(0) is

eliminated in the equation. Additionally, Equation (3.68) must be satisfied, because

Equation (3.61) must be equal to 0.

(p × T) · (s1 × xc + s2) = 0 (3.68)

In the case that N · P = 0, the legal displacement can be formulated as the same

way. However, the cases seldom appear. We do not regard the edge-edge point-

contacts as basic point-contact primitives.

Then, we consider the case that t × T = 0. In this case, we cannot define the

distance between the two edges. Fortunately, because ni · t = 0 and Ni ·T = 0 are

satisfied for all i, ni · T = 0 and Ni · t = 0 are satisfied for all i. That is, we can

substitute the approximations in point-contacts between one edge and an adjacent

face of the other edge for the edge-edge point-contact.

3.2.5 Face-Vertex and Face-Edge Point-Contacts

Consider the case that a face f contacts a vertex V . Viewing the displacement

from the vertex, the face inversely moves. From the definition of the screw vector,

the inverse displacement can be represented as [−s1,−s2,−s3,−s4]. Therefore, the

approximation is obtained by substituting [−s1,−s2,−s3,−s4] to [s1, s2, s3, s4] of

Equation (3.30). As the same way, we obtain the approximation for a face-edge

point-contact.

3.2.6 Line-Contact Primitives and Face-Contact Primitives

Now we consider an edge-face line-contact. This contact can be regarded as an

infinite number of vertex-face contacts. Therefore, for example, the legal displace-

ment is formulated by Equation (3.69), where the edge is represented as an infinite
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number of vertices vi.
∞
⋂

i

∆viF ≥ 0 (3.69)

It is difficult to solve the infinite number of equations simultaneously. Therefore,

it is preferable to obtain the equivalent a finite number of equations by removing

redundant equations. Unfortunately, such a finite number of equations are not

always obtained. One solution is to approximately substitute a finite number of

equations which are selected among the infinite number of equations. In another

line-contacts or face-contacts, that is the same.

3.3 Calculating Maintaining and Legal Displacement using the

Second Order Approximation

In this section, we consider how to calculate maintaining and legal displacement

using the second order approximation. In the result of the formulation, all the

second order approximations for basic point-contact primitives can be represented

as Equation (3.70). To calculate such displacement, we must examine the char-

acteristic of the equation, where hi(s1, s2) is a quadratic form of terms s1 and

s2.

gi =





xci × Ni

Ni



 ·





s1

s2



∆θ +









xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2)





∆θ2

2

(3.70)

A coefficient of ∆θ of the equation is positive for some screw vector; the equa-

tion is positive when ∆θ is sufficiently small. That means that the corresponding

displacement detaches the corresponding contact-primitive. As the same way, the

coefficient of ∆θ is negative, the equation is negative, i.e., the corresponding dis-

placement is illegal.

If the coefficient of ∆θ is zero, the coefficient of ∆θ2 is important to decide the

characteristic. If the coefficient is positive, the corresponding displacement de-

taches the corresponding contact-primitive. In the same way, if the coefficient is

negative, the corresponding displacement is illegal. If the coefficient is zero, the

equation is zero with respect to the second order approximation. That means that

the corresponding displacement maintains the corresponding contact-primitives.

Table 3.1 summarizes the contents mentioned above. Note that, in the first order

approximation, the characteristics are determined by a coefficient of ∆θ only.

Now we describe two types of important calculations as follows:
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Table 3.1: Second order displacement

coefficient of ∆θ coefficient of ∆θ2 contact-primitive

> 0 —

> 0 detach

= 0 = 0 maintain

< 0 penetrate

< 0 — (illegal)

• Calculate maintaining displacement

• Calculate legal displacement

The main purpose of the calculation is to examine the range of the first order

screw vector in maintaining or legal displacement. The first order screw vector is

dominant to the second order screw vector, when ∆θ is sufficiently small.

3.3.1 Calculating Maintaining Displacement

In this section, we describe how to calculate maintaining displacement using the

second order approximation. From the result of characterization of the approxi-

mation, maintaining displacement must satisfy Equation (3.71).

n
⋂

i





xci × Ni

Ni



·





s1

s2



 = 0∩
n
⋂

i





xci × Ni

Ni



·





s3

s4



+hi(s1, s2) = 0 (3.71)

We calculate the displacement by performing the following steps:

1. Solve Equation (3.72).

n
⋂

i





xci × Ni

Ni



 ·





s1

s2



 = 0 (3.72)

2. Solve Equation (3.73) under satisfying Equation (3.72).

n
⋂

i





xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2) = 0 (3.73)
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Note that maintaining displacement is calculated by solving only Equation (3.72)

in the first order approximation.

The solution of Equation (3.72) is represented as a linear combination of some

bases as shown in Equation (3.74), where ai is any real number.

[s1, s2] =

r
∑

i=1

aibi (3.74)

By substituting (3.74) to (3.73), Equation (3.75) is obtained, where hi(a1, . . . , ar)

is a quadratic form.

n
⋂

i





xci × Ni

Ni



 ·





s3

s4



+ hi(a1, . . . , ar) = 0 (3.75)

By searching all linearly dependent minimum combinations of {[(xci ×Ni)
T ,NT

i ]},

equations including terms hi only are obtained. Concretely, let C be one of the

linearly dependent minimum combinations. From the dependency, Equation (3.76)

is always satisfied, where wi 6= 0 for all i ∈ C.

∑

i∈C

wi





xci × Ni

Ni



 = 0 (3.76)

By applying a dot product of [sT
3 , sT

4 ]T to Equation (3.76), Equation (3.77) is

obtained.
∑

i∈C

wi





xci × Ni

Ni



 ·





s3

s4



 = 0 (3.77)

By substituting Equation (3.75) to Equation (3.77), Equation (3.78) which includes

terms hi only is obtained.

∑

i∈C

wihi(a1, . . . ar) = 0 (3.78)

The equation is also a quadratic form.

Next we decompose these quadratic forms into some linear equations using the

following two rules:

• If one of the forms is non-negative or non-positive definite, i.e., its canonical

form is ±(A2
1 + · · · + A2

m), it can be decomposed as Equation (3.79).

m
⋂

i

Ai = 0 (3.79)
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• Otherwise, if the rank of one of the forms is two, i.e., its canonical form is

A2
1 − A2

2, it can be decomposed as Equation (3.80).

A1 + A2 = 0 ∪ A1 − A2 = 0 (3.80)

If some linear equations are obtained, they are substituted into the remaining

quadratic forms. The ranks of the quadratic forms decrease after substituting them.

By reiterating such linearization, every quadratic form is usually decomposed. As a

result, we can decide the range of the first order screw vector. For every first order

screw vector in the range, the second order screw vector which satisfies Equation

(3.73) always exists.

3.3.2 Calculating Legal Displacement

In this section, we describe how to calculate legal displacement using the second

order approximation. From the result of characterization of the approximation,

legal displacement must satisfy Equation (3.81).

n
⋂

i





xci × Ni

Ni



 ·





s1

s2



 ≥ 0∩





n
⋂

i





xci × Ni

Ni



 ·





s1

s2



 = 0 ⇒





xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2) ≥ 0





(3.81)

Note that legal displacement is calculated by solving only the upper part of Equa-

tion (3.81) in the first order approximation.

To enable easy understanding of the contents of this section, we first consider an

essential contact relation. Next we consider any contact relations.

We define an essential contact relation as follows: The set {[(xci × Ni)
T ,NT

i ]} is

a minimum set of linearly dependent vectors and always satisfies Equation (3.82),

where wi > 0 for all i.
n
∑

i=1

wi





xci × Ni

Ni



 = 0 (3.82)

First, we solve the upper part of Equation (3.81), i.e., Equation (3.83).

n
⋂

i





xci × Ni

Ni



 ·





s1

s2



 ≥ 0 (3.83)

62



In this case, Equation (3.83) is equivalent to Equation (3.84), because

wj





xci × Ni

Ni



 ·





s1

s2



 = −
∑

i6=j

wi





xci × Ni

Ni



 ·





s1

s2



 ≤ 0

is always satisfied.
n
⋂

i





xci × Ni

Ni



 ·





s1

s2



 = 0 (3.84)

The solution can be represented by Equation (3.74).

Next we solve the lower part of Equation (3.81). Because Equation (3.84) is always

satisfied when Equation (3.83) is satisfied, Equation (3.85) must be satisfied.

n
⋂

i





xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2) ≥ 0 (3.85)

From Equation (3.82), Equation (3.86) is obtained.

n
∑

i=1

wi









xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2)



 −
n
∑

i=1

wihi(s1, s2) = 0 (3.86)

From Equation (3.85), (3.86) and (3.74), we obtain Equation (3.87).

n
∑

i

wihi(a1, . . . , ar) ≥ 0 (3.87)

In the same manner as the calculation of maintaining displacement, Equation (3.87)

may be decomposed into some linear equations:

• If it is non-positive definite, i.e., its canonical form is −A2
1 − · · · −A2

m, it can

be decomposed into Equation (3.88).

m
⋂

i

Ai = 0 (3.88)

• Otherwise, if its rank is two, i.e., its canonical form is A2
1 − A2

2, it can be

decomposed into Equation (3.89).

(A1 + A2 ≥ 0 ∩ A1 − A2 ≥ 0) ∪ (A1 + A2 ≤ 0 ∩ A1 − A2 ≤ 0) (3.89)
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As a result, we may be able to determine the range of the first order screw vector.

For every first order screw vector in the range, the second order screw vector which

satisfies Equation (3.86) always exists. Unfortunately, there is no guarantee that

we will always be able to decompose into some linear equations.

Next, we consider any contact relations. First we solve Equation (3.83). As a

result, the solution can be represented by a linear sum of some bases as Equation

(3.90), where ai ≥ 0 for all i.

[s1, s2] =
∑

aibi (3.90)

If the set {[(xci×Ni)
T ,NT

i ]} is linearly independent, the second order screw vector

which satisfies Equation (3.81) always exists for the any [s1, s2] which satisfies

Equation (3.90), because





xci × Ni

Ni



 ·





s3

s4



 is set up to any preferable value

for all i.

Then we consider the case that more than one linearly dependent minimum com-

binations of {[(xci × Ni)
TNT

i ]} exist. In this case, we solve Equation (3.81) by a

method similar to the essential contact relation. Let C be one of the combinations.

We solve the lower part of Equation (3.81). First we solve Equation (3.91).

⋂

i∈C





xci × Ni

Ni



 ·





s1

s2



 = 0 (3.91)

The solution is represented by Equation (3.92).

[s1, s2] =
∑

aC
i bC

i (3.92)

We should solve Equation (3.93) for the range of the first order screw vector [s1, s2]

which satisfies Equation (3.90) and Equation (3.92). Note that the range is formu-

lated like Equation (3.90).

⋂

i∈C





xci × Ni

Ni



 ·





s3

s4



+ hi(s1, s2) ≥ 0 (3.93)

However, it is difficult to solve Equation (3.93) under the range. We approximately

solve Equation (3.93) for the range of the first order screw vector [s1, s2] which sat-

isfies Equation (3.90) and Equation (3.92), where ai in Equation (3.90) is assumed

to be any real number.
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Figure 3.5: Example

From the dependency, we obtain Equation (3.76). If wi > 0 for all i, we obtain

Equation (3.94).
∑

i∈C

wihi(· · · ) ≥ 0 (3.94)

The equation may be decomposed into several linear equations in the same way as

the essential contact relation. If some linear equations are obtained, they are sub-

stituted to remaining quadratic forms. Their ranks may decrease after substituting

them. Unfortunately, every quadratic form sometimes cannot be decomposed.

However, if all quadratic forms can be decomposed, we can determine the range

of the first order screw vector. For every first order screw vector in the range, the

second order screw vector which satisfies Equation (3.81) always exists.

3.4 Examples

In this section, we describe two applications of the second order approximation.

The first one is to determine grasping stability. The second one is to generate a

contact relation graph.

3.4.1 Determining Grasping Stability Using the Second Order Approx-

imation

In this example, we consider stability of seven types of grasps as shown in Fig.

3.5. The purpose of this thesis is not to index grasping stability but rather, to

calculate the displacement. Therefore, we illustrate only an example to determine

the stability using the maintaining and legal displacement. First, we calculate

maintaining and legal displacement using the second order approximation in every

grasp. Next, using the result, we determine the stability.
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In all grasps, we set up the origin of the base coordinate system on the center of

the white grasping object. Directions of the x-axis, the y-axis, and the z-axis are

rightward, the depth direction, and upward, respectively. Every contact primitive

is a face-face point-contact, where two faces have various curvature matrices case

by case. The positions of the two point-contacts are (0, 0, 1) and (0, 0,−1), respec-

tively. The direction of every surface normal is (0, 0,±1). Every contact relation

is an essential contact relation.

In all grasps, the maintaining and legal displacement calculated using only the first

order approximation can be represented by a linear sum of the following first order

screw vectors:

{(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0),

(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0)} (3.95)

The grasping stability which the first order approximation determines is the same

for each grasp. The result is completely different from our intuition. Next we show

the difference between the displacement calculated by the first and the second order

approximation.

In Grasp (a), a sphere is grasped by two flat fingertips. The range of the first

order screw vector does not change. Any legal displacement maintains the contact

relation.

In Grasp (b), a box is grasped by two sphere fingertips, of which the radius is

one. The range of the first order screw vector degenerates. Any legal displacement

maintains the contact relation.

In Grasp (c), a sphere is grasped by two sphere fingertips. The radius of every

sphere is one. In Grasp (d), a sphere is grasped by two sphere fingertips, which are

twice as large as the grasped sphere. In Grasp (e), a sphere is grasped by two sphere

fingertips, which are twice as small. The range of the first order screw vector does

not change, but the displacement corresponding to some range of the first order

screw vector translates maintaining displacement to detaching displacement.

In Grasp (f), a wide ellipse is grasped by two sphere fingertips. Unfortunately,

maintaining and legal displacement cannot be linearized. The range of the first

order screw vector degenerates and the displacement corresponding to some range

of the first order screw vector translates maintaining displacement to detaching

displacement.

In Grasp (g), a narrow ellipse is grasped by two sphere fingertips. The range

of the first order screw vector does not change. Furthermore, the displacement
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corresponding to some range of the first order screw vector translates maintaining

displacement to detaching displacement.

We determine the grasping stability by the following rules:

• The grasping becomes stabler if the range of legal displacement becomes

narrower.

• The grasping becomes stabler if the range of detaching displacement becomes

narrower.

Following the rules, Grasp (b) is the stablest of all and Grasp (g) is the most

unstable of all. Grasps (c), (d), and (e) are equally as stable as each other. However,

these three are the second most unstable of all. As a result, we find that the

size of the fingertip has no effect on the grasping stability in these grasps. It is

somewhat difficult to determine the stability of Grasp (a) and (f), because Grasp

(a) is stabler than Grasp (f) when applying the former rule and Grasp (f) is stabler

when applying the latter rule. The results are equivalent to our intuition.

3.4.2 Generating the Contact Relation Graph Using the Second Order

Approximation

In this section, we describe a method for generating a contact relation graph using

the second order approximation. Although the algorithm shown in this section has

not been completely established, the basic idea is applicable not only for graph

generation but also for path planning.

As mentioned above, methods[34, 35] for automatically generating a contact rela-

tion graph have been proposed. Almost all of them employ the non-linear opti-

mization method, which requires the initial guess, i.e., approximate object config-

urations to realize a desired contact relation. However the method to obtain the

appropriate initial guess has not yet been proposed, as far as we know. In this

section, we aim to speed up the generation by setting up the appropriate initial

guess. In this example, we assume that an object configuration which satisfies a

contact relation with more contact primitives is given.

In actuality, we describe a method to obtain the appropriate initial guess with

respect to the three contact relations with a fewer contact-primitives as shown at

the top right (face-face contact), bottom left (edge-face contact), and bottom right

(vertex-face contact) in Fig. 3.6, given the object configuration which satisfies an

edge-edge contact as shown to the top left in the figure. We first calculate the
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Figure 3.6: Set up the appropriate initial guess using an object configuration which

satisfy a contact relation with more contact primitives

displacement from the configuration in the edge-edge contact to the configuration

in the desired contact relation. Then we calculate the desired configuration using

the displacement.

In this example, we assume that a part of the screw vector s3 is set to zero, i.e., the

axis direction of rotation is constant while rotating. Considering to move a robot

arm using the displacement obtained in this example, the assumption is preferable.

Furthermore, the corresponding displacement can be analytically calculated. We

describe the calculation in Appendix C.

We set up the base coordinate system as follows: The origin of the system is the

center of the contacting line. The directions of the x-axis and z-axis are directions

of surface normals of a face F2 and a face F1, respectively. The direction of the

y-axis is set up in order that the system becomes the right-hand coordinate system

(See Fig. 3.6).

First we consider the face-face contact. In this case, the displacement satisfies

Equation (3.96), because the distance between two faces is equal to zero.

∆v1F1
= 0 ∩ ∆v2F1

= 0 ∩ ∆e1E = 0 ∩ ∆e2E = 0 (3.96)

And it satisfies Equation (3.97), because the edge-edge contact needs to be de-
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tached.

∆v1F2
< 0 ∩ ∆v2F2

< 0 (3.97)

As one of the solution for these equations using only the coefficients of ∆θ, i.e., the

first order approximation, we obtain the first order screw vector (0, 0, 0,−1, 0, 0).

The vector represents translation toward the −x direction and, in actuality, the

displacement correctly realizes the configuration in the face-face contact. Note

that, by substituting the first order screw vector to the coefficients of ∆θ2, Equation

(3.98) is obtained, where N = (0, 0, 1)T .

N · s4 = 0 (3.98)

That means that the translation where its initial velocity is −x, and its accelera-

tion vector is on the xy-plane is the desired displacement. The displacement also

correctly realizes the configuration.

Next we consider the edge-face contact. In this case, the displacement satisfies

Equation (3.99).

∆v1F1
= 0 ∩ ∆v2F1

= 0 (3.99)

And it satisfies Equation (3.100).

∆e1E > 0 ∩ ∆e2E > 0 ∩ ∆v1F2
< 0 ∩ ∆v2F2

< 0 (3.100)

However it is impossible to solve the two equations using only the coefficients of

∆θ. Although the screw vector (0, 0, 0,−1, 0, 0) detaches a contact e3-E, that

vector does not detach a contact e1-E and a contact e2-E.

Then we solve Equation (3.99) using the second order approximation. That cal-

culation is equivalent to calculating maintaining displacement. As a result, the

solution [s1, s2] is represented by Equation (3.101) or (3.102), where ai is any real

number.

[s1, s2] = ( a1 a2 a3 )









0 0 0.7071 −0.7071 0 0

0 0 0 0 1 0

0 0 0.7071 0.7071 0 0









(3.101)

[s1, s2] = ( a1 a2 a3 )









0 −1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0









(3.102)

Then we solve Equation (3.100). The coefficients of ∆θ in ∆e1E and ∆e2E are

always zero. Therefore the coefficients of ∆θ2 must be greater than zero.
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First, we consider the case that the first order screw vector is represented by

Equation (3.101). By substituting the equation to the coefficients of ∆θ2, Equation

(3.103) is obtained. Note that the coefficients of ∆v1F2
and ∆v2F1

are ignored,

because their coefficients of ∆θ can be set not to zero by selecting the first order

screw vector.

∆v1F1
: N · s4 = 0

∆v2F1
: N · s4 = 0

∆e1E : N · s4 > 0

∆e1E : N · s4 > 0

(3.103)

Obviously, no solution exists.

