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ABSTRACT

"Modeling from Reality” techniques are making great progress because of the
availability of accurate geometric data from three dimensional digitizers. These
techniques contribute to numerous applications in wide areas such as academic in-
vestigation, industrial management, and entertainment. Among them, one of the
most important and comprehensive applications is modeling cultural heritage ob-
jects. For a large object, scanning from the air is one of the nibsissit methods

of obtaining 3D data. Nevertheless, in the case of large cultural heritage objects,
there are some fliculties in scanning with respect to safety affitéency. To rem-

edy these problems, we have been developing a novel 3D measurement system, the
Floating Laser Range Sensor (FLRS), in which a range sensor is suspended beneath
a balloon. The obtained data, however, have some distortion due to movement dur-
ing the scanning process. We propose two novel methods to rectify the shape data
obtained by a moving range sensor in this thesis. One method rectifies the distorted
range data by using image sequences and another one rectifies the data without im-
ages. Both methods are applicable not only to our FLRS, but also to a general
moving range sensor.

In Chapter 2, we explain our FLRS system. While we use a commercial prod-
uct as a scanning unit, we have designed whole system and the mirror configura-
tions of the FLRS. Thus, the FLRS is our original system. The system overview
and components are introduced in this chapter. In addition, we explain the algo-
rithm of 3D reconstruction by using mirrors from a fixed-point measurement range
data.

In Chapter 3, we explain a full perspective factorization, which is utilized as
the initial solution for the camera motion. We use a weak perspective factorization
iteratively for the perspective projection camera model. Interest point detectors are
essential for the factorization. We explain two detectors, Harris operator and SIFT
key. Finally, we estimate the performance of our full perspective factorization.

In Chapter 4, we describe our proposed algorithm for refinement of the parame-

\
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ters. Our method applies the three constraints for optimization, which are tracking,
smoothness and range data constraint. Applying these constraints and optimizing
the cost function, we can estimate more precise parameters. For the optimization
method, we apply a conjugated gradient method and the golden section search.

In Chapter 5, some topics on calibration for our FLRS system are described.
In fact, the video camera is assumed to be calibrated with range sensor in the pre-
vious chapters. With respect to the FLRS, fixing it on the ground, we can easily
acquire shape model and its image simultaneously. In the case of the calibration
with 3D reference objects, many methodffeufrom noise in accuracy. Using the
RANSAC (Random Sampling Consensus) technique, we propose a robust calibra-
tion method in the first half of this chapter. Furthermore, in the second half of the
chapter, we show that our algorithm is also applicable for the uncalibrated system.

In Chapter 6, we describe another method for shape rectification that needs
no image sequences. Instead of using images, this method requires range data
obtained by another range sensor fixed on the ground. Incomplete range data of
the fixed sensor are §icient to rectify FLRS range data. There are many cases
such a situation in real measurements. Originally, the FLRS has been proposed in
order to complement the fixed sensors. Based on overlapping shape between two
data sets, we rectify FLRS range data. In this method, it is also assumed that the
sensor moves smoothly. We can easily build a graphic user interface (GUI) onto
this method and therefore produce practical software.

In Chapter 7, we evaluate our algorithms with known models. Constructing
a virtual FLRS on a PC by using CG model, we estimate the accuracy of our
methods.

In Chapter 8, we show several experimental results conducted in the Bayon
Temple in Cambodia. To evaluate our methods, the rectified shapes are compared
with other data sets obtained by a range sensor on the ground. Now, we are con-
ducting the Digital Bayon Project, in which our algorithms are actually applied for
range data processing and the results showflieetéaveness of our