Next, we consider the case that the first order screw vector is represented by

Equation (3.102). By substituting the equation to the coefficients of ∆θ2, Equation

(3.104) is obtained, where a = ( a1 a2 a3 ) and

A =









0 0 1

0 0 0

0 0 0









.

∆v1F1
: N · s4 + aT Aa = 0

∆v2F1
: N · s4 + aT Aa = 0

∆e1E : N · s4 − aT Aa > 0

∆e2E : N · s4 − aT Aa > 0

(3.104)

From the equation, Equation (3.105) should be satisfied.

aT Aa < 0 (3.105)

We set up a = (1, 0,−1), which satisfies Equation (3.105). By substituting it to

Equation (3.105), Equation (3.106) is obtained.

∆v1F1
: N · s4 − 1 = 0

∆v2F1
: N · s4 − 1 = 0

∆e1E : N · s4 + 1 > 0

∆e2E : N · s4 + 1 > 0

(3.106)

We set up s4 = (0, 0, 1). As a result, we obtain the screw vector (0,−1, 0,−1, 0, 0,

0, 0, 0, 0, 0, 1). The vector obviously detaches a contact e3-E. The accuracy of the
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solution is estimated using the distance between the vertex and the face. Fig-

ure 3.7 shows the accuracy with respect to the screw vector and a screw vector

(0,−1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0), which have only the effect of the first order screw

vector.

In the vertex-face contact, we conclude that the screw vector (0, 1,−1, 0, 0, 0, 0, 0, 0,

0, 0, 1) is one of approximate displacement. Figure 3.8 shows the accuracy with

respect to the screw vector and a screw vector (0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0), which

have only the effect of the first order screw vector.
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Figure 3.7: Accuracy of solution of the first and the second order approximation
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Figure 3.8: Accuracy of solution of the first and the second order approximation
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Chapter 4

Estimating Parameters of Joints from

Observation

In this chapter, we deal with tasks for manipulating linkages connected by some

kind of a joint, for example, for rotating a doorknob, pulling open a drawer, in-

serting a screw with a screw driver, etc. In this case, we determine the constrained

motion from a kind of a joint. Thus, it corresponds to an abstract task representa-

tion. Manipulation of linkages also requires us to know the parameters of the joint

(in the case of rotating a doorknob, the axis direction and the center of rotation).

They are essential for executing movement primitives.

Here, we propose a method for obtaining the parameters of some types of joints

from the observation data. Note that the type of the joint is known in advance.

The observation data consist of relative configurations between the two linkages

connected by the joint. Of course the data include some errors. We assume that

these errors are the Gaussian noise.

We concentrate on dealing with the following three types of joints (See Fig. 4.1):

• Prismatic joint (Fig. 4.1 (a))

• Revolute joint (Fig. 4.1 (b))

• Screw joint (Fig. 4.1 (c))

These joints often appear in objects which are manipulated daily.

In addition, we illustrate a method to estimate parameters of another kind of a

joint. The difficulty in estimating them is caused by estimating parameters with

respect to an object orientation (for example, the axis direction in the revolute
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Figure 4.1: Our target linkages

joint). Therefore, we illustrate a method for estimating the parameters with respect

to the orientation for any joints.

4.1 Preliminary

Let Θ be a 3 × 3 orthogonal matrix which represents the transformation between

two object orientations. The matrix can be represented by rotation about an axis

n by θ radian. In this thesis, we define |θ| as the metric of the matrix. ||Θ|| denote

the metric.

From now on, we consider estimating the parameters given the type of joints and

several relative configurations qi = (Bti
A, BΘi

A) of an object A with respect to

the coordinate system of an object B obtained from the observation, where Bti
A

is a three dimensional vector which represents the location and BΘi
A is a 3 × 3

orthogonal matrix which represents the orientation. Note that we present an index

i (≥ 1), which represents a time step, as a superscript in these terms.

The relative configurations usually include some errors. Let q̂i = ( ˆBti
A, ˆBΘi

A) be the

true (estimated) relative configurations. Let ∆qi = (∆ti,∆Θi) be the difference

between the obtained and the true relative configuration.

Now, we consider the following three types of joints (See Fig. 4.1): a prismatic

joint, a revolute joint, and a screw joint.

4.2 Estimating Parameters of a Prismatic Joint

4.2.1 Formulation

Parameters of a prismatic joint consist of relative orientation BΘA of an object A

with respect to the coordinate system of an object B and the movable directions Al
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and Bl with respect to the coordinate system of two objects A and B, respectively,

where
∣

∣
Al
∣

∣ =
∣

∣
Bl
∣

∣ = 1.

The prismatic joint requires us to satisfy Equation (4.1), (4.2), and (4.3) for all i,

where we assume that B t̂i+1
A 6= B t̂i

A.

BΘA = BΘ̂i
A (4.1)

Bl =
B t̂i+1

A − B t̂i
A

|B t̂i+1
A − B t̂i

A|
(4.2)

Al = BΘT
A

Bl (4.3)

4.2.2 Parameter Estimation

In practice, the parameter estimation has to be performed from erroneous relative

configurations. A reasonable estimation is to solve Equation (4.1), (4.2) and (4.3)

by minimizing the error correction terms ∆ti and ∆Θi. Such minimization tends

to reserve the information about the unconstrained motion, because the method

does not contaminate the original data as far as possible.

First we estimate the true relative orientation BΘ̂A. ∆Θi is represented by Equa-

tion (4.4).

∆Θi = BΘi
A

BΘ̂T
A (4.4)

We assume that a transformation matrix ∆Θi is represented by rotation about an

axis li by θi radian. Then, Equation (4.5) is obtained by applying a trace to both

sides of Equation (4.4).

Tr(BΘi
AΘ̂T ) = Tr(∆Θi) = 1 + 2 cos θi (4.5)

Because 1 − cos θi is minimum when ||∆Θi|| = |θi| is minimum, we estimate the

parameter BΘ̂A by minimizing Equation (4.6) using the non-linear optimization

method.
∑

i

(1 − cos θi) =
∑

i

3 − Tr(BΘi
A

BΘ̂T
A)

2
(4.6)

Next we estimate the parameter Bl; this can be accomplished by applying the

principle component analysis (PCA) to Bti
A. Concretely, we set up the covariant

matrix as Equation (4.7), where ¯BtA is the average of Bti
A.

(

∑

i

Bti
A − ¯BtA

)T (
∑

i

Bti
A − ¯BtA

)

(4.7)

Bl is equal to the eigen vector with the maximum eigen value of the covariant

matrix. Al is calculated by Equation (4.3).
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4.3 Estimating Parameters of a Revolute Joint

4.3.1 Formulation

Parameters of the revolute joint consist of the axis directions Al and Bl and the

centers of the axis Ac and Bc with respect to the coordinate system of two objects

A and B, respectively, where |Al| = |Bl| = 1.

The revolute joint requires us to satisfy Equation (4.8) and (4.9) for all i.

Bl = BΘ̂i
A

Al (4.8)

Bc = BΘ̂i
A

Ac + B t̂i
A (4.9)

4.3.2 Parameter Estimation

First we estimate the axis directions Al and Bl using Equation (4.8). Equation

(4.10) is obtained by reforming Equation (4.8), using the term ∆Θi.

Bl = ∆Θi BΘi
A

Al (4.10)

Now we present ∆Θi as a product of two transformation matrices as shown Equa-

tion (4.11).

∆Θi = R(Bl, θ1i)R(li, θ2i) (4.11)

A transformation matrix R(l, θ) presents the transformation to rotate about an

axis l by θ radian and Bl · li = 0 is always satisfied for all i.

By substituting Equation (4.11) to Equation (4.10), Equation (4.12) is obtained.

R(Bl, θ1i)
T Bl = R(li, θ2i)

BΘi
A

Al (4.12)

The vector value of R(Bl, θ1i)
T Bl is constant for any θ1i. That means that we can-

not decide whether rotation about the axis Bl is essential or erroneous. Therefore

θ1i = 0 is assumed to minimize ∆Θi.

By multiplying BlT to both sides of Equation (4.12) from the right, Equation (4.13)

is obtained, where θi is used as a substitute for θ2i to simply present it.

R(−li, θi)
BlBlT = BΘi

A
AlBlT (4.13)

The left side of Equation (4.13) can be expressed as Equation (4.14), where [∗]× is

a skew symmetry matrix (See Section 3.1.4).

(I − sin θi[li]× + (1 − cos θi)[li]
2
×)BlBlT (4.14)
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Because

Tr(BlBlT ) = 1

Tr([li]×
BlBlT ) = 0

Tr([li]
2
×

BlBlT ) = (Bl · li)
2 − 1 = −1

are always satisfied, Equation (4.15) is obtained.

Tr(R(−li, θi)
BlBlT ) = cos θi (4.15)

As the same way in the prismatic joint case, we estimate the parameter Al and Bl

by minimizing Equation (4.16) using the non-linear optimization method.

∑

i

(1 − cos θi) =
∑

i

(1 − Tr(BΘi
A

AlBlT )) (4.16)

Next we calculate BΘ̂i
A. We can calculate ∆Θi using the cross product for BΘi

A
Al

and Bl. Therefore, we can calculate BΘ̂i
A.

Then we estimate parameters Ac and Bc using Equation (4.9). Equation (4.17) is

obtained by reforming Equation (4.9) using the term ∆ti.

∆ti = Bc− BΘ̂i
A

Ac − Bti
A (4.17)

We can estimate the parameters using the least square method, i.e., we have only

to solve Equation (4.18), where Ai =
(

−BΘ̂i
A I

)

.

(

∑

i

AT
i Ai

)





Ac

Bc



 =
∑

i

AT
i

Bti
A (4.18)

Note that a matrix
∑

i

AT
i Ai may not be full-rank because of an ambiguity of the

center of rotation. We solve the equation using the singular value decomposition

(SVD).

4.4 Estimating Parameters of a Screw Joint

4.4.1 Formulation

Parameters of the screw joint consist of a ratio r between two amounts of trans-

lation and rotation, AqLA = (AtLA,A ΘLA) which is the configuration of the screw
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coordinate system ΣLA with respect to the coordinate system of an object A, and
BqLB = (BtLB,B ΘLB), which is the configuration of the screw coordinate system

ΣLB with respect to the coordinate system of an object B. We assume that the axis

direction and the center of rotation are the direction of the z-axis and the origin

of the screw coordinate system, respectively.

The screw joint requires us to satisfy Equation (4.19) and (4.20) for all i, where

z = (0, 0, 1)T .

BΘLBz = BΘ̂i
A

AΘLAz (4.19)

Bc = BΘ̂i
A

Ac + B t̂i
A − rθi

BΘLBz (4.20)

θi represents the rotation angle and can be calculated by Equation (4.21), where

ki ∈ Z.

θi = ||BΘiT
LB

BΘ̂i
A

AΘi
LA|| + 2kiπ (4.21)

Although the value of ki cannot be uniquely decided by the equation only, we

decide ki using the continuity of θi, i.e., using that |θi − θi−1| < π is satisfied for

all i.

4.4.2 Parameter Estimation

First we estimate the parameters AΘLA and BΘLB . In actuality, we can estimate

only AΘLAz and BΘLBz. We estimate these parameters using Equation (4.19) at

first. By substituting Al and Bl for AΘLAz and BΘLBz, respectively, Equation

(4.19) is equivalent to Equation (4.8). That means that these two vectors can be

estimated by the same method that was used for the revolute joint. As a result, the

z-axes of the screw coordinate systems ΣLA and ΣLB are obtained, respectively.

We are permitted to set up the x-axis and the y-axis as we like; therefore, AΘLA

and BΘLB are set up to one of any solution.

Next we estimate the parameters Ac, Bc, and r. Equation (4.22) is obtained by

reforming Equation (4.20) using the term ∆ti, where ∆θi is the error with respect

to rotation about the axis Bl.

Bc = BΘ̂i
A

Ac + Bti
A + ∆ti − r(θi + ∆θi)

Bl (4.22)

Because ∆θi and r are usually very small, we eliminate the term r∆θi
Bl from the

equation. As a result, Equation (4.23) is obtained.

∆ti = Bc − BΘ̂i
A

Ac + rθi
Bl− Bti

A (4.23)
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We can estimate the parameters using the least square method, i.e., we solve Equa-

tion (4.24), where Ai =
(

−BΘ̂i
A I θilb

)

.

(

∑

i

AT
i Ai

)









Ac

Bc

r









=
∑

i

AT
i

Bti
A (4.24)

4.5 Implementation and Experiment

4.5.1 Implementation

In this section, we describe our implementation. For the implementation, we solve

the following two issues:

• How are the axis direction and object orientation represented?

• What kind of a non-linear optimization method is employed?

With respect to the first issue, we represent the axis direction using the spherical

coordinate of which the radius is one. For example, Al and Bl are represented by

Equation (4.25).

Al = (sin α cos β, sin α sin β, cos α)T

Bl = (sin φ cos γ, sin φ sin γ, cos φ)T (4.25)

We represent the orientation using roll-pitch-yaw angles. For example, BΘA is

represented by Equation (4.26).

BΘA =









cosα cosβ cosα sinβ sinγ − sin α cos γ cosα sin β cos γ + sin α sin γ

sin α cosβ sin α sin β sin γ + cosα cos γ sin α sin β cos γ − cosα sin γ

− sinα cosβ sinγ cosα cos γ









(4.26)

Although these representations have several singularities, which sometimes prevent

convergence, a serious problem does not appear in the actual use.

We employ the conjugate gradient method as the non-linear optimization method.

With respect to the prismatic joint, the initial guess, which is required by the

method, is set up to BΘ1
A. With respect to the revolute and screw joints, the

initial guess of the axis direction Alin and Blin is set up as follows:

1. Select i and j, where ||BΘi T
A

BΘj
A|| is sufficiently near to

π

2
.
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2. Decide Alin by solving R(Alin, θ) =B Θi T
A

BΘj
A.

3. Decide Blin using Blin =B Θi
A

Alin.

Note that Equation (4.27) is always satisfied under the noiseless situation.

BΘ̂i T
A

BΘ̂j
A

Al =A l (4.27)

That means that a transformation matrix BΘ̂i T
A

BΘ̂j
A can be represented as rotation

about Al.

4.5.2 Simulation Experiment

At first, we examine the performance of our proposed method using artificial data.

Because the true parameters are known, it is possible to estimate the performance.

The purpose of this experiment is as follows:

• Compare our proposed method with another method

• Examine the relationship between the accuracy and the experimental set up

In actuality, we executed the experiment by performing the following steps:

1. Randomly set up the parameters

2. Generate the relative configurations without noise according to the parame-

ters

3. Contaminate the configurations with noise

4. Estimate the parameters using the noise-contaminated configurations

5. Compare the estimated parameters with the true parameters

We examined the performance by reiterating these steps 1000 times.

With respect to Step 3., the noise-contaminated configurations are generated using

Equation (4.28), where ∆t and ∆Θ are noises with respect to the location and the

orientation.

Bti
A = ∆t + B t̂i

A

BΘi
A = ∆Θ BΘ̂i

A (4.28)

|∆t| is randomly set up according to the rectangular distribution of which interval is

0 to 10[mm]. Of course, the direction of ∆t is randomly set up. ∆Θ is calculated
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by Equation (4.29), where ∆θ is randomly set up according to the rectangular

distribution of which interval is 0 to 5[deg] and l is randomly set up.

∆Θ = R(l,∆θ) (4.29)

The intervals are set up based on the performance of our vision system.

We first compared our proposed method with another method. We selected the

following method (referred to as Method A) as the comparison method: That

method estimates the axis direction using only two orientations BΘi
A and BΘj

A

where ||BΘi T
A

BΘj
A|| is the nearest to

π

2
.

Although it is possible to estimate the axis direction using the average of the axis

directions estimated by the above method, we need to calculate summation in the

S2 space and such calculation is not general. Therefore, such an estimation method

is unfamiliar, we believe.

The focus is on the estimation of the axis directions. We employed the following

nine types of the experimental set up:

• The number of configurations : 50, 100, or 200

• An amount of rotation : 45[deg], 90[deg], or 180[deg]

Table 4.1 shows the result of the comparison.

From the table, we discovered the following things: The performance of our pro-

posed method is superior to Method A. The accuracy of Method A suddenly de-

clines if an amount of rotation is less than
π

2
and is about constant with respect to

the number of configurations. The accuracy of our proposed method is improved

by increasing the number of the configurations and an amount of rotation.

Next, we examined the relationship between the accuracy and the experimental

set up. We employed the same experimental set up. Table 4.2 shows the result.

As a result, we discovered the following things: For all parameters, the inaccuracy

is about inversely proportional to an amount of rotation, i.e., if the amount is

doubled, the accuracy is doubled. The square of the accuracy is proportional to

the number of configurations, i.e., the accuracy doubles if the number increases 4

(= 22) times. As a result, it is more difficult to estimate the parameters of the

revolute joint with a smaller amount of rotation.

Next, we examined the relationship between the accuracy and the experimental set

up in the prismatic joint. We employed the following nine types of the experimental

set up:

• The number of configurations : 50, 100, or 200
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Table 4.1: Comparison between our proposed method and another method

Difference between the estimated and the true axis direction with respect to Al

Amount of rotation Method A Our method

- # of configurations Average (SD)[deg] Average (SD)[deg]

45[deg] - 50 3.857 (2.104) 1.330 (0.6914)

45[deg] - 100 3.800 (2.157) 0.9352 (0.5167)

45[deg] - 200 3.884 (2.143) 0.6989 (0.3877)

90[deg] - 50 2.128 (1.120) 0.6916 (0.3455)

90[deg] - 100 2.053 (1.147) 0.4881 (0.2552)

90[deg] - 200 2.077 (1.132) 0.3485 (0.1891)

180[deg] - 50 1.999 (1.117) 0.3951 (0.2000)

180[deg] - 100 2.051 (1.177) 0.2690 (0.1424)

180[deg] - 200 2.044 (1.130) 0.1904 (.09464)

Difference between the estimated and the true axis direction with respect to Bl

Amount of rotation Method A Our method

- # of configurations Average (SD)[deg] Average (SD)[deg]

45[deg] - 50 3.909 (2.122) 1.329 (0.6838)

45[deg] - 100 3.741 (2.157) 0.9411 (0.5109)

45[deg] - 200 3.862 (2.126) 0.6904 (0.3826)

90[deg] - 50 2.096 (1.199) 0.6890 (0.3474)

90[deg] - 100 2.051 (1.158) 0.4929 (0.2558)

90[deg] - 200 2.060 (1.134) 0.3397 (0.1907)

180[deg] - 50 2.058 (1.151) 0.3818 (0.1970)

180[deg] - 100 2.048 (1.170) 0.2701 (0.1468)

180[deg] - 200 2.042 (1.151) 0.1934 (0.1010)
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Table 4.2: Relationship between the accuracy and the experimental set up

Difference between the estimated and the true axis direction with respect to Al

50 100 200

Average (SD)[deg] Average (SD)[deg] Average (SD)[deg]

45[deg] 1.330 (0.6914) 0.9352 (0.5167) 0.6989 (0.3877)

90[deg] 0.6916 (0.3455) 0.4881 (0.2551) 0.3485 (0.1891)

180[deg] 0.3951 (0.2000) 0.2690 (0.1424) 0.1904 (.09464)

Difference between the estimated and the true axis direction with respect to Bl

50 100 200

Average (SD)[deg] Average (SD)[deg] Average (SD)[deg]

45[deg] 1.329 (0.6838) 0.9411 (0.5109) 0.6904 (0.3826)

90[deg] 0.6890 (0.3474) 0.4929 (0.2558) 0.3397 (0.1907)

180[deg] 0.3818 (0.1970) 0.2701 (0.1468) 0.1934 (0.1010)

Difference between the estimated and the true axis direction with respect to Ac

50 100 200

Average (SD)[mm] Average (SD)[mm] Average (SD)[mm]

45[deg] 2.632 (1.378) 1.870 (0.9719) 1.317 (0.6787)

90[deg] 1.394 (0.7260) 0.9468 (0.4800) 0.6748 (0.3424)

180[deg] 0.8007 (0.3834) 0.5706 (0.2735) 0.4047 (0.1928)

Difference between the estimated and the true axis direction with respect to Bc

50 100 200

Average (SD)[mm] Average (SD)[mm] Average (SD)[mm]

45[deg] 2.640 (1.384) 1.858 (0.9538) 1.327 (0.6823)

90[deg] 1.398 (0.7326) 0.9509 (0.4869) 0.6697 (0.3396)

180[deg] 0.8043 (0.3817) 0.5836 (0.2772) 0.3967 (0.1923)
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Table 4.3: Relationship between the accuracy and the experimental set up

Difference between the estimated and the true axis direction with respect to Al

50 100 200

Average (SD)[mm] Average (SD)[mm] Average (SD)[mm]

50[mm] 3.003 (1.649) 2.384 (1.302) 2.061 (1.173)

100[mm] 2.103 (1.173) 1.787 (1.095) 1.709 (1.106)

200[mm] 1.743 (1.154) 1.690 (1.154) 1.604 (1.153)

Difference between the estimated and the true axis direction with respect to Bl

50 100 200

Average (SD)[mm] Average (SD)[mm] Average (SD)[mm]

50[mm] 2.412 (1.261) 1.689 (0.8845) 1.212 (0.6207)

100[mm] 1.222 (0.6029) 0.8123 (0.4324) 0.5790 (0.3070)

200[mm] 0.5718 (0.3063) 0.4148 (0.2256) 0.2954 (0.1532)

• An amount of translation : 50[mm], 100[mm], or 200[mm]

Table 4.3 shows the result. The table shows the following things: It is more

inaccurate to estimate Al than Bl, because Al is estimated using Equation (4.3).

The inaccuracy with respect to Bl is about inversely proportional to an amount

of translation and the square of the accuracy is proportional to the number of the

configurations. As the result, it is more difficult to estimate the parameters of the

prismatic joint with a smaller amount of translation.

We then examined the relationship between the accuracy and the experimental set

up in the screw joint. Because we have already examined the accuracy with respect

to the axis direction using examples of the revolute joint, we concentrate on the

parameter r.

We employed the following nine types of the experimental set up:

• The number of configurations : 50, 100, or 200

• An amount of rotation : 360[deg]

• Ratio between two amounts of translation and rotation: 0.2, 1.0, or 5.0

We estimated the accuracy using the absolute value of subtraction from the esti-

mated parameter to the true parameter. Table 4.3 shows the result: The square
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Table 4.4: Relationship between the accuracy and the experimental set up

50 100 200

Average (SD) Average (SD) Average (SD)

0.2 0.2073 (0.1607) 0.1492 (0.1127) 0.1104 (.08078)

1.0 0.2105 (0.1613) 0.1454 (0.1098) 0.1037 (.07513)

5.0 0.1958 (0.1472) 0.1446 (0.1074) 0.1042 (.07886)

Figure 4.2: Toy plier

of the accuracy is proportional to the number of configurations. The accuracy is

insensitive to the ratio. However, the proportional error is bigger according to the

decrease of the ratio.

4.5.3 Experiment With Actual Objects

In actuality, we estimated the parameters of the revolute joint which a toy plier

equips as shown in Fig. 4.2 using our proposed method. We estimated that by

performing the following steps:

1. Measure 3D shape of the plier using a Laser Range Finder (Vivid 910 pro-

duced by Konika Minolta Holdings, INC.[68]) at several times.

2. Align one of two pairs connected by the revolute joint between two range

images

3. Model the each pair by subtracting one range image from the aligned range

image (See Fig. 4.3)

4. Obtain several relative configurations using their models from observation.
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Figure 4.3: 2-part division

5. Estimate the parameters using the configurations

Figure 4.3 shows the result of modeling the two pairs. Although it locally failed

to separate one range image into two pairs (see the areas surrounded by the red

circles in the figure), it is enough to estimate configurations of each pair from the

observation.

In the toy plier, an amount of rotation is limited up to about 30[deg]. Because

it is difficult to estimate the parameters using the stereo vision which we employ

throughout this thesis, we obtain five relative configurations from the range images.

Figure 4.4 shows the estimation result. The blue line in the figure represents the

estimated rotational axis.

4.6 Estimating Parameters of Other Types of Joints

As mentioned above, the difficulty in estimating the parameters is caused by esti-

mating parameters with respect to an object orientation. For example, the center

of rotation can be estimated by solving only simultaneous linear equations in rev-

olute and screw joints. However, estimating the axis direction of rotation requires
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Top View

Side View

Figure 4.4: Estimated parameters of a rotational mechanical joint
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us to calculate the non-linear equation, of which the estimation is more difficult.

In this section, we illustrate a method for estimating the parameters with respect

to an object orientation of other types of joints. Any joints are classified into

four types based on a DOF with respect to orientation, i.e., a restricted DOF in

rotation. The range of the restricted DOF in rotation is from zero to three.

Consider the joints of which the restricted DOF in rotation are three, for example,

the prismatic joint. The parameters consist of the true relative orientation between

the two pairs, and the estimation has already been described.

Consider the joints of which the restricted DOF in rotation are two, for example,

the revolute joint and the screw joint. The parameters consist of the axis directions,

and the estimation has already been described.

Consider the joints of which the restricted DOF in rotation is zero, for example,

the spherical joint. There are no parameters with respect to the orientation. Errors

with respect to the orientation cannot be corrected, because the restricted DOF in

rotation is zero, i.e., any orientation can be realized.

In the following section, we describe how to estimate parameters of the joints of

which the restricted DOF is one.

4.6.1 Formulation

The joint of which the restricted DOF in rotation is one is generally composed

of two revolute joints as shown in Fig. 4.5, where the two axis directions are

perpendicular to each other.

The parameters of the joint consist of AΘLA, which is the orientation of the coor-

dinate system of the joint ΣLA with respect to the coordinate system of an object

A, and BΘLB, which is the orientation of the coordinate system of the joint ΣLB

with respect to the coordinate system of an object B, respectively. Let LBΘi
LA be

a transformation matrix from the coordinate system ΣLA to the coordinate system

ΣLB at time i. From the structure of the joint, LBΘi
LA is formulated by Equation

(4.30).

LBΘi
LA = Rz(θ1i)Ry(θ2i) (4.30)

The joint requires us to satisfy Equation (4.31).

LBΘi
LA =B ΘT

LB
BΘ̂i

A
AΘLA (4.31)
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Figure 4.5: Joint with 2-axis-rotation

4.6.2 Parameter Estimation

From Equation (4.30) and (4.31), Equation (4.32) is obtained.

Rz(θ1i) =B ΘT
LB

BΘ̂i
A

AΘLARy(−θ2i) (4.32)

By multiplying y = (0, 1, 0)T to both sides of Equation (4.32) from the right,

Equation (4.33) is obtained, where x = (1, 0, 0)T and s1i, s2i ∈ R.

s1ix + s2iy =B ΘT
LB

BΘ̂i
A

AΘLAy (4.33)

By multiplying zT to both sides of Equation (4.33) from the left, Equation (4.34)

is obtained.

0 = zT BΘT
LB

BΘ̂i
A

AΘLAy (4.34)

By reforming Equation (4.34) using the term ∆Θi, Equation (4.35) is obtained.

0 = zT BΘT
LB∆Θi

BΘi
A

AΘLAy (4.35)

Let Ali and Bl be BΘi
A

AΘLAy and BΘLBz, respectively. By reforming Equation

(4.35) using these terms, Equation (4.36) is obtained.

0 = BlT ∆Θi
Ali (4.36)

The equation means that Bl is perpendicular to ∆Θi
Ali. Equation (4.37) is satis-

fied, when ||∆Θi|| is minimum (See Fig. 4.6).

∆θi = ||∆Θi|| =
∣

∣

∣
cos−1(BlT Ali) −

π

2

∣

∣

∣
= | sin−1(BlT Ali)| (4.37)

Because |∆θi| is minimum when sin2 ∆θi is minimum, we can estimate AΘLA and
BΘLB by minimizing Equation (4.38) using the non-linear optimization method.

∑

i

sin2 ∆θi =
∑

i

(Bl T Ali)
2 =

∑

i

(zT BΘT
LB

BΘi
A

AΘLAy)2 (4.38)
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Figure 4.6: Minimum ||∆θ||

4.6.3 Example

We examined the success rate of estimating the parameters of the joints of which

the restricted DOF in rotation is one. In the implementation, we represented the

orientation of the coordinate systems of the joint with respect to two objects, A

and B, using roll-pitch-yaw angles and we employed the conjugate gradient method

as the non-linear optimization method. However, we set up the initial guess of the

two orientations to the identity matrix, because we could not design a method to

set up the appropriate initial guess.

The experimental set up was as follows:

• Amounts of rotation about two axes are 90[deg].

• The number of the relative orientation is 100.

Among 1000 trials, we were able to estimate the parameters for 677 trials. If the

angle between the estimated and the true axis direction was less than 2.5[deg],

which is the average of amounts of noise, we regarded the estimation as a success.

To set up the appropriate initial guess can increase the success rate, we believe.
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Chapter 5

Recognizing Knot-Tying Tasks Using One

Rope from Observation

In this section, we describe a method for recognizing a knot-tying task; our method

is based on the LFO paradigm. Although there are two implementation styles in

the LFO paradigm, i.e., motion-based and state-based methods, it is impossible to

apply the motion-based method to such a task, because the same knot-tying cannot

be realized, even if a rope is moved in the same manner as that of the performer.

Therefore, we apply the state-based method.

To apply it, we first should solve the following problems:

• How should the state of the task be represented?

• What are sufficient movement primitives for the task?

As far as we know, the solutions have not yet been discovered. In this section,

we describe our solutions, which are introduced from the knowledge of the knot

theory[11].

First we describe P-data representation, which we employ as the knot-state repre-

sentation. P-data can sufficiently represent topological information of a knot and is

insensitive to meaningless changes of a knot shape. Furthermore, the reversibility

between a knot configuration and the P-data is guaranteed by the knot theory and

the graph theory[30].

Next we define four movement primitives for the task and propose a method for

selecting the corresponding movement primitives from transitions of P-data. The-

oretically, any robot can execute knot-tying tasks by implementing four movement

primitives.
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Figure 5.1: Knot

5.1 Knot-State Representation

5.1.1 Knot Projection

A tangled loop as shown to the right in Fig. 5.1 is defined as a knot in the knot

theory. Theoretically, the knot is a simple closed curve with no thickness in 3D

space. Fig. 5.1 reasonably illustrates a knot in 3D space on a 2D plane by applying

an orthographic or perspective projection from an appropriate viewpoint. In such a

projected image, several intersections appear. And in each intersection, the farthest

strand, relative to the viewpoint, is drawn with gaps around the intersection.

For recoverability of essential information of a knot from a projected image, this

drawing must satisfy the following conditions:

• Each intersection is a point-intersection.

• One strand goes across the other one in any intersections

• Any three strands do not intersect at the same point

By applying such a drawing style, we can correctly recover essential information of

a knot from this figure. This drawing is defined as a knot projection. Fortunately,

such a projected image can always be obtained from any knot by selecting an

appropriate viewpoint[69].

However, our target knot is not a closed curve and it has two ends. We append a

drawing rule that any end is not on a strand. Similarly, in the case of an open

curve, a knot projection can always be obtained from any knot. From now on, we

represent a knot configuration using a knot projection.

5.1.2 P-Data

In constructing a knot-state representation, the following two conditions are re-

quired:
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1. A knot state is represented as an abstract data structure that does not depend

on parametric information.

2. The transformation from a knot projection to a knot state is reversible. At

least, the original projection can be restored from a knot state.

The first condition should be satisfied because it is unfavorable to change the state

by locally moving an intersection point, transforming the shape of a strand, and so

on. The second condition should be satisfied for solving a so-called path-planning

problem.

We chose P-data representation[70]1, because it is simple and yet it satisfies both

conditions. Original P-data presentation is employed for a tangled loop. Thus,

some changes are necessary to apply the representation to our target knot which

has two terminal ends.

In the original P-data representation, a tangled loop is converted into P-data

through the following process:

1. At first we choose one point (referred to as a selective point) on the knot

except for intersections.

2. From the selective point, we follow the knot toward one of two directions until

we reach the point again. If we encounter an intersection, we number the

intersection according to the order of encounter. Therefore, each intersection

has two numbers.

3. We re-follow the knot. When we encounter an intersection, we record both in-

tersection numbers. We also determine a relative vertical position (over/under)

and a sign plus/minus from the relation of the direction of the following and

the crossed strand.

4. Finally, we code relative vertical positions and signs (referred to as attributes)

into a set of numbers as follows: 1: over/−, 2: under/−, 3: over/+, 4:

under/+.

The sign is determined by the sign of the following equation:

(~lover ×~lunder) · ~ez

Where ~lover and ~lunder are the direction vectors of the upper and lower strands,

respectively, at their intersection point. ez is a unit vector parallel to the z axis
1[70] calls this presentation perfect P-data, but in this thesis, we simply call this P-data.
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Figure 5.2: P-data

(upward from this thesis). If the upper strand passes from the left to the right of

the lower strand, the sign is plus. And if the upper strand passes from the right to

the left, the sign is minus.

Our target knot is not a tangled loop and has two ends. So one of the two ends

(referred to as a selective end) is employed as the selective point. Therefore, the

following direction is uniquely determined by selection of the selective end.

By performing the above process, P-data for the knot in Fig. 5.2 is obtained as

follows:

1 2 3 4 5 6

4 5 6 1 2 3

3 1 2 4 2 1

5.1.3 Reversibility

A theorem in the graph theory guarantees that a knot projection can be restored

from P-data[70]. Note that, in the knot theory, a knot is a closed curve. Fortu-

nately, the reversibility is also guaranteed for our target knots. For proving the

reversibility, we begin with the definition of terminologies and notations.

Definition 1 The i-th intersection is defined as the i-th intersection encountered

in the process of converting a knot projection into P-data.
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Definition 2 A segment is defined as a local strand between two of the intersec-

tions and terminals which are continuously encountered. The i-th segment is de-

fined as the i-th segment encountered in the process of converting a knot projection

into P-data.

Definition 3 Given P-data P , n(P ) is defined as the number of columns of the

P-data, i.e., twice the number of intersections in the knot projection.

Definition 4 σ(i|P ) is defined as the number assigned to the i-th intersection

other than i. When it is clear what the state P is, we briefly describe it as σ(i).

Definition 5 attr(i|P ) is defined as the attribute (1: over/−, . . . ) of the i-th

intersection. When it is clear what the state P is, we briefly describe it as attr(i).

For example, in the above P-data, n(P ) = 6, σ(2|P ) = 5, and attr(3|P ) = 2. Obvi-

ously, if σ(i|P ) = j is satisfied, σ(j|P ) = i must be satisfied, i.e., the commutative

law is always satisfied.

Definition 6 A reducible P-data is defined as the one which satisfies the following

condition, where 1 ≤ i < j ≤ n(p) ∩ (i 6= 1 ∪ j 6= n(p)) is satisfied:

∃i, j,∀k, i ≤ σ(k) ≤ j(i ≤ k ≤ j) (5.1)

An irreducible P-data is one which is not reducible.

Figure 5.3 shows knots which generate irreducible and reducible P-data, respec-

tively. It is easy to find out that a knot which generates reducible P-data consists

of some knots which generate irreducible P-data. Therefore, if we can reverse any

irreducible P-data to a knot projection, we can reverse all P-data by appropriately

connecting the knot projections. From now on, we concentrate on the reversibility

of irreducible P-data.

Definition 7 A knot graph is defined as a graph whose vertices and edges corre-

spond to intersections and segments of a knot projection, respectively. However the

first and the last segments are not included in the edges of the knot graph and the

two ends of a knot projection are not included in the vertices of the knot graph.

Note that, in a knot graph, an attribute of each intersection is disregarded.

Figure 5.4 shows an example of a knot graph. Note that it is easy to convert a

knot graph into a knot projection, if an attribute of each intersection is given.

Now, we introduce some propositions which are necessary to prove the reversibility.
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Figure 5.3: Knot projections which generate irreducible and reducible P-data,

respectively

Figure 5.4: Knot projection to knot graph

Proposition 7 The graph which is dual to any knot graph is a connected graph,

where the external face and its connections to inner faces are disregarded in a dual

graph.

Figure 5.5 shows an example of a dual graph.

Proof

If the external face and its connections are not disregarded, the dual graph is

obviously a connected graph. Therefore, we need to prove that the disregard does

not cause a break in the connectivity. Now we assume that the dual graph is not

a connected graph. Consider only all edges and vertices adjacent to the external

face in the original graph. This graph is referred to as an external graph. The

external graph is obviously a connected graph because our target knot is created

by only one rope. If the external graph is equivalent to one loop, the dual graph is

obviously a connected graph.

Because the external graph is not equivalent to one loop, we assume that two loops

exist (See Fig. 5.6). In this case, two loops must be connected to each other by a
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Figure 5.5: Dual graph of a knot graph
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Figure 5.6: Necessary condition for disconnect of a dual graph

vertex v or one edge e adjacent to two vertices v and v′ as shown in Fig. 5.6.

Consider the process of converting a knot projection into P-data. When following

a knot from the selective end, the following three cases are possible:

1. The case to enter and exit from a vertex v

2. The case to enter from a vertex v and stop at the end inside the loop

3. The case to begin from the end inside the loop and exit from a vertex v

Let a vertex v have two numbers i and j, where i < j. In the first case, each vertex

inside the loop is k-th encountered, where i < k < j. This contradicts that P-data

which is obtained from a knot projection corresponding to the original graph is

irreducible. In the second case, each vertex inside the loop is k-th encountered,

where 1 ≤ k < j, and j 6= n(P ). This also contradicts. In the third case, each

vertex inside the loop is k-th encountered, where i < k ≤ n(P ), and i 6= 1. This

also contradicts. In the same way, in the case that more than two loops exist, we

can introduce the contradiction that the original graph is not irreducible.

�

Proposition 8 A graph given by applying the barycentric subdivision to a knot

graph is a three-connected graph.

The graph as shown at the bottom in Fig. 5.7 is the result of applying the barycen-

tric subdivision to the graph shown at the top left in the figure. The subdivided

graph is obtained by performing the following steps (See Fig. 5.7):
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Figure 5.7: Barycentric subdivision

1. Append a vertex to the middle of each edge and connect it to the two vertices

adjacent to the edge. In this time, the original edge is removed.

2. Append a vertex to the barycenter of each face except for the external face

and connect it to all vertices on the boundary of the face.

Proof

Now we try to judge the connectivity of any two vertices in a graph G′ which is

made from the subdivided graph by removing two vertices. When two vertices are

on the same face of the original graph, a path between the two vertices always

exists for any G′, because the graph which corresponds to one of the faces of the

original knot graph is obviously a wheel graph, which is a three-connected graph.

Next consider the case where they are not on the same face. Let the two vertices

be on faces F1 and Fn. From Proposition 7, a sequence F1 → · · · → Fn is obtained,

where Fi is adjacent to Fi+1 with a shared edge for all i. Because each face is a

wheel graph, that is, a three-connected graph, and three entrances exist between

the two adjacent faces, a path between these two vertices always exist for any G′.

Therefore, the subdivided graph is a three-connected graph.

�

Proposition 9 A knot graph obtained from irreducible P-data is uniquely embe-

dable into a sphere S2. The way to embed is topologically unique except for its

reverse.

Proof
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From Proposition 8, a graph obtained by applying the barycentric subdivision to

the knot graph is a three-connected graph and obviously a planar graph. Unique

embedability of a planar three-connected graph has already been proved by Whitney[71].

�

Fortunately, we resolve the ambiguity of the reverse using an attribute of an inter-

section. We obtain a knot projection from irreducible P-data by performing the

following steps:

1. Extract all faces by searching shorter loops using the breadth first search

from a knot graph. Each edge is twice employed as a component of a face.

2. Select one of the faces as the external face.

3. Apply the barycentric subdivision.

4. Embed it using the algorithm proposed in [70].

There is one caution on the process of extracting all faces as follows: Consider

the vertex which has four adjacent edges. Let the vertex be corresponding to i-

th and j-th intersections. At this time, these edges are i − 1-th, i-th, j − 1-th,

and j-th segments. Loops including i − 1-th and i-th segments do not compose a

face, because one strand always goes across the other strand in any intersection as

mentioned above. In the same manner, loops including j − 1-th and j-th segments

do not compose a face.

5.2 Definition of Movement Primitives

We define movement primitives as follows:

• They move only one segment at a time.

• They directly change one P-data to another P-data without any intermediate

P-data.

We employ the Reidemeister moves[69] as such movement primitives. Reidemeister

moves are employed to investigate characteristics of a tangled loop in the knot

theory.
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Figure 5.8: Reidemeister moves

5.2.1 Reidemeister Moves

Two knots are equivalent if one can be deformed to the other without cutting the

string. Note that a knot is allowed to stretch and to shorten.

Reidemeister proved that any equivalent knot can be obtained from the current

knot by stretching, shortening and finite repetitions of three types of moves referred

to as Reidemeister moves[69]. Note that stretching and shortening do not change

P-data, but these three types of Reidemeister moves do. Figure 5.8 shows the

Reidemeister moves.

The Reidemeister move I adds or removes one intersection by creating or destroying

a simple loop. The Reidemeister move II adds or removes two intersections, while

one strand crosses to the other. The Reidemeister move III allows a strand to be

moved to the other side of a crossing. Therefore, the number of intersections is not

changed.

Note that the algorithm to effectively search a sequence of Reidemeister moves

to translate one knot projection to another equivalent one has not yet been de-

signed. However, it is possible to determine that two given knot projections are

not equivalent using a so-called polynomial invariant[11].

5.2.2 Cross Move

A knot in the knot theory is a closed curve and does not have open ends. However,

we have to deal with an open curve. An open curve is not considered to be a

knot in the knot theory. Therefore, we additionally define the Cross move as a

movement primitive. The Cross move is an operation in which one end of the rope

crosses some segment as shown in Fig. 5.9 and adds or removes one intersection.

100



Figure 5.9: Cross Move

5.2.3 Sufficiency of the Movement Primitives

Every P-data transition can be divided into the following two types:

1. An end of the knot crosses another segment.

2. No end crosses any segment.

In the first case, every transition can be realized by the Cross move. In the second

case, every transition can be realized by several repetitions of Reidemeister moves

and this is easily introduced from Reidemeister’s proof about knot-equivalence.

However, there is no guarantee that such a transition is realized by only one of

the three Reidemeister moves (See the definition of movement primitives). That

guarantee is very important. If it is not satisfied, our proposed method cannot

recognize such a move, even if the move is an essential movement primitive for a

knot-tying task. Although the movement primitive may be discovered, it is easy to

improve the system to recognize and execute the primitive, because it is equivalent

to several repetitions of three types of Reidemeister moves.

Fortunately, various kinds of knot-tying can be represented by a sequence of these

four movement primitives (Cross move and Reidemeister moves I, II, and III). For

our current analysis (overhand knot, eight knot, bowline knot, harness hitch, bow

tie, single loop bow, two-half knot, and taut-line hitch), the Reidemeister move

III has not been employed. Because it is a redundant move when tying a knot, it

seldom appears.

5.3 Selection of Corresponding Movement Primitives from P-data

Transitions

In this section, we describe a method for selecting the corresponding one of three

types of Reidemeister moves and a Cross move from P-data transitions. In the

following, Pt denotes the P-data obtained from a knot projection at time t. Without

101



������

������

������

��������

��������

��������

Figure 5.10: Change of P-data under the Reidemeister move I

any loss of generality, P-data before the transition has a fewer intersections than

the one after the transition, that is,

n(Pt−1) ≤ n(Pt).

Now we assume that a selective end in the process of converting a knot projection

into P-data is not changed before and after the transition.

5.3.1 Reidemeister move I

Figure 5.10 shows an example of the Reidemeister move I. After applying the

Reidemeister move I to the knot projection at time t− 1, one intersection is added

in the knot projection at time t. Therefore, Equation (5.2) must be satisfied.

n(Pt) = n(Pt−1) + 2 (5.2)

Now we assume that the Reidemeister move I is applied to the i-th segment (the

third segment in the case as shown in Fig. 5.10). The additional intersection has

two continuous numbers. Therefore, Equation (5.3) must be satisfied.

σ(i|Pt) = i + 1 (5.3)

Because states of other intersections are not changed, when we remove the i-th and

(i + 1)-th columns from Pt and reorder the intersection numbers, i.e., subtract the

intersection numbers from i + 2 to n(Pt) by two, Pt must become equal to Pt−1.

Such removing and reordering is defined as RI(Pt, i).

Conversely, if we find i ( 1 ≤ i ≤ n(Pt−1) + 1) which satisfies σ(i|Pt) = i + 1

and RI(Pt, i) = Pt−1, we conclude that the Reidemeister move I occurs at the i-th
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Figure 5.11: Change of P-data under the Reidemeister move II

segment at time t−1. Note that several ways may exist to realize a desired P-data

transition. In the case as shown in Fig. 5.10, we find that the Reidemeister move

I occurs at the third segment at time t − 1.

5.3.2 Reidemeister Move II

Figure 5.11 shows an example of the Reidemeister move II. After applying the

Reidemeister move II to the knot projection at time t − 1, two intersections are

added in the knot projection at time t. Therefore, Equation (5.4) must be satisfied.

n(Pt) = n(Pt−1) + 4 (5.4)

Now we assume that the Reidemeister move II is applied to the i-th and j-th

segments (the third and sixth segments in the case as shown in Fig. 5.11). In the

process of converting a knot projection into P-data, the two additional intersections

are continually encountered. Therefore, Equation (5.5) or Equation (5.6) must be

satisfied, where 1 ≤ i < j ≤ n(Pt−1) + 1.

σ(i|Pt) = j + 2 ∩ σ(i + 1|Pt) = j + 3 (5.5)

σ(i|Pt) = j + 3 ∩ σ(i + 1|Pt) = j + 2 (5.6)

Furthermore these relative vertical positions (over/under) must be the same and

these signs must be different. Therefore, Equation (5.7) must be satisfied.

|attr(i|Pt) − attr(i + 1|Pt)| = 2 (5.7)

Because states of other intersections are not changed, when we remove the i-th,

i+1-th, j+2-th, and j+3-th columns from Pt and reorder the intersection numbers,
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Figure 5.12: Change of P-data under the Reidemeister move III

i.e., subtract the intersection numbers from i + 2 to j + 1 by two and subtract the

intersection numbers from j + 4 to n(Pt) by four, Pt must become equal to Pt−1.

Such removing and reordering is defined as RII(Pt, i, j).

Conversely, if we find i, j (1 ≤ i < j ≤ n(Pt−1)+1) which satisfy Equation (5.5) or

(5.6), Equation (5.7), and RII(Pt, i, j) = Pt−1, we conclude that the Reidemeister

move II occurs between the i-th and j-th segments at time t − 1. We calculate

RII(Pt, i, j) toward i and j (1 ≤ i < j ≤ n(Pt−1) + 1) in order. Fortunately j

satisfies

j =
σ(i|Pt) + σ(i + 1|Pt) − 5

2
.

Therefore, we can select the Reidemeister move II by O(n(Pt−1))-time2. In the

case as shown in Fig. 5.11, we find that the Reidemeister move II occurs between

the third and sixth segments, between the first and fourth segments, or between

the second and fifth segments at time t − 1. Figure 5.11 looks occurring the first

case. Of course, the last two cases can realize such a transition.

5.3.3 Reidemeister Move III

Figure 5.12 shows an example of the Reidemeister move III. After applying the

Reidemeister move III to the knot projection at time t−1, no intersection is added

in the knot projection at time t. Therefore, Equation (5.8) must be satisfied.

n(Pt) = n(Pt−1) (5.8)

2In addition, comparison of two sets of P-data requires O(n(Pt−1))-time.
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The focus is on three important segments for the Reidemeister move III. Now, we

name them Segment A, B, and C by the following rules:

• Segment A goes over the other two.

• Segment C goes under the other two.

• Segment B is the remaining segment.

Let Segment A, B, and C correspond to the i-th, j-th, and k-th segments, respec-

tively, where 2 ≤ i, j, k ≤ n(Pt)− 1. These three segments compose three intersec-

tions. Each intersection has two numbers of the set {i− 1, i, j − 1, j, k − 1, k}, and

does not have any numbers that the others have.

Proposition 10 σ(i) 6= i − 1 ∩ σ(j) 6= j − 1 ∩ σ(k) 6= k − 1

Proof

Each intersection is composed of two of the three segments.

�

Corollary 1 σ(i−1) = k−1 or k, when σ(i) = j−1 or j. Similarly, σ(i−1) = j−1

or j, when σ(i) = k − 1 or k.

Proof

We assume that the first condition is not satisfied. Then σ(i−1) = k−1∩σ(i) = k

or σ(i − 1) = k ∩ σ(i) = k − 1. From the fact that each intersection does not have

any numbers that the others have, σ(j − 1) = j must be satisfied. However that

contradicts Proposition 10. In the same way, the second condition can be easily

proved.

�

From Proposition 10 and Corollary 1, relations between these segments can be

classified into eight types as follows:

A. σ(i − 1) = j − 1 , σ(i) = k − 1 , σ(j) = k

B. σ(i − 1) = j − 1 , σ(i) = k , σ(j) = k − 1

C. σ(i − 1) = j , σ(i) = k − 1 , σ(j − 1) = k

D. σ(i − 1) = j , σ(i) = k , σ(j − 1) = k − 1

E. σ(i − 1) = k − 1 , σ(i) = j − 1 , σ(j) = k

F. σ(i − 1) = k , σ(i) = j − 1 , σ(j) = k − 1

G. σ(i − 1) = k − 1 , σ(i) = j , σ(j − 1) = k

H. σ(i − 1) = k , σ(i) = j , σ(j − 1) = k − 1
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Figure 5.13: Characteristics of Reidemeister Move III

Proposition 11 We assume that the Reidemeister move III changes P-data Pt−1

to P-data Pt. The orders of the three important segments in the state Pt−1 are

equal to the orders in the state Pt, respectively.

Proof

Trivial.

�

Proposition 12 If the i − 1-th intersection is composed of the i-th and j-th seg-

ments before the translation, the i − 1-th intersection is composed of the i-th and

k-th segments after the transition. Similarly, if the i-th intersection consists of the

i-th and j-th segments before the transition, the i-th intersection is composed of the

i-th and k-th segments after the transition. Even if the role of i, j, and k shifts,

this proposition is satisfied.

Proof

Trivial from Fig. 5.13. We assume that we follow a knot toward the arrow direction

as shown in Fig. 5.13 in the process of converting a knot projection into P-data.

From Proposition 11, the three segments have the same encountering order before

and after the transition. However, the crossed order is changed before and after

the transition.

�

Corollary 2 σ(i − 1|Pt−1) 6= σ(i|Pt). This proposition is satisfied, even if j or k

is used as a substitute for i.
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Proof

We assume σ(i−1|Pt−1) = σ(i|Pt) = l, where l is equal to one of {j−1, j, k−1, k}.

From the commutative law, σ(l|Pt−1) = i − 1 and σ(l|Pt) = i must be satisfied.

This means the l-th intersection is composed of the i-th and l (or l+1 )-th segments

before and after the transition. That contradicts Proposition 12.

�

Proposition 13 Among the eight types mentioned above, the following four tran-

sitions are permitted.

• Type A ↔ Type H

• Type B ↔ Type G

• Type C ↔ Type F

• Type D ↔ Type E

Proof

Trivial from Proposition 12 and Corollary 2.

�

Because states of another intersections are not changed, when we remove the i−1-

th, i-th, j − 1-th, j-th, k − 1-th, and k-th columns from Pt and Pt−1, Pt becomes

equal to Pt−1. Such removing is defined as RIII(P, i, j, k). Therefore, the algorithm

to decide if the Reidemeister move III is applied or not is as follows:

1. Search i-th, j-th, and k-th segments which compose a triangle before and

after the transition

2. Decide on the type for these three segments before and after the transition

3. Check the legality of the transition based on Proposition 13

4. Check RIII(Pt, i, j, k) = RIII(Pt−1, i, j, k)

In the case as shown in Fig. 5.12, we find that the Reidemeister move III occurs

among the third, fifth and eighth segments at time t − 1.
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Figure 5.14: Change of P-data under the Cross move

5.3.4 Cross Move

Figure 5.14 shows an example of the Cross move. After applying the Cross move to

the knot projection at time t − 1, one intersection is added in the knot projection

at time t. Therefore, Equation (5.9) must be satisfied.

n(Pt) = n(Pt−1) + 2 (5.9)

Because in the Cross move, one of two ends crosses over or under a segment, the

additional intersection is a neighbor to the first or last segment after the transition.

Therefore, it is easy to find out to which segments the cross move is applied from

σ(1|Pt) or σ(n(Pt)|Pt).

Now we assume that the Cross move is applied to the selective end and the i-th

segment. The additional intersection has the number i+1. Therefore i+1 = σ(1|Pt)

must be satisfied. When we remove the first and i + 1-th columns from Pt and

reorder the intersection numbers, i.e., subtract the intersection numbers from two

to i by one, from i + 2 to n(Pt) by two, Pt must become equal to Pt−1. Such

removing and reordering is defined as Cs(Pt).

Next, we assume that the Cross move is applied to the other end and the j-th

segment. The additional intersection has the number j. Therefore j = σ(n(Pt)|Pt)

must be satisfied. In the same fashion, when we remove the last and σ(n(Pt)|Pt)-th

columns from Pt and reorder the intersection numbers, i.e., subtract the intersection

numbers from j + 1 to n(Pt) − 1 by one, Pt must become equal to Pt−1. Such

removing and reordering is defined as Ce(Pt).

Conversely, if Cs(Pt) = Pt−1 ( Ce(Pt) = Pt−1 ) is satisfied, we conclude that the

Cross move occurs between the selective end and (σ(1|Pt) − 1)-th segment (the

other end and σ(n(Pt)|Pt) − th segment).
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Figure 5.15: Two equivalent P-data

5.3.5 Ambiguity With Respect to Selective End

Until the previous section, we assumed that a selective end in the process of con-

verting a knot projection into P-data is not changed before and after the transition.

Now we consider eliminating this assumption.

As shown in Fig. 5.15, the knot projection is converted into two different P-data

based on the difference of a selective end. We define these two sets of P-data as

equivalent P-data sets. Between the P-data P and the equivalent P-data Peq, the

following relation should be satisfied:

Proposition 14 σ(N(P ) − i + 1|Peq) = N(P ) − σ(i|P ) + 1

Proof

Considering the conversion into P-data, the i-th intersection when converting into

P-data P is the (N(P ) − i + 1)-th intersection when converting into P-data Peq.

�

Proposition 15 attr(N(P ) − i + 1|Peq) = attr(i|P )

Proof

Trivial. Of course, the vertical position, i.e., over or under, of the i-th intersection

when converting into P-data P is equal to that of the (N(P )−i+1)-th intersection
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when converting into P-data Peq. Furthermore, the sign of the i-th intersection

when converting into P-data P is equal to that of the (N(P )−i+1)-th intersection

when converting into P-data Peq. The direction vector of every strand turns back,

but

(~lover ×~lunder) · ~ez = (−~lover ×−~lunder) · ~ez

is always satisfied.

�

Using Proposition 14 and 15, we can easily convert P-data into equivalent P-data.

Because P-data is reversible to a knot projection as proved in Section 5.1.3, we can

resolve the ambiguity by applying the rule for selecting corresponding movement

primitives to both P-data and the equivalent P-data.

5.4 Examples

5.4.1 Reversibility of P-data

We show the result of reversibility of P-data by converting a knot projection into

a knot projection again through P-data conversion. First, we convert the knot

projection as shown at the top left in Fig. 5.16 into P-data. As a result, we obtain

the following P-data:

1 2 3 4 5 6

4 5 6 1 2 3

3 4 3 4 3 4

Next, we convert such irreducible P-data into a knot projection again as the al-

gorithm described in Section 5.1.3. First, we convert P-data into a knot graph,

which has three (= 6/2) vertices {v1, v2, v3} and five edges {e1 = {v1, v2}, e2 =

{v2, v3}, e3 = {v3, v1}, e4 = {v1, v2}, e5 = {v2, v3}}.

We extract the following four faces by searching a shorter loop using the breadth

first search:

f1 = {e1, e4}, f2 = {e2, e5}, f3 = {e1, e5, e3}, f4 = {e4, e2, e3}

From the caution about the search in Section 5.1.3, we should not regard {e1, e2, e3}

and {e3, e4, e5} as a face, because these sets include e1 and e2, or e4 and e5, simul-

taneously.
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Figure 5.16: Convert a knot projection into a knot projection again through P-data

conversion

When we select a face f4 as an external face, we obtain a knot projection as shown

at the bottom right in Fig. 5.16, through applying the barycentric subdivision

and embedding it using the algorithm proposed by [70]. That is an equivalent

knot projection to the original one. By selecting another three faces as external

faces, we obtain anther three knot projections, respectively. Note that these three

projections look different from the original knot, because these knots are illustrated

in R2 space. Of course, they are equivalent in S2 space.

5.4.2 Recognition of Movement Primitives

Figure 5.17 shows the result of the analysis of the bowline knot. Note that we

correctly select the selective end that is shown by the black point in Fig. 5.17 in

every knot projection. First, the system converts each knot projection into P-data.

The number array under each knot projection is the P-data. Next, the system

recognizes the knot-tying task as a sequence of movement primitives that have

been already defined. In each transition, the number of columns increases by two;

therefore, the Cross move (Cs(∗) (to the selective end) or Ce(∗) (to the other end)

111



������
������������

������������������
������������������������

����������	��	����������������� �
�� ��� �����	������������	��� � � �� ���� ���� � � �

�� � �� � ����	�����������������	���� � �� � ��� ��� � ��� � �� � �


� �
�� �� ���� ���� �� ������ ��

� !"#$

� %
�� 
� &
��

'( )* +, -* .,

/0

10
2,

34
34
3564

7
7

7
89:;
89:;

8<

=
>

?

@ABCBDEFGBBHI

Figure 5.17: Analysis of the bowline knot

in the figure) or the Reidemeister move I (RI(∗) in the figure) may occur.

In all transitions, the system can select the correct movement primitives. Among

them, in the first and the fourth transitions, the system selects more than one

movement primitives. Actually, in the fourth transition, the Cross move Cs(P4) is

more appropriate by observing the transformation of a knot projection. Because

P-data does not include parametric information, the system cannot select one of

the two movement primitives. However, both of them can realize the transition;

therefore, this ambiguity is not a problem. In the first transition, that is the same.

Figure 5.18 shows the efficiency of the system with respect to the ambiguity of

selection of the selective end. In this example, we select the wrong one of two ends

as the selective end in the third, sixth, and seventh knot projections. The wrong

selection usually leads to the result that the system selects no movement primitive

in spite of the fact that a movement primitive to realize the transition exists.

In the fifth transition, the system selects no movement primitive from the transition
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Figure 5.18: Analysis of the bowline knot when some selective ends are not correctly

selected

P5 to P6, however selects the Cross move Cs(Peq6), which is a correct one, from

the transition P5 to Peq6, which is equivalent P-data of P6. As a result, we find

that selection of the selective end is wrong in the sixth P-data.

In the sixth transition, the system selects a correct movement primitive from the

transition P6 to P7; however, the selection was wrong in the sixth P-data. There-

fore, we find that the selection is wrong in the seventh P-data.

In the second transition, the system cannot decide if the selection is correct or

wrong, because P3 is equal to Peq3, which is the equivalent P-data of P3.

Figure 5.19 shows the result of the analysis of the bow knot. Now, we correctly

select the selective end in every knot projection. In this example, the Reidemeister

move II (RII(∗) in the figure) is employed to realize the fourth, sixth, and seventh

transitions. It is certain that these transitions can be realized by several repeti-

tions of the Cross move. However, it is natural that they, especially the seventh
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Figure 5.19: Analysis of the bow knot

transition, are realized by the Reidemeister move II. The method in [49] considers

only the Cross move, that is, it must tie the bow knot in an unnatural way.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we have proposed novel methods that enable robots to recognize

tasks for manipulating various kinds of objects. First, we propose a method for

recognizing assembly tasks using two polyhedral objects. In Chapter 2, we describe

how to observe and recognize them. Concretely speaking, we define Motion Degrees

of Freedom (DOF) to index the quality of the constrained motion. Using them

enables us to efficiently define sufficient movement primitives for assembly tasks.

Note that we describe the execution in Appendix A.

Next, in Chapter 3, we propose a mathematical tool for improving calculation of

the constrained motion using the second order approximation of the motion. As

a result, the tool is also able to deal with the curvature information, i.e., curved

objects.

In Chapter 4, we propose a method for estimating the parameters of a joint. The

estimation is essential for manipulating linkages which are connected by a joint,

for example, rotating a doorknob, pulling open a drawer, inserting a screw with a

screw driver, etc. Each task is a very common everyday task.

In Chapter 5, we propose a method for recognizing knot-tying tasks using one

rope. We introduce the P-data representation, which is employed to represent a

knot state, and define sufficient movement primitives for the tasks.

Below, we concretely conclude each method.
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6.1.1 Assembly Tasks using Two Rigid Polyhedral Objects

In this thesis, we have proposed a method for observing and recognizing assembly

tasks using two rigid polyhedral objects. First we propose a method for recogniz-

ing assembly tasks from transitions of contact relations. For the purpose of the

recognition, we improve motion DOFs in only translation defined in [6] to deal

with rotation. We describe a method for calculating such DOFs. And we define

DOFs of axis directions for improving the recognition.

Next, using the idea of practical DOF-transitions, we define sufficient sub-skills

which are movement primitives for assembly tasks, and critical transitions which

are the important transitions for a smooth process of an assembly task. Then we

propose a method for selecting the corresponding sub-skills and extracting critical

transitions using DOF-transitions.

Then we describe a method for observing the task under the existence of vision

errors. To be robust to vision errors, we propose a method for correcting them

using roughly estimated contact relations and validity of the transitions. And

we propose a method for correcting the errors by applying the calculation of the

optimal trajectories. We describe the calculation in Appendix A. Although the

method is useless for recognizing the tasks, it is very useful for extracting informa-

tion about the unconstrained motion. Such motion may include the technique for

well executing the task, we believe.

Finally, we examine the effectiveness of our method by recognizing a peg-insertion

operation using it. We think that, because our method can deal with a peg-insertion

operation where various kinds of contact relations appear, our method is apropos

for various kinds of assembly tasks.

6.1.2 Second Order approximation

In this thesis, we have proposed a method for formulating and calculating main-

taining and legal displacement using the second order approximation of a function

which represents the relationship between the displacement and the distance be-

tween two of the following three object primitives: a vertex, an edge, and a face.

First, we formulate the second order approximation for basic point-contact primi-

tives as follows: vertex-face, edge-edge, edge-face, face-vertex, face-edge, and face-

face point-contacts. These contact primitives play an important role in formulating

the maintaining and legal displacement of any basic contact relations. A contact

relation which appears is usually a basic contact relation.

Second, we describe that a line- or face-contact primitive can be regarded as an
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infinite number of basic point-contact primitives. However, it cannot always be rep-

resented as an equivalent finite number of basic point-contact primitives. Through

the formulation, we also illustrate the necessity of formulation of some special

point-contact primitives, which include at least one singular object primitive.

Then we propose a method for calculating the displacement. All target equations

look very different from one another; however, all of them are generally represented

as Equation (3.70) in Chapter 3. We calculate the displacement by linearizing

a quadratic form through converting its canonical form. Therefore, in the case

where every quadratic form cannot be linearized, our method cannot calculate the

displacement. To establish a method to completely calculate the displacement is

now an outstanding problem. However, we believe that our method proposed in this

thesis is sufficient for calculating the maintaining displacement from experimental

results.

Finally, we examine the effectiveness of our proposed method by applying it to two

examples. First, we describe how it is applied to an example to determine grasping

stability. Because the purpose of the method is not to index the displacement

but rather, to calculate the displacement itself, we analyze grasping stability using

the idea of maintenance of a contact relation and the range (DOF) of the legal

displacement. Our intuition agrees with the calculation result.

Second, we describe how we apply the method to an example of generating a contact

relation graph. The graph is very useful for planning assembly tasks, as mentioned

above. In this example, we propose a method for generating the desired trajectory

using the second order approximation. The example shows the applicability of the

second order approximation.

6.1.3 Extracting Parameters of Joints

We have proposed a method for estimating the parameters of a joint from obser-

vation, given a type of the joint and several relative configurations between two

linkages which are connected by the joint. Of course, the observation includes some

errors.

First, we concentrate on three types of joints as follows: a prismatic joint, a revolute

joint, and a screw joint. These three are so common that they often appear. We

describe how we formulate the conditions which the parameters must satisfy and

estimate them by minimizing the error function which we define.

Next, we examine the effectiveness of our method through simulation experiments

and actual experiments. In the simulation experiment, we illustrate the statistical
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characteristics of our method. As a result, the inaccuracy is about inversely pro-

portional to the amount of translation or rotation and square of the accuracy is

proportional to the number of the configurations. The result is adequate from a

statistical viewpoint.

Finally, we propose a method for estimating the parameters of any types of joints

with respect to an object orientation. The difficulty of estimating the parameters

mainly causes the difficulty of estimating the parameters with respect to an object

orientation. Therefore, it becomes possible to estimate the parameters of any types

of joints using our proposed method, we believe.

6.1.4 Knot Tying Tasks with One Rope

We have propose a method to recognize knot-tying tasks using one rope. By

applying the knot theory, we introduce a method for representing a knot state in

a P-data representation, define four sufficient movement primitives, and describe

a method for selecting the corresponding one from P-data transitions.

First, we introduce a knot projection and P-data representation to represent an

abstract information of a knot projection. A P-data representation has several

desirable characteristics as follows:

• P-data representation is an abstract data structure for representing only the

topological information. It ignores a slight difference in the position of an

intersection, which is unimportant in the process of knot-tying tasks.

• A knot projection can be reversed from P-data representation. That is im-

portant in solving a so-called path planning problem.

We prove such a reversibility by showing a method for converting irreducible P-data

into a planar three-connected graph.

Next, we define the following movement primitives for knot tying tasks: the Reide-

meister move I, II, and III, and the Cross move. From Reidemeister’s proof about

knot-equivalence, a transition between two equivalent knots which are tangled loops

can be realized by shortening, stretching, and repeating the Reidemeister moves.

The proof guarantees that a transition where any end of a rope does not cross over

or under a strand can be realized by repetitions of them. However, our target rope

has two ends and the Cross move is necessary to realize the transition where one

of them crosses over or under a strand.

Then, we propose a method for selecting the corresponding movement primitive

from a P-data transition. A P-data transition is uniquely determined from the
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type and parameters (for example, to which segment is the movement primitive

applied?) of the movement primitive. Conversely, we can select the corresponding

movement primitive by a whole search against all candidates. At the same time,

we also solve the problem of ambiguity of selection of the selective ends using

equivalent P-data.

Finally, we show examples of analysis of knot-tying tasks. Our method selects the

corresponding movement primitives, even if selection of the selective end is wrong.

Especially, in a bow knot, which requires Reidemeister move II, our method can

recognize such a knot-tying task.

6.2 Future Directions

In this thesis, we have described methods for recognizing the following tasks:

• Assembly tasks using two rigid polyhedral objects

• Tasks for manipulating linkages connected by a join

• Knot-tying tasks using one rope

It is very meaningful to have proposed methods to recognize these tasks, because

these tasks are often executed every day. However, there are various other kinds of

manipulation tasks. We should propose a method to deal with such tasks. Among

them, it would be easy to design a method to deal with assembly tasks using not

only polyhedral, but also curved objects using the second order approximation. We

believe that motion DOFs can be calculated using the second order approximation.

In this thesis, each system deals only with its target task. It is very important to

integrate such systems in order to generate a general system that is able to deal

with all kinds of manipulation tasks, we believe.

With regard to the integration, it is easy to integrate systems that deal with the

first and the second tasks because it is very easy to formulate the constrained

motion, i.e., to calculate motion DOFs (For example, Mason’s works[44]), if the

parameters of the joint are known.

Although we do not consider states of joints in this thesis, some joint may have

several states. For example, consider the case of rotating a doorknob. There are

the following two states: One is that a doorknob can rotate both clockwise and

counter-clockwise. The other is that a doorknob can rotate either clockwise or

counter-clockwise.
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By representing the task of rotating a doorknob as transitions between the two

states, we can execute the rotation using the sub-skills. In this case, the DOF with

respect to the axis direction of rotation is a maintaining DOF in the former state

and the DOF is a detaching DOF in the latter state. In short, opening a door

can be executed by a make-contact sub-skill in rotation because a DOF-transition

from a maintaining DOF to a detaching DOF in rotation occurs. Through the

integration, the system can share several movement primitives.

However, with regard to the case of turning a crank, such a DOF-transition does

not appear, because the joint has only one state. To recognize such a task requires

analyzing the unconstrained motion. The linear vision error correction enables

such an analysis, we believe.

Then, we consider integrating systems that deal with the first and the third tasks.

The integration is very difficult because movement primitives of each system can

be employed for the target tasks only and movement primitives for manipulation

between rigid and string-like deformable objects have not yet been determined.

Such tasks are so applicable that we are ambitious to try the integration.
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Appendix A

Sub-skill Implementation

In this appendix, we describe a method to implement sub-skills, which we define

as movement primitives for assembly tasks. Of course, to implement them, one

should consider intrinsic characteristics of a robot arm and its end effector.

Therefore, we first describe a method to calculate trajectories of the grasping object

to realize the desired transitions. Such calculation is relatively independent of the

characteristics. As mentioned above, the trajectory usually cannot be uniquely

decided. Therefore, we first define the optimal trajectory and we propose a method

to calculate the optimal trajectory using only a linear solution. Note that the

trajectory is formulated as non-linear equations.

We set up the following assumptions:

1. The trajectory is locally represented by translation or rotation of which the

axis direction is constant.

2. There is no obstacle on the optimal trajectory.

With regard to how to implement sub-skills on a robot in actuality, the first as-

sumption is preferable. The second assumption means that we do not deal with

the obstacle avoidance problem[5]. Although the assumption may be strict, it is

possible to solve such a problem using the unconstrained motion obtained from the

observation, we believe.

Next we illustrate the actual implementation on our test-bed[72]. Various basic

ideas which we employ to implement sub-skills can be applied to another robot

arm, we believe.
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A.1 Preliminaries

As mentioned above, the legal infinitesimal displacement is formulated by Equation

(A.1), where [S0,S1] is a screw vector1[53] which represents the displacement and

Pi is a contact position of the i-th contact primitive.

N
⋂

i

M(i)
⋃

j

Fij · S1 + (Pi × Fij) · S0 ≥ 0 (A.1)

In assembly tasks, it is preferable to calculate trajectories which maintain some

contact relation for robustness against execution errors. The derivative of such

trajectories, i.e., the infinitesimal displacement must satisfy Equation (A.2).

N
⋂

i

M(i)
⋂

j

Fij · S1 + (Pi × Fij) · S0 = 0 (A.2)

Converting ∪ into ∩ in the equation, Equation (A.2) is a simple system of simul-

taneous linear equalities. To simply denote the equation, we merge two ∩. As a

result, Equation (A.2) is converted to Equation (A.3).

n
⋂

i

Fi · S1 + (Pi × Fij) · S0 = 0 (A.3)

Note that the rank of Equation (A.3) is equal to a restricted DOF in all motions.

Because a screw vector [0,S1] represents pure translation, Equation (A.4) which

are obtained by substituting S0 = 0 to Equation (A.3) represents the translational

infinitesimal displacement.
n
⋂

i

Fi · S1 = 0 (A.4)

Note that the rank of Equation (A.4) is equal to a restricted DOF in translation.

Next, we obtain simultaneous linear equalities which include a term S0, but do not

include a term S1 from Equation (A.3), by performing the following steps:

1. Search all linearly dependent minimum combinations of {Fi}

2. Obtain the equalities by erasing a term S1 from equations which are included

in the combinations.

1In this appendix, every displacement is calculated using the first order approximation only.
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The equalities represent any axis directions in the rotational displacement to main-

tain a contact relation.

Concretely, let C be one of the linearly dependent minimum combinations. Because

of the dependency, Equation (A.5) always satisfies, where wi 6= 0 for all i ∈ C.

∑

i∈C

wiFi = 0 (A.5)

Applying a dot product of S1 to both sides of Equation (A.5), Equation (A.6) is

obtained.
∑

i∈C

wiFi · S1 = 0 (A.6)

By repeating to substitute Equation (A.6) to Equation (A.2) for all the combina-

tions, we obtain Equation (A.7). As mentioned above, the equation represents any

axis directions in the rotational displacement to maintain a contact relation.

m
⋂

i

Gi · S0 = 0 (A.7)

Note that the rank of Equation (A.7) is equal to a restricted DOF in rotation.

A.2 Calculate Optimal Trajectories

In this section, we propose a method to calculate the optimal trajectories given a

valid transition from one contact relation to the other contact relation2 and object

configurations in each contact relation.

We assume that all restricted DOFs before the transition are not greater than

all restricted DOFs after the transition. If the condition is not satisfied, we first

calculate the trajectory to realize the inverse transition and then invert it. Note

that there is no case that one of restricted DOFs before the transition is greater than

the DOF after the transition and the other of restricted DOFs before the transition

is less than the DOF after the transition, because of the validity of the transition.

Any position, direction, etc. are represented with respect to the coordinate system

of the environmental object unless otherwise noted. We concentrate on calculating

the trajectory of the grasping object with respect to the system.

As mentioned above, because of the validity of the transition, restricted DOFs in

translation and rotation before the transition are not greater than the restricted

DOFs after the transition. If restricted DOFs in rotation before and after the

2We describe a method to decide the validity in Chapter 2.
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transition are equal to each other (referred to as a translational case), we define

the trajectory which consists of only translational displacement as the optimal

trajectory. If the restricted DOF before the transition is less than the DOF after

the transition (referred to as a rotational case), the optimal trajectory includes

rotational displacement. We first describe a translational case and next describe a

rotational case.

A.3 Translational Case

A.3.1 Definition of Optimal Trajectory

Consider a transition from a contact relation Cs to a contact relation Ce in a

translational case. Let qs = (ts,Θ) and qe = (te,Θ) be configurations of the

grasping object before and after the transition, respectively, where t∗ (∈ R3) and

Θ (∈ SO(3) : a 3 × 3 orthogonal matrix) represent location and orientation of the

grasping object, respectively.

In this case, as mentioned above, the maintaining infinitesimal translational dis-

placement ∆t (∈ R3) before and after the transition is formulated by one system

of simultaneous linear equalities as Equation (A.8) and (A.9), where Fs ∈ Rl×3,

Fe ∈ Rm×3.

Fs∆t = 0 (A.8)

Fe∆t = 0 (A.9)

Because all objects are polyhedral, some straight trajectory can realize the transi-

tion while maintaining a contact relation Cs. A straight trajectory is formulated

by q(s) = (t(s),Θ(s)) (0 ≤ s ≤ 1), where t(s) = s∆td + ts and Θ(s) = Θ for all s.

The trajectory should satisfy a contact relation Cs when 0 ≤ s < 1 and a contact

relation Ce when s = 1.

We define the trajectory which satisfies Equation (A.10) as the optimal trajectory,

where Te is a solution space of Equation (A.9).

l · ∆td = 0 (∀l ∈ Te) (A.10)

Any translational displacement which does not satisfy the equation maintains not

only a contact relation Cs, but also a contact relation Ce, i.e., it is redundant for

the transition. That is why we define such a trajectory as the optimal trajectory.

This optimization tends to minimize the amount of translation.
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Table A.1: Classification based on rank

Rank Fs Rank Fe

0

1 3

2

0 2

1

0 1















Case 1.







Case 2.

}

Case 3.

A.3.2 Calculating Optimal Trajectory

For calculating the optimal trajectory, we have only to decide ∆td. Because the

trajectory maintains a contact relation Cs, ∆td must satisfy Equation (A.8). Be-

cause Rank(Fs) < Rank(Fe), there are six cases with respect to the difference of

Rank(Fs) and Rank(Fe) as shown in Table A.1, where Rank(F ) returns the rank

of a matrix F . Now we introduce a method to calculate the optimal trajectory in

the following three cases:

• Rank(Fs) = 0, 1, or 2, Rank(Fe) = 3

• Rank(Fs) = 0 or 1, Rank(Fe) = 2

• Rank(Fs) = 0, Rank(Fe) = 1

Case 1. Rank(Fs) = 0, 1, or 2, Rank(Fe) = 3

Because Rank(Fe) = 3, the location of the grasping object after the transition is

uniquely decided. As a result, ∆td is calculated by Equation (A.11).

∆td = te − ts (A.11)

Case 2. Rank(Fs) = 0 or 1, Rank(Fe) = 2

Figure A.1 shows an example in the case Rank(Fs) = 0, Rank(Fe) = 2. Because

Rank(Fe) = 2, a solution space Te is one dimensional, i.e., a straight line. There-

fore, ∆td satisfies Equation (A.10), if and only if ∆td satisfies Equation (A.12),

where tr ∈ Te − {0}.

∆td · tr = 0 (A.12)
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Figure A.1: Redundant translational displacement in Case 2
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Figure A.2: Redundant translational displacement in Case 3

The object configuration after the transition is formulated by q = (te +utr,Θ)(u ∈

R). As the result, ∆td is formulated by Equation (A.13).

∆td = te + utr − ts (A.13)

By substituting Equation (A.13) to Equation (A.12), u is calculated as Equation

(A.14).

u =
(ts − te) · tr

|tr|2
(A.14)

Thus, we obtain ∆td.

Case 3. Rank(Fs) = 0, Rank(Fe) = 1

Let {∆t1,∆t2} be a set of bases of a solution space of Equation (A.9). From

Equation (A.10), ∆td can be formulated by Equation (A.15) (See Fig. A.2).

∆td = u(∆t1 × ∆t2) (A.15)

u can be calculated using the condition that the object configuration after the

transition satisfies a contact relation Ce. Thus, we obtain ∆td.
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A.4 Rotational Case

Next we describe a method to calculate the optimal trajectory in a rotational case.

Generally speaking, calculating a trajectory which includes rotational displacement

requires us to solve simultaneous non-linear equations. The solution is very difficult.

We assume that rotation is limited to one where the axis direction of rotation

is constant while rotating. The equation with respect to the axis direction has

already been formulated as Equation (A.7). Therefore, we resolve the difficulty

of the solution by performing the following steps: First, we calculate the axis

direction and the amount of rotation. Next we calculate the trajectory by solving

the relationship between a rotation angle and an object location. Note that each

calculation is linear.

A.4.1 Definition of Optimal Trajectory

Consider a transition from a contact relation Cs to a contact relation Ce in a

rotational case. Let qs = (ts,Θs) and qe = (te,Θe) be configurations of the

grasping object before and after the transition, respectively.

In this case, as mentioned above, the axis direction a (∈ R3) with respect to

maintaining displacement before and after the transition should satisfy Equation

(A.16) and (A.17).

Gsa = 0 (A.16)

Gea = 0 (A.17)

Because the axis direction is constant, the trajectory is formulated by q(s) =

(t(s),Θ(s))(0 ≤ s ≤ 1). t(s) ∈ R. Θ(s) represents uniform rotation, i.e., is

formulated by Equation (A.18), where R(a, θ) is a 3 × 3 orthogonal matrix to

represent rotation about the axis a by θ (∈ R) radian.

Θ(s) = R(ad, sθd)Θs (A.18)

The trajectory should satisfy a contact relation Cs when 0 ≤ s < 1 and a contact

relation Cs when s = 1.

We define the trajectory which satisfies Equation (A.19) as the optimal trajectory,

where Ae is a solution space of Equation (A.17).

l · ad = 0 (∀l ∈ Ae) (A.19)

The optimization tends to minimize the amount of rotation.
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Figure A.3: Redundant displacement in rotation in Case 2

A.4.2 Deciding Axis Direction ad and Amount of Rotation θd

There are six cases with respect to the difference of Rank(Gs) and Rank(Ge). Now

we introduce a method to decide the axis direction ad and the amount of rotation

θd in the following four cases:

• Rank(Gs) = 0, 1, or 2, Rank(Ge) = 3

• Rank(Gs) = 0, Rank(Ge) = 2

• Rank(Gs) = 1, Rank(Ge) = 2

• Rank(Gs) = 0, Rank(Ge) = 1

Case 1. Rank(Gs) = 0, 1, or 2, Rank(Ge) = 3

As the same manner in a translational case, because Rank(Ge) = 3, the orientation

of the grasping object after the transition is uniquely decided. Therefore, we can

decide ad and θd using orientations Θs, Θe of the grasping object before and after

the transition.

Case 2. Rank(Gs) = 0, Rank(Ge) = 2

Because Rank(Ge) 6= 3, the orientation of the grasping object after the transition

cannot be uniquely decided as shown in Fig. A.3. We decide the direction and the

amount by removing redundant orientation displacement.
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Figure A.4: Redundant orientation displacement in Case 3

Let {a1} be a set of orthonormal bases of a solution space of Equation (A.17) and

{a1,a2,a3} be a set of orthonormal bases of a solution space of Equation (A.16)3.

The two sets share a1.

Let Σa be the coordinate system of which directions of the z-axis, the y-axis,

and the x-axis are equal to a1, a2, and a3, respectively. Let aΘs and aΘe be

3× 3 orthogonal matrices which represent orientations of the grasping object with

respect to the system Σa before and after the transition, respectively.

From the setting, rotation about a1 maintains a contact relation Ce. As shown in

Fig. A.3, the orientation aΘe (the top right of the figure) can be transformed to

the orientation aΘs (the top left of the figure) by the following steps:

1. Rotation about the z-axis while maintaining a contact relation Ce

2. Rotation about an axis m on the xy-plane

As the result, Equation (A.20) is always satisfied, where R∗(θ) is a 3×3 orthogonal

matrix to represent rotation about the ∗-axis by θ radian.

R(m, α)aΘs = Rz(β)aΘe (A.20)

α, β,m can be solved using the equation. Because the first rotation is a redundant

displacement for the transition, the optimal orientation displacement is equal to

R(m, α). Thus, we obtain ad and θd.

3It is equal to the R
3 space.
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Figure A.5: Redundant orientation displacement in Case 4

Case 3. Rank(Gs) = 1, Rank(Ge) = 2

Let {a1} be a set of orthonormal bases of a solution space of Equation (A.17)

and {a1,a2} be a set of orthonormal bases of a solution space of Equation (A.16).

Unfortunately, we cannot always set up the two sets which share a1, i.e., a solution

space of Equation (A.17) is not always a subspace of a solution space of Equation

(A.16). In this section, we deal only with the case where the two sets can be set

up. We describe another case in Section A.6.

Let Σa be the coordinate system of which directions of the y-axis and the z-axis

are equal to a1 and a2, respectively. Let aΘs and aΘe be 3×3 orthogonal matrices

which represent the orientations with respect to the system Σa before and after

the transition, respectively.

The orientation aΘe (the top right of Fig. A.4) can be transformed to the orienta-

tion aΘs (the top left of Fig. A.4) by the steps as shown in Fig. A.4. As a result,

Equation (A.21) is always satisfied.

Rz(α)aΘs = Ry(β)aΘe (A.21)

α, β can be solved using the equation. Because the orientation displacement Ry(β)

is redundant for the transition, the optimal orientation displacement is equal to

Rz(α). Thus, we obtain ad and θd.

Case 4. Rank(Gs) = 0, Rank(Ge) = 1

Let {a1,a2} be a set of orthonormal bases of a solution space of Equation (A.17) and

{a1,a2,a3} be a set of orthonormal bases of a solution space of Equation (A.16).
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The two sets share a1 and a2. Let Σa be the coordinate system of which directions

of the x-axis, the y-axis, and the z-axis are equal to a1, a2, and a3, respectively.

Let aΘs and aΘe be 3 × 3 orthogonal matrices which represent the orientations

with respect to the system Σa before and after the transition, respectively.

The orientation aΘe (the top right of Fig. A.5) can be transformed to the orien-

tation aΘs (the top left of Fig. A.5) by the steps as shown in Fig. A.5. As the

result, Equation (A.22) is always satisfied, where m is on the xy-plane.

Rz(α)aΘs = R(m, β)aΘe (A.22)

α, β,m can be solved using the equation. Because the orientation displacement

R(m, β) is redundant for the transition, the optimal orientation displacement is

equal to Rz(α). Thus, we obtain ad and θd.

A.4.3 Formulating the Relationship Between the Rotation Angle and

the Location

Let t(s) and Θ(s) be the location and the orientation on the trajectory. Θ(s) has

already been decided by the method as mentioned above.

Generally speaking, the configuration which satisfies some contact relation is for-

mulated by one system of non-linear equations as Equation (A.23)[41].

l
⋂

i=1

fi(t(s),Θ(s)) = 0 (A.23)

Only the term Θ(s) yields non-linearity of the equation. Therefore, Equation

(A.23) becomes one system of linear equations when s is decided, because Θ(s) is

constant in this time.

Because a robot is usually controlled at discrete time steps, it is enough to calculate

the configurations which are sufficiently sampled on the trajectory. It is easy to

solve the configuration, even if the solution is redundant.

A.5 Example of Calculation of Optimal Trajectories I

We employed the transitions and the configurations in each contact relation as

shown in Fig. 2.22 in Section 2.8.

The initial object configuration was set up to align depth directions of the peg and

the hole in order to satisfy the condition to be able to set up the sets in Case 3.
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Figure A.6: Optimal trajectory
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Figure A.7: A trajectory obtained from the observation (the left) and the optimal

trajectory (the right)

Figure A.6 shows that the calculated optimal trajectory in VR space. Of course,

the calculation was performed in the 3 dimensional space.

Figure A.7 shows the configurations obtained from the observation (the left of

the figure) and the configurations calculated (the right of the figure) in the fifth

transition (corresponding to a slide sub-skill in rotation in the figure). Sufficient

configurations cannot be obtained from the observation, because of the difficulty of

correcting vision errors, i.e., the non-linear optimization method cannot obtain suf-

ficient configurations. However, the calculation of the optimal trajectory employes

only linear solution. Therefore, the method can obtain sufficient configurations.
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Figure A.8: Edge-face contact

A.6 Problem of the Calculation and its Solution

A.6.1 Over-Approximation With Respect to Formulation of the Legal

Infinitesimal Displacement

Through calculation of the optimal trajectory in various cases, we found out that

the calculation failed when a restricted DOF in rotation translated from 0 to 1 or

from 1 to 3. In this section, we describe the reason and the solution.

Equation (A.1) is the Taylor series of the displacement up to order 1. The dis-

placement is actually formulated as a non-linear equation. Generally speaking, the

linearization sometimes introduces an erroneous solution as mentioned above. And

our proposed method cannot work well, when a restricted DOF is one before or

after the transition.

For example, in an edge-face contact case as shown in Fig. A.8, Equation (A.7)

answers that rotation about an axis of which a direction is represented as a linear

sum of the edge direction and the surface normal of the contacting face maintains

a contact relation. Of course, rotation about an axis of which a direction is equal

to the edge direction or the surface normal (Axis 1 and 2 as shown in Fig. A.8,

respectively) maintains it. However, rotation about the axis except for the two

does not maintain it. That is, Equation (A.7) introduces erroneous solutions. As

a result, calculating the optimal trajectory is failed.

Although we can employ the second order approximation to solve the problem,

we now introduce the easier solution. First we assume that a restricted DOF in

rotation is one, only when the contact relation consists of one edge-face contact

or one face-edge contact only. That is an adequate assumption, because contact

relations where a restricted DOF in rotation is one are usually either these two.

In an edge-face contact case as shown in Fig. A.8, the orientation displacement to

first rotate about Axis 1 by β radian and to next rotate about Axis 2 by α radian

maintains the contact relation. Such a displacement is formulated by Equation
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Figure A.9: Face-edge contact

(A.24), where l and n are directions of Axis 1 and 2, respectively. Note that the

direction of Axis 2 is constant with respect to rotation about Axis 1.

R(n, α)R(l, β) (A.24)

In a face-edge contact case as shown in Fig. A.9, the orientation displacement to

first rotate about Axis I by β radian and to next rotate about Axis II by α radian

maintains the contact relation. Such a displacement is formulated by Equation

(A.25) where n and l are directions of Axis I and II, respectively. Note that the

direction of Axis II is constant with respect to rotation about Axis I.

R(l, α)R(n, β) (A.25)

When a restricted DOF in rotation translates 0 to 1, the axis direction and the

amount of rotation can be calculated by the equation which is obtained by substi-

tuting Equation (A.24) or (A.25) into a term R(m, β) in Equation (A.22). When

the DOF translates 1 to 3, they can be calculated by solving AΘe
aΘ−1

s = Equation

(A.24) or (A.25). Then, we can calculate the optimal trajectory in these two cases.

The optimal trajectory requires us to rotate twice.

A.6.2 Two Sets Cannot Be Set Up in Case 3.

In this section, we consider that the two sets cannot be set up in Case 3 as men-

tioned above. We also assume the same assumption about the restricted DOF in

rotation in the previous section. In an edge-face contact case as shown in Fig. A.8,

rotation about Axis 2 enables a solution space of Equation (A.17) to be a subspace

of a solution space of Equation (A.16). After that, the optimal trajectory is calcu-

lated by applying the method in Case 3. In practical transition, a2 is always equal

to Axis 2. The optimal trajectory can be calculated by only applying the method

in Case 3, where a1 is a basis of Equation (A.17) and a2 is the surface normal.

Note that one does not need rotation about Axis 2 to set up two sets.
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Figure A.10: Optimal Trajectory

As the same way, in a face-edge contact as shown in Fig. A.9, rotation about Axis

II can realize the condition. In practical transition, a1 is always equal to Axis II.

The optimal trajectory calculated by only applying the method in Case 3, where

a1 is a basis of Equation (A.17) and a2 is the surface normal, when the object

orientation is aΘs.

A.6.3 Example of Calculation of Optimal Trajectories II

In this example, the initial object configuration is set up not to align depth direc-

tions of the peg and the hole. Figure A.10 shows the first and second transitions

(Transition (1) and (2) as shown in Fig. 2.22), which clearly illustrate the effect of

the improvement as mentioned above. Note that other transitions are essentially

the same as the previous example.

In this case, because these two transitions require both translational and rotational

displacement, first the optimal rotational displacement is operated and then the

optimal translational displacement is operated4. The calculation is complete when

the restricted DOF in rotation is one before or after the transition.

4The optimal trajectory to simultaneously translate and rotate can be calculated by dealing

with the redundancy of Equation (A.23). However, that is beyond the scope of this thesis.
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Figure A.11: Our test bed

A.7 Implementation on Our Test-Bed

Until the previous section, we described a method to calculate the optimal trajec-

tory. If every object configuration were precisely known and a robot arm could

be perfectly controlled, the task could be achieved by moving the grasping object

along the trajectory. However, because that condition is not usually satisfied, sen-

sor feedback is necessary for achievement of the task. In this section, we describe

an example of implementing sub-skills on our test-bed[72] as shown in Fig. A.11.

It is equipped with dual 7 DOF robot arms (PA-10 produced by Mitsubishi Heavy

Industries, Ltd.[73]) , a hand with multi-fingers at the end of each robot arm,

and multi-baseline real-time stereo vision system[56]. The hand, as shown in Fig.

A.12, consists of four fingers. Each finger has three joints (servo motor produced

by Yasukawa Electric Corp.) and is equipped with a force/torque sensor at the tip.

A.7.1 Control

Because execution errors occur for various reasons (misalignment of objects, etc.),

sensor feedback is necessary to correct such errors.

For easy implementation, we set up the following assumption:

1. Employ the robot hand only for grasping

2. Move the robot arm so slowly that the effect of inertia is sufficiently small

3. Set up appropriate compliance in each finger joint
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Figure A.12: Robot arm

4. Generate only the contact relations and their transitions which have already

been obtained from the observation

5. Know the positional relationship between the grasping object and the hand,

which little changes on the execution

An assembly task is achieved using sub-skills by performing the following steps:

First, the robot obtains the configuration of the environmental object from the

observation. As a result, the robot obtains the optimal trajectories of the grasping

object and the robot arm with respect to the coordinate system of the robot.

Next, the robot executes a sub-skill until its end condition is satisfied. Once the

condition is satisfied, the robot executes the next sub-skills until the task has been

accomplished. We describe the end condition in Section A.7.3.

Each sub-skill is implemented by frequently calling a position-control command.

Note that force-control is also realized using a position-control command. Generally

speaking, a position-control command is implemented on almost all of robot arms.

Let qd(t) be the configuration of a robot arm at step t which is sufficiently sampled

on the optimal trajectory. At step t, the configuration q(t) which is sent to a robot

arm through a position-control command is calculated by Equation (A.26), where

f and fd are the actual value and the desired value of the force/torque sensor,

respectively, and K is a gain parameter. Note that ∆s is a sufficiently small

number to satisfy Condition 2.

q(t) = q(t − 1) + (qd(∆s · t) − qd(∆s · (t − 1)) + K(f − fd) (A.26)

137



����������� �����	��� 
����
������

Figure A.13: Maintaining, detaching, and constraining DOFs in translation

In this implementation, magnitude of force/torque applied to the grasping object is

estimated using a force/torque sensor at the tip of each finger. Unfortunately, the

magnitude of torque cannot be estimated, i.e., we cannot implement the control

using magnitude of torque, because of errors with respect to the grasping position,

etc.

A.7.2 Control to Correct Errors With Respect to Location

In this section, we describe a method to decide parameters K and fd in Equation

(A.26) with respect to the location. Basically, we can decide only signs of the

parameters and cannot decide appropriate magnitude of the parameters. Such

magnitude should be decided from the knowledge acquired through the execution.

While executing a sub-skill, each DOF with respect to translation belongs to one

of maintaining, detaching, and constraining DOFs in translation as shown in Fig.

A.13. In the direction of the basis corresponding to a maintaining DOF, any

small errors are insensitive for the execution. Therefore we do not need to apply

force control to the direction. We should apply force control to the direction of

the basis corresponding to another two DOFs for correcting execution errors. In

the direction of the basis corresponding to a detaching DOF, execution errors are

removed by pushing the grasping object toward the direction corresponding to the

illegal displacement by sufficient small force. Although execution errors do not

always arise in the direction of the basis corresponding to a constraining DOF, we

set up the desired force value to zero, because extra binding force does not arise.

As a result, the parameters are decided by the following rules:

• Not react in the direction of the basis corresponding to a maintaining DOF

• Push the grasping object toward the direction of the illegal displacement by

sufficient small force in the direction of the basis corresponding to a detaching

DOF
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Figure A.14: Make-contact sub-skill

• Not arise force in the direction of the basis corresponding to a constraining

DOF

A.7.3 End Condition

In this section we describe the end condition of sub-skills. In this implementation,

we decide the condition using the value of a force/torque sensor5. All sub-skills are

classified into three types (make-contact, detach-contact, and slide sub-skills) and

the difference among the three is derived by the difference of the end conditions.

End Conditions of Make-Contact and Detach-Contact Sub-Skills

In a make-contact sub-skill as shown in Fig. A.14, reactive force (torque) arises

by contacting a dead-end contact primitive in the end of the sub-skill. Therefore,

we can decide the end when magnitude of a force/torque sensor with respect to

the direction of the basis corresponding to the DOF-transition suddenly increases.

In a detach-contact sub-skill, we can decide the end when the magnitude of a

force/torque sensor suddenly decreases.

End Condition of Slide Sub-Skill

In a slide sub-skill as shown in Fig. A.15, some support contact primitives are

transformed to singular contact primitives at the end of the sub-skill. Now we

focus on the contacting face (the face including the two edges in an edge-edge

contact case) in one of the support contact primitives. In the transformation,

magnitude of a force sensor with respect to the surface normal suddenly decreases.

Therefore, we can decide the end using this decrease. However, we should consider

5Kitagaki et al. decide the condition by monitoring motion of pseudo contact points, which can

be calculated the difference of the value of a force/torque sensor[74]. Shimokura and Mutoh decide

the condition by motion of the grasping object which is compliant to environmental constraint[75].
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Figure A.15: Slide sub-skill

that such a decrease also occurs in the case to fail to maintain the contact relation,

which is not the end.

One method to solve the ambiguity is to employ visual feedback when decreasing

the magnitude. However, it is difficult to classify these two types of decreases if

the observation is poor. An easier method to solve the ambiguity is to call the next

sub-skill in the meantime. If the decrease is not caused by the end, the magnitude

suddenly increases after a brief interval, because the next sub-skill can be executed

during a brief duration (See Fig. A.15).

A.8 Experiment

For verifying our sub-skill implementation, we made our test-bed execute the peg-

insertion as shown in Fig. A.16, which looks like a two dimensional case. Although

it is preferable to verify the implementation using three dimensional peg-insertion,

we select the peg-insertion to satisfy Condition 4, i.e., to satisfy the following

condition:

• Minimize an amount of increase of restricted DOFs every transition

• Translate only the contact relation obtained from the observation

In three dimensional peg-insertion, the possibility not to satisfy the second con-

dition (For example the peg passes through the top of the hole.) is very high.

Inversely, in the case to guarantee that these two conditions are always satisfied,

the difficulty of two types of peg-insertion are equivalent to each other, i.e., our
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Figure A.16: Robot execution

test-bed can achieve these tasks. Of course, motion of sub-skills is not limited to

planar motion. Figure A.16 shows the actual execution by our test-bed.

In this experiment, magnitude of a desired force fd and a gain K are manually set

up by trial and error. Figure A.17 shows the force along the vertical direction at

each time, when first executing a make-contact sub-skill and next executing a slide

sub-skill (A top part of Fig. A.16). The desired force was set up to 50[gf], which

is shown by the dotted line in Fig. A.17.

At about 5.2[s], a force/torque sensor detected the sudden increase and the robot

decided the end of a make-contact sub-skill. After that, the value of the force was

steadily converged to the desired value 50[gf]. At about 15.4[s], the robot detected
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Figure A.17: Force sensor date from the 1st sub-skill to the 3rd sub-skill

the end of a slide sub-skill from the decrease caused by the transformation from the

edge-face contact to the parallel edge-edge contact and executed the next sub-skill.

Because the transition is not a critical transition, i.e., the process of the task is

insensitive to the small execution errors, the next sub-skill was executed without

any exception.

Figure A.18 shows the force along the vertical direction at each time, when first

executing a slide sub-skill in rotation and next executing a make-contact sub-skill

(A middle part of Fig. A.16).

This transition is a critical transition, i.e., the process of the task is sensitive to the

execution errors. The robot decided the end of a slide sub-skill from the decrease at

(a), (b), (c), and (d) in Fig. A.16 and called the next make-contact sub-skill in the

meantime. However, the sudden reactive force occurred6, because of incomplete

orientation alignment for the insertion. Then the robot summed up the failure to

detect the end and re-executed the slide sub-skill.

The robot decided the end from the decrease at (e) in Fig. A.16 again. In this

time, the reactive force did not suddenly occur. Therefore the robot continued

to execute the sub-skill. However, slightly incomplete orientation alignment im-

mediately increased binding force as shown in the figure. In this experiment, the

increase was caused by not applying feedback using torque.

6In this experiment, that means the reactive force was detected within 1[s].
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Figure A.18: Force sensor data in “slide in rotation” sub-skill

A.9 Discussion

A.9.1 Skill-Based Manipulation System

In this thesis, we adopt the concept of the Skill-Based Manipulation System[76, 77,

75, 78], which deal with assembly tasks. In this section, we describe the similarity

and difference between the past research and our method. Suehiro and Takase

first classified any contact relations based on the number of the point-contact, and

next introduced movement primitives from the transitions of the class of contact

relations. Note that they deal only with planar motion and they claim that any

motion in the task locally can be represented as planar motion[76]. They proposed

the following seven movement primitives:

• Move-to-touch (Make-contact sub-skill from the contact relation with no con-

tact primitive)

• Slide-to-touch (Make-contact sub-skill in translation from any contact rela-

tion except for the contact relation with no contact primitive)

• Vertex-to-edge (Type I make-contact sub-skill in rotation)

• Rotate-to-touch (Type II make-contact sub-skill in rotation)

• Change (1. Slide sub-skill in translation and then make-contact or slide sub-

skill in translation, or 2. slide sub-skill in rotation and then make-contact or
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Figure A.19: “Go over” skill and “change” skill

slide sub-skill in rotation)

• Go-over (1. Slide sub-skill in translation and then make-contact or slide sub-

skill in translation, or 2. slide sub-skill in rotation and then make-contact or

slide sub-skill in rotation)

• Rotate-to-insert (Slide sub-skill in rotation and then make-contact or slide

sub-skill in translation)

The corresponding sub-skills are shown between parentheses.

The differences between the movement primitives proposed by them and our sub-

skills are as follows:

• Some kinds of the movement primitives consist of a pair of a slide sub-skill

and one sub-skill.

• Change (change in Fig. A.19) and Go-over (go over in Fig. A.19) is mapped

into the same sequence of sub-skills.

• There is not the movement primitive which consists of a slide sub-skill in

translation and then a make-contact or slide sub-skill in rotation. In actually,

this combination seldom appears.

With the exception of a few differences, these two are very similar to each other.

Therefore our sub-skills are very flexible to apply the result of past research.

A.9.2 Control to Remove Errors With Respect to Orientation

Each DOF with respect to the axis direction of rotation, i.e., an orientation belongs

to one of maintaining, detaching, and constraining DOFs in rotation as shown in
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Figure A.20: Maintaining, detaching, and constraining DOFs in rotation
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Figure A.21: Control with respect to axis direction of rotation corresponding to

Type I detaching DOF

Fig. A.20. As the same manner in the location case, feedback by torque should be

applied to the axis direction corresponding to detaching and constraining DOFs.

In the axis direction corresponding to a constraining DOF, the desired torque value

is set up to zero, because extra binding force does not arise.

As shown in Fig. A.20, there are two types of detaching DOFs. One is the Type

I detaching DOF and the object can rotate about the axis both clockwise and

counter-clockwise (See Fig. A.20 (a)); the other is the Type II detaching DOF and

the object can rotate about the axis either clockwise or counter-clockwise (See Fig.

A.20 (b)). In the latter type, execution errors are corrected by twisting the object

toward the direction corresponding to the illegal displacement by a sufficiently small

torque. In the former type, because unexpected torque arises when detaching one

of contact primitives, we set up the desired torque to zero (See Fig. A.21).

Furthermore, we should consider the set up of the center of compliance. Shimizu

and Kosuge proposed a method to formulate the valid area of the center as simul-
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taneous linear inequalities[79]. Their method only deals with planar motion, but it

is possible to improve the method to deal with 3 dimensional motion, we believe.

A.9.3 Improvement of Sub-Skill Implementation

It is strongly desirable to improve present sub-skill implementation. In the section,

we describe our improvement.

First, the assumption to generate only the contact relations and their transitions

which has already been obtained from the observation is not usually satisfied. For

example, the peg is directly inserted to the hole in the peg-insertion. To eliminate

the assumption, we need to solve the following three questions:

1. What kind of an unexpected contact relation occurs because of execution

errors?

2. How is the unexpected contact relation detected?

3. What kind of a sub-skill is executed for returning to the planned transition.

With respect to the first question, several methods exist to search the neighbor

contact relations to some contact relation[32, 33]. Although almost all of these

methods employ the non-linear optimization method, we propose a method to

speed up the method by giving a better initial guess in Chapter 3.

With respect to the second question, Yu et al. proposed the method to estimate a

present contact relation by slightly moving the grasping object[80]. It is possible

to efficiently estimate by predicting unexpected contact relations in advance, we

believe.

With respect to the third question, it is easy to select an appropriate sub-skill to

return, if the second question is solved. It is essential to implement these three to

improved the execution.

In this thesis, we do not consider a method to decide magnitude of the gain param-

eter or the desired force/torque values. For example, Matsuoka et al. proposed the

method to obtain the appropriate parameters through repetition of the task[81].

However, the method requires the preparation of two modules to detect the failure

of the task and to adjust the parameters to avoid the failure in advance. These

modules are manually implemented for each task and the method to automatically

generate the two modules has not been developed yet. To estimate an unexpected

contact relation overcomes the problem, we believe.
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Appendix B

Formulating Legal Displacement using the

Second Order Approximation

In this appendix, we describe how to formulate legal displacement for any contact

relations using the second order approximation. For this purpose, we must formu-

late the approximation for all point-contact primitives and singular point-contact

primitives which include at least one singular object primitive. Unfortunately, we

have not formulated legal displacement in a few singular point-contact primitives

yet. This formulation is an outstanding problem.

We begin by defining singular object primitives. Next, we describe how we formu-

late legal displacement in all contact primitives which have not been formulated in

Chapter 3. Although, we have not been completely able to examine the validity

and the efficiency of the formulation, the basic ideas which we illustrate in this

appendix are very useful, we believe. In this appendix, we concentrate on formu-

lating legal displacement. Although the approximations are different depending on

the types of displacement, it is easy to formulate other types of displacement by

applying the results described in this appendix.

B.1 Singular Object Primitives

The representation for a curved line as mentioned in Chapter 3 is assumed to be

able to define tangent and principle normals at a point xc. However, if a point

xc is on a vertex, these cannot be defined. In this case, we determine these two

values using limit values from either below or above. Of course, the equation is

meaningful when either l ≥ 0 or l ≤ 0. We define this curved line as a half edge.

In this case, we set up t along the edge from the vertex. Therefore the equation is
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Figure B.1: Definition of n⊥i

meaningful when l ≥ 0.

In the representation for a curved surface, we should pay attention when a point

xc is on an edge or a vertex. If the point is on an edge except for a vertex, this

face is define as a half face. A half face can be represented by the same equation,

but the range of a point x on the face is limited by x · n⊥ ≥ 0. Let two faces f1

and f2 be adjacent to an edge e. n⊥i(i = 1 or 2) is defined as Equation (B.1) (See

Fig. B.1). Note that an edge e is convex.

n⊥i =







ni × t ((ni × t) · n2−i < 0)

−ni × t ((ni × t) · n2−i > 0)
(B.1)

If the point is on a vertex, this face fi is defined as a quarter face. A quarter face

can be represented by the same equation, but the range of a point x on the face is

limited by w1 ≥ 0 and w2 ≥ 0, where x−xc = w1ti−1 +w2ti +w3ni. w1 and w2 are

calculated by Equation (B.2). Note that ti−1 · ni = 0, ti · ni = 0, and ti−1 6= ±ti,

i.e., the inverse matrix b−1
i−1,i always exists.





w1

w2



 = b−1
i−1,i





ti−1 · (x− xc)

ti · (x − xc)



 (B.2)

bi−1,i =





1 ti−1 · ti

ti−1 · ti 1





We define these three as singular object primitives.

B.2 Formulating Legal Displacement

As mentioned in Chapter 3, if the approximation for A-B contact has already been

formulated, the approximation for B-A contact is easily formulated. Therefore, we

concentrate on only A-B contact below.
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Figure B.2: Six penetration cases in a vertex-edge contact

B.2.1 Point-Contact Primitives

Vertex-Edge Point-Contact

Consider the case that a vertex v contacts an edge E at a point xc. We formulate

the legal displacement by inverting the illegal displacement. If two objects locally

penetrate each other after the displacement, a part of object primitives of the

moving object is inside the fixed object. Concretely, at least one of the following

six conditions must be satisfied (See Fig. B.2):

1. One adjacent half edge ei of a vertex v penetrates some adjacent half face Fj

of an edge E, where Fj(d(xc)) < 0.

2. One adjacent half edge ei of a vertex v penetrates some adjacent half face Fj

of an edge E, where Fj(d(xc)) ≥ 0.

3. One adjacent half edge ei of a vertex v penetrates an edge E, where a vertex

v is inside the fixed object.

4. One adjacent half edge ei of a vertex v penetrates an edge E, where a vertex

v is not inside the fixed object.

5. One adjacent quarter face fi of a vertex v penetrates an edge E.

6. One adjacent quarter face fi of a vertex v penetrates some adjacent half face

Fj of an edge E.

First we consider Condition 1. Positional relationship between the half edge and

the half face is classified into the following three types, where Proj(a,b) = a− (a ·

b)b and Nsep =
N⊥1 + N⊥2

|N⊥1 + N⊥2|
. (See Fig. B.3):

• Proj(ti,Nsep) · Proj(N⊥j ,Nsep) > 0 (Fig. B.3 (a))
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Figure B.3: Positional relationship between a half edge and a half face

• Proj(ti,Nsep) · Proj(N⊥j,Nsep) = 0 (Fig. B.3 (b))

• Otherwise (Fig. B.3 (c)),

In the first case, the penetration condition is formulated by Equation (B.3).

∆eiE < 0 ∩ ∆vFj
< 0 (B.3)

We omit a description of the method to set up l′(0) and L′(0) in ∆eiE, because the

method is the same as that described in Chapter 3.

In the second type, ∆eiE cannot be employed because the outward normal cannot

be defined. In this case, both ±ti × T are inward or outward to the fixed object.

However, we can formulate the displacement as Equation (B.4).

∆vF1
< 0 ∩ ∆vF2

< 0 (B.4)

In reality, this penetration is equivalent to the penetration in Condition 3.

We consider the third type. Because of the convexity of a vertex, the angle between

ti and ti+1 is less than 180 degrees for all i. As a result, another edge of which the

positional relationship to the half face is the first type always exists and obviously

penetrates the half face. Therefore we do not need to consider the third type.

Next we consider Condition 2. Such a penetration requires us to satisfy Equation

(B.5).

ti ·Nj = 0 (B.5)

Conversely, if the equation is satisfied, we should consider the condition that a

half edge ei penetrates a half face Fj. The condition is formulated below.

Because we have already considered Condition 3, we next consider Condition 4.

Realizing the penetration requires us to satisfy Equation (B.6).

ti × T = 0 (B.6)
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Conversely, if the equation is satisfied, we should consider the penetration. In this

case, the penetration is formulated by Equation (B.7).

2
⋂

j=1

leiFj
> 0 ∩ ∆eiFj

< 0 (B.7)

We do not describe the method to set up l′(0) in ∆eiFj
. The equation means that

a half edge ei penetrates two faces that have the same equations as two half faces

F1 and F2. Section B.2.2 concretely describes the formulation for a half edge-face

point-contact.

Then we consider Condition 5. Condition 5 is usually accompanied by Conditions

1 or 2. For occurrence of Condition 5 only, Equation (B.8) must be satisfied.

ni · T = 0 (B.8)

Conversely, if the equation is satisfied, we should consider the condition that a

quarter face fi penetrates an edge Ej. The condition is formulated below.

Finally we consider Condition 6. Condition 6 is also usually accompanied by at

least one of Condition 1, 2, and 5. For occurrence of Condition 6 only, Equation

(B.9) must be satisfied.

ni × Nj = 0 (B.9)

Conversely, if the equation is satisfied, we should consider the condition that a

quarter face fi penetrates a half face Fj . The condition is formulated below.

As a result, if all penetration conditions are represented by a union of Equation

(B.3), the legal displacement is formulated by Equation (B.10). For other cases,

we can easily formulate the displacement.

⋂

i,j

(∆eiE ≥ 0 ∪ ∆vFj
≥ 0) (B.10)

Vertex-Vertex Point-Contact

Consider the case that a vertex v contacts a vertex V at the point xc. Basically

speaking, the legal displacement in a vertex-vertex contact can be formulated as the

same way as a vertex-edge contact. If two objects locally penetrate each other after

the displacement, at least one of the following seven conditions must be satisfied:

1. One adjacent half edge ei of a vertex v penetrates some adjacent quarter face

Fj of a vertex V , where Fj(d(xc)) < 0.
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2. One adjacent half edge ei of a vertex v penetrates some adjacent quarter face

Fj of a vertex V , where Fj(d(xc)) ≥ 0.

3. One adjacent half edge Ej of a vertex V penetrates some adjacent quar-

ter face fi of a vertex v, where fi(d(xc)) < 0.

4. One adjacent half edge Ej of a vertex V penetrates some adjacent quar-

ter face fi of a vertex v, where fi(d(xc)) ≥ 0.

5. One adjacent half edge ei of a vertex v penetrates some adjacent half edge

Ej of a vertex V , where a vertex v is inside the fixed object.

6. One adjacent half edge ei of a vertex v penetrates some adjacent half edge

Ej of a vertex V , where a vertex v is not inside the fixed object.

7. One adjacent quarter face fi of a vertex v penetrates some adjacent quar-

ter face Fj of a vertex V .

Each condition is similar to the corresponding condition in a vertex-edge case.

First, we consider Condition 1. The positional relationship between these two is

updated as follows:

• w1 · w2 > 0

• w1 = 0

• w2 = 0

• otherwise,

where




w1

w2



 = B−1
j−1,j





ti ·Tj−1

ti · Tj





Bj−1,j =





1 Tj−1 ·Ti

Tj−1 ·Ti 1



 .

In the first type, the penetration condition is formulated by Equation (B.11).

∆eiEj−1
< 0 ∩ ∆eiEj

< 0 ∩ ∆vFj
< 0 (B.11)

In the second type, the penetration condition is formulated by Equation (B.12).

∆vFj−1
< 0 ∩ ∆vFj

< 0 (B.12)
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In the third type, the penetration condition is formulated by Equation (B.13).

∆vFj
< 0 ∩ ∆vFj+1

< 0 (B.13)

Actually, these two types of penetration are equivalent to the penetration in Con-

dition 5. As the same manner in Condition 1 of a vertex-edge contact, we do not

need to consider the fourth type.

If Equation (B.5) is satisfied, we should consider Condition 2, i.e., a half edge ei

penetrates a quarter face Fj .

Next, we consider Condition 3. As the same way in Condition 1, the positional

relationship between these two is classified as follows:

• W1 · W2 > 0

• W1 = 0

• W2 = 0

• otherwise,

where




W1

W2



 = b−1
i−1,i





ti−1 · Tj

ti · Tj



 .

In the first type, the penetration condition is formulated by Equation (B.14).

∆ei−1Ej
< 0 ∩ ∆eiEj

< 0 ∩ ∆fiV < 0 (B.14)

In the second type, the penetration condition is formulated by Equation (B.15).

∆fi−1V < 0 ∩ ∆fiV < 0 (B.15)

In the third type, the penetration condition is formulated by Equation (B.16).

∆fiV < 0 ∩ ∆fi+1V < 0 (B.16)

Actually, these two types of penetration are equivalent to the penetration in Con-

dition 5. As the same manner in Condition 1 of a vertex-edge contact, we do not

need to consider the fourth type.

If Equation (B.17) is satisfied, we should consider Condition 4, i.e., a half edge Ej

penetrates a quarter face fi.

ni · Tj = 0 (B.17)
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We have already considered Condition 5.

As the same manner in Condition 4 of a vertex-edge contact, we should consider

Condition 6, if Equation (B.18) is satisfied.

ti × Tj = 0 (B.18)

Such a penetration is formulated as Equation (B.19).

leiFj
> 0 ∩ LeiFj

> 0 ∩ ∆eiFI
< 0

∩ leiFj+1
> 0 ∩ LeiFj+1

> 0 ∩ ∆eiFII
< 0 (B.19)

The equation means that a half edge ei penetrates two half faces FI and FII . The

half face FI has the same equation as a quarter faces Fj and its boundary is an

expansion of a half edge Ej−1. As the same manner, the half face FII has the same

equation as a quarter faces Fj+1 and its boundary is an expansion of a half edge

Ej+1. Section B.2.2 concretely describe the formulation for a half edge-half face

point-contact.

If Equation (B.9) is satisfied, we should consider Consider 7, i.e., a quarter face

fi penetrates a quarter face Fj . These two penetration conditions are formulated

below.

As a result, if all penetration conditions are represented by a union of Equation

(B.11) and (B.14), the legal displacement is formulated by Equation (B.20). For

another cases, we can easily formulate the displacement.

⋂

i,j

(∆eiEj−1
≥ 0 ∪ ∆eiEj

≥ 0 ∪ ∆vFj
≥ 0)

∩
⋂

i,j

(∆ei−1Ej
≥ 0 ∪ ∆eiEj

≥ 0 ∪ ∆fiV ≥ 0) (B.20)

B.2.2 Singular Point-Contact

Half Edge-Face Point-Contact

Consider the case that a half edge ei contacts a face F at a point xc as shown in

Fig. B.4. In this case ti · N = 0 must be satisfied. This contact is accompanied

by a vertex-face point-contact. Note that the vertex-face point-contact has already

been included in the legal displacement condition in normal use. In contrast to an

edge-face point-contact case, we should consider the range of l in this case.

We formulate a not-penetration condition, i.e., the legal displacement, by inverting

a penetration condition. First, we consider the case that kiN · pi + tT
i Mti 6= 0.
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Figure B.5: An edge-edge point-contact and an edge-half face point-contact

As mentioned above, leiF is calculated by Equation (3.37) in an edge-face contact

case. Because the vertex is not inside the fixed object, the penetration requires

leiF > 0, which means that the point which minimizes ∆eiF is on the half edge

(See Fig. B.4). Of course, the penetration requires ∆eiF |l′(0)=leiF
< 0. As the

result, a not-penetration condition is formulated by Equation (B.21). Note that

leiF is linear with respect to s1 and s2.

leiF ≤ 0 ∪ ∆eiF |l′(0)=leiF
≥ 0 (B.21)

Next, we consider the case that kiN ·pi + tT
i Mti = 0. In this case, Equation (3.36)

is constant with respect to l′(0), and its value is uniquely decided from s1 and s2.

Because the vertex is not inside the fixed object, the penetration requires Equation

(3.36) < 0, which means that the bigger l′(0) becomes, the less ∆eiF becomes. As

a result, a not-penetration condition is formulated by Equation (B.22).

N · (s1 × ti) + tT
i M(s1 × xc + s2) ≥ 0 (B.22)
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Edge-Half Face and Edge-Quarter Face Point-Contacts

Consider the case that an edge e contacts a half face Fj at a point xc as shown in

Fig. B.5. In this case t · Nj = 0 must be satisfied. This contact is accompanied

to an edge-edge point-contact. Note that the edge-edge point-contact has already

been included in the legal displacement condition in normal use. In contrast to an

edge-face point-contact case, we should consider that the domain of Fj(X), i.e.,

L⊥ = (e(l) − xc) ·N⊥j ≥ 0.

The derivative of L⊥ with respect to ∆θ is represented by Equation (B.23).

L′
⊥ =

(

e′(l) +
∂e(l)

∂l
l′
)

·N⊥j (B.23)

By substituting ∆θ = 0 to Equation (B.23), Equation (B.24) is obtained.

L′
⊥(0) = (s1 × xc + s2 + tl′(0)) ·N⊥j (B.24)

Now we consider the case that kNj · p + tT Mjt 6= 0. In an edge-face contact case,

l′(0) = leFj
. By substituting lejF to l′(0) in Equation (B.24), Equation (B.25) is

obtained.

LeFj
= (s1 × xc + s2 + tleFj

) ·N⊥j (B.25)

Note that LeFj
is linear with respect to s1 and s2, because leFj

is linear with respect

to these two.

Because the distance between the two edges is not less than zero, the penetration

requires LeFj
> 0. Of course, the penetration requires ∆eFj

|l′(0)=leFj
< 0. As the

result, a not-penetration condition is formulated by Equation (B.26).

LeFj
≤ 0 ∪ ∆eFj

|l′(0)=leFj
≥ 0 (B.26)

Next, consider the case that an edge e contacts a quarter face Fj at a point xc. In

this case t ·Nj = 0 must also be satisfied and we should consider that the domain

of Fj(X), i.e., W1 > 0 and W2 > 0 must be satisfied after the displacement, where

ed(l) − xc = W1Tj−1 + W2Tj + W3Nj . (B.27)

By substituting ∆θ = 0 to the derivative of Equation (B.27) with respect to ∆θ,

Equation (B.28) is obtained.

(

e′(l) +
∂e(l)

∂l
l′
)

= W ′
1(0)Tj−1 + W ′

2(0)Tj + W ′
3(0)Nj (B.28)
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In this case, l′(0) = leFj
. Because W1(0) = W2(0) = 0, W ′

1(0) > 0 and W ′
2(0) > 0

must be satisfied. From Equation (B.28), W ′
1(0) and W ′

2(0) are solved by Equation

(B.29).




W ′
1(0)

W ′
2(0)



 = B−1
j−1,j





(s1 × xc + s2 + tleFj
) ·Tj−1

(s1 × xc + s2 + tleFj
) ·Tj



 (B.29)

Note that W ′
1(0) and W ′

2(0) is linear with respect to s1 and s2, because Bj−1,j is

constant and leFj
is linear with respect to these two.

Of course, the penetration requires ∆eFj
|l′(0)=leFj

< 0. As the result, a not-

penetration condition is formulated by Equation (B.30).

W ′(0) ≤ 0 ∪ W ′(1) ≤ 0 ∪ ∆eFj
|l′(0)=leFj

≥ 0 (B.30)

We have not formulated the legal displacement yet in the two point-contact prim-

itives, when kNj · p + tT Mjt = 0. The formulation is an outstanding problem.

Fortunately, the cases seldom appear.

Half face-Face and Quarter face-Face Point-Contacts

Consider the case that a half face fi contacts a face F at a point xc. In this

case ni × N = 0 must be satisfied. This contact is accompanied by an edge-

face point-contact. Note that the contact has already been included in the legal

displacement condition in normal use. In contrast to a face-face point-contact

case, we should consider that the domain of fi(x) after the displacement, i.e.,

x⊥ = (x − d(xc)) · (Rn⊥i) ≥ 0.

The derivative of x⊥ with respect to ∆θ is represented by Equation (B.31).

x′
⊥ = (x′ − d′(xc)) · (Rn⊥i) + (x − d(xc)) · (R

′n⊥i) (B.31)

By substituting ∆θ = 0 to Equation (B.31), Equation (B.32) is obtained.

x′
⊥(0) = (x′(0) − (s1 × xc + s2)) · n⊥i (B.32)

In a face-face point-contact case, x′(0) = xmin in Equation (3.46). By substituting

xmin to x′(0) in Equation (B.32), Equation (B.33) is obtained.

xfiF = −((mi + M)−1(M(s1 × xc + s2) + N × s1)) · n⊥i (B.33)

Note that xfiF is linear with respect to s1 and s2.
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Because the distance between the two edges is not less than zero, the penetration

requires xfiF > 0. Of course, it requires ∆fiF |x′(0)=xmin
< 0. As the result, a

not-penetration condition is formulated by Equation (B.34).

xfiF ≤ 0 ∪ ∆fiF |x′(0)=xmin
≥ 0 (B.34)

Next, consider the case that a quarter face fi contacts a face F at a point xc.

In this case ni × N = 0 must also be satisfied. Let two edges ei−1 and ei be

adjacent to a quarter face fi. Then, we should consider the domain of fi(x) after

the displacement, i.e., w1 > 0 and w2 > 0, where

x − d(xc) = w1Rti−1 + w2Rti + w3Rni. (B.35)

The derivative of Equation (B.35) with respect to ∆θ is represented by Equation

(B.36).

x′ − d′(xc) = w′
1Rti−1 + w1R

′ti−1

+ w′
2Rti + w2R

′ti + w′
3Rni + w3R

′ni (B.36)

By substituting ∆θ = 0 to Equation (B.36), Equation (B.37) is obtained. Note

that w1(0) = w2(0) = w3(0) = 0.

x′(0) − (s1 × xc + s2) = w′
1(0)ti−1 + w′

2(0)ti + w′
3(0)ni (B.37)

In this case, x′(0) = xmin. Because w1(0) = w2(0) = 0, w′
1(0) > 0 and w′

2(0) > 0

must be satisfied. From Equation (B.37), w′
1(0) and w′

2(0) are solved by Equation

(B.38).





w′
1(0)

w′
2(0)



 = b−1
i−1,i





−((mi + M)−1(M(s1 × xc + s2) + N × s1) · ti−1

−((mi + M)−1(M(s1 × xc + s2) + N × s1) · ti





(B.38)

Note that w′
1(0) and w′

2(0) is linear with respect to s1 and s2, because bi−1,i is

constant.

Of course, the penetration requires ∆fiF |x′(0)=xmin
< 0. As the result, a not-

penetration condition is formulated by Equation (B.39).

w′
1(0) ≤ 0 ∪ w′

2(0) ≤ 0 ∪ ∆fiF |x′(0)=xmin
≥ 0 (B.39)
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Half Face-Half Face and Quarter Face-Half Face Point-Contacts

Consider the case that a half face fi contacts a half face Fj at a point xc. In this

case, ni ×Nj = 0 must be satisfied. This contact is accompanied by an edge-edge

point-contact in normal use. The contact has already been included in the legal

displacement condition, i.e., the distance between the two edges is not less than

zero. First the penetration requires Equation (B.33) > 0, considering the domain

of fi(x).

Now we consider the domain of Fj(X). Then we should consider the sign of Equa-

tion (B.40).

X⊥ = X ·N⊥j (B.40)

By substituting ∆θ = 0 to the derivative of Equation (B.40) with respect to ∆θ,

Equation (B.41) is obtained.

X ′
⊥(0) = X′(0) ·N⊥j (B.41)

By substituting xmin to X′(0) in Equation (B.41), Equation (B.42) is obtained.

XfiFj
= xmin · N⊥j (B.42)

The penetration requires XfiFj
> 0 and ∆fiFj

|x′(0)=xmin
< 0. As the result, the

not-penetration condition is formulated by Equation (B.43).

xfiFj
≤ 0 ∪ XfiFj

≤ 0 ∪ ∆fiFj
|x′(0)=xmin

≥ 0 (B.43)

Next, consider the case that a quarter face fi contacts a half face Fj at a point

xc. In this case, ni ×Nj = 0 must also be satisfied. First the penetration requires

w′
1(0) > 0 and w′

2(0) > 0, considering the domain of fi(x). These two terms are

calculated by Equation (B.38).

Next the domain of Fj(X), XfiFj
> 0 and ∆fiFj

|x′(0)=xmin
< 0 are must be satisfied.

As the result, the not-penetration condition is formulated by Equation (B.44).

w′
1(0) ≤ 0 ∪ w′

2(0) ≤ ∪XfiFj
≤ 0 ∪ ∆fiFj

|x′(0)=xmin
≥ 0 (B.44)

Half Edge-Half Face and Half Edge-Quarter Face Point-Contacts

Consider the case that a half edge ei contacts a half face Fj at a point xc. In

this case, ti · Nj = 0 must be satisfied. This contact is accompanied by a vertex-

edge or vertex-vertex point-contact. We only need to formulate the penetration,

where the half edge penetrates the fixed object and the vertex which is its terminal
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is not inside the fixed object. Unfortunately, we have not formulated the legal

displacement in the case kiNj · pi + tT
i Mjti = 0. Therefore, we assume that

kiNj · pi + tT
i Mjti 6= 0.

From the penetration condition, Equation (B.45) must be satisfied.

leiFj
> 0 (B.45)

Because the half edge penetrates the half face, Equation (B.46) must be satisfied.

Note that this condition is equal to the condition that an edge must penetrate a

half face.

LeiFj
> 0 ∩ ∆eiFj

|l′(0)=leiFj
< 0 (B.46)

As a result, such a penetration condition is formulated by Equation (B.47).

leiFj
> 0 ∩ LeiFj

> 0 ∩ ∆eiFj
|l′(0)=leiFj

< 0 (B.47)

Next, consider the case that a half edge ei penetrates a quarter face Fj at a point

xc. In this case, ti · Nj = 0 must be satisfied. This contact is also accompanied

by a vertex-edge or vertex-vertex point-contact and we only need to formulate the

penetration, where the half edge penetrates the fixed object and the vertex which

is its terminal is not inside the fixed object. Let an edge Ej−1 and Ej be adjacent

to a quarter face Fj . Because the half edge penetrates the quarter face, Equa-

tion (B.48) must be satisfied, where W ′
1(0) and W ′

2(0) is calculated by Equation

(B.29). Note that this condition is equal to the condition that an edge penetrates

a quarter face.

W ′
1(0) > 0 ∩ W ′

2(0) > 0 ∩ ∆eiFj
< 0 (B.48)

As a result, such a penetration condition is formulated by Equation (B.49).

leiFj
> 0 ∩ W ′

1(0) > 0 ∩ W ′
2(0) > 0 ∩ ∆eiFj

< 0 (B.49)

Quarter Face-Quarter Face Point-Contact

Consider the case that a quarter face fi contacts a quarter face Fj at a point xc.

In this case, ni × Nj = 0 must be satisfied. This contact is also accompanied by

a vertex-edge or vertex-vertex contact. We only need to formulate the penetration

where a quarter face fi locally penetrates a quarter face Fj of the fixed object and

the adjacent half edges and vertex are not inside the object.

Let edge ei−1 and ei be adjacent to a quarter face fi. Considering the domain of

fi(x) after the displacement, Equation (B.50) must be satisfied, where w′
1(0) and
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w′
2(0) is calculated by Equation (B.38).

w′
1(0) > 0 ∩ w′

2(0) > 0 (B.50)

Let edge Ej−1 and Ej be adjacent to a quarter face Fj . Next we consider the do-

main of Fj(X). Then W1 > 0 and W2 > 0 must be satisfied after the displacement,

where

X− xc = W1Tj−1 + W2Tj + W3Nj . (B.51)

By substituting ∆θ = 0 to the derivative of Equation (B.51) with respect to ∆θ,

Equation (B.52) is obtained.

X′(0) = W ′
1(0)Tj−1 + W ′

2(0)Tj + W ′
3(0)Nj (B.52)

In this case, X′(0) = xmin. Because W1(0) = W2(0) = 0, W ′
1(0) > 0 and W ′

2(0) > 0

must be satisfied. From Equation (B.52), W ′
1(0) and W ′

2(0) are solved by Equation

(B.53).




W ′
1(0)

W ′
2(0)



 = B−1
j−1,j





xmin ·Tj−1

xmin ·Tj



 (B.53)

Note that W ′
1(0) and W ′

2(0) is linear with respect to s1 and s2, because Bj−1,j is

constant and xmin is linear with respect to these two.

Of course ∆fiFj
< 0 must be satisfied. As a result, the penetration condition is

formulated by Equation (B.54).

w′
1(0) > 0 ∩ w′

2(0) > 0 ∩ W ′
1(0) > 0 ∩ W ′

2(0) > 0 ∩ ∆fiFj
< 0 (B.54)

B.3 Summary of Formulation

The approximations with respect to the legal displacement are classified into the

following two types:

• The equation is represented by a product of the some components as Equation

(B.55) (referred to as a basic form).

⋂

i

gi(s1, s2, s3, s4,∆θ) ≥ 0 (B.55)

• The equation is represented by a union of some basic forms as Equation

(B.56).
⋃

i

⋂

j

gij(s1, s2, s3, s4,∆θ) ≥ 0 (B.56)
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The legal displacement in a basic contact relation can be represented by a basic

form. Contact relations where the legal displacement cannot be represented by

a basic form are very unstable like singular contact relations in Chapter 2. The

contact relations instantaneously appear through an assembly task.

Furthermore, each component gi(s1, s2, s3, s4,∆θ) is classified into the following

two types:

• Include a term ∆θ (for example, ∆vF )

• Not include the term (for example, leF )

The former component is represented as Equation (B.57) as mentioned in Chapter

3.

gi =





xi × ni

ni



 ·





s1

s2



∆θ +









xi × ni

ni



 ·





s3

s4



+ hi(s1, s2)





∆θ2

2

(B.57)

The latter component is represented as Equation (B.58).

gi =





w1i

w2i



 ·





s1

s2



 (B.58)

The latter component appears if, and only if, the contact relation includes some

singular point-contact primitives. Fortunately, the latter component is similar to

a coefficient of ∆θ of the former component. That similarity is useful to solve

Equation (B.55) and (B.56).
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Appendix C

Convert Second Order Screw Representation

to Object Configuration

Now we assume that the axis direction is constant to an rotation angle θ, that is,

one of the screw vector s3 is equal to zero. Given the screw vector, we introduce the

transformation matrix [Θ(θ), t(θ)], where θ is an amount of rotation, Θ(θ) is a 3×3

orthogonal matrix which represents the transformation with respect to orientation,

and t(θ) is a three-dimensional vector which represents the transformation with

respect to location.

From the screw vector, the axis direction of rotation a, the initial position of the

instantaneous center of rotation c(0) and the derivative of the position c′(0) with

respect to θ on θ = 0 can be calculated, where c(0) · a = 0 and c′(0) · a = 0. Of

course, Equation (C.1) is always satisfied, where R(a, θ) represent rotation about

the axis a by θ radian.

Θ(θ) = R(a, θ) (C.1)

Therefore, we have only to solve t(θ).

Now we assume that the derivatives of all functions are constant with respect to

θ. Therefore the center is formulated by Equation (C.2).

c(θ) = c(0) + c′(0)θ (C.2)

Now, we consider the relationship between the instantaneous center of rotation

and the transformation matrix. The difference [∆Θ,∆t] between the two trans-

formation matrices [R(a, θ + ∆θ), t(θ + ∆θ)] and [R(a, θ), t(θ)] is represented by
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Equation (C.3), where ∆θ 6= 0.

∆Θ = R(a,∆θ)

∆t = t(θ + ∆θ) − R(a,∆θ)t(θ) (C.3)

The finite center of rotation c satisfies Equation (C.4), where I is a unit matrix.

(I − ∆Θ)c = ∆T (C.4)

Note that the instantaneous center of rotation is defined by the limit lim
∆θ→0

c.

Now we temporarily consider the equation on the coordinate system of which the

direction of the z-axis is equal to the axis direction. In this case, the values with

respect to the z-axis is meaningless on the equation. From now on, we ignore that

part.

Then, because I − ∆Θ is a full-rank matrix, c is calculated by Equation (C.5),

where z = (0, 0, 1)T .

c = t(θ)− ∆θ(I − R(z,∆θ))−1 (t(θ + ∆θ) − t(θ))

∆θ
(C.5)

We consider the limit lim
∆θ→0

∆θ(I − R(z,∆θ))−1. I − R(∆θ) can concretely be

written as Equation (C.6).

I − R(z,∆θ) =





1 − cos ∆θ − sin ∆θ

sin ∆θ 1 − cos ∆θ



 (C.6)

By applying the inverse operation to Equation (C.6), Equation (C.7) is obtained.

(I − R(z,∆θ))−1 =





1
2

sin∆θ
2(1−cos ∆θ)

− sin∆θ
2(1−cos ∆θ)

1
2



 (C.7)

Note that

lim
∆θ→0

∆θ sin ∆θ

2(1 − cos ∆θ)
= 1.

Therefore, Equation (C.8) is obtained.

lim
∆θ→0

∆θ(I − R(z,∆θ))−1 =





0 1

−1 0



 (C.8)

Because the instantaneous center of the rotation is formulated by lim
∆θ→0

c, Equation

(C.9) must be satisfied.

t′(θ) = At(θ) − Ac(0) − Ac′(0)θ (C.9)

164



A =





0 −1

1 0





By solving Equation (C.9), Equation (C.10) is obtained, where b is an integral

constant.

t(θ) = c(0) + R
(

z,
π

2
− θ
)

c′(0) − c′(0)θ + R(z, θ)b (C.10)

Because t(0) = 0, Equation (C.11) is obtained.

t(θ) = (I − R(z, θ))
(

c0 + R
(

z,
π

2

)

c′(0)
)

− c(0)′θ (C.11)

By converting the original coordinate system, we finally obtain Equation (C.12).

t(θ) = (I − R(a, θ))
(

c(0) + R
(

a,
π

2

)

c′(0)
)

− c(0)′θ (C.12)
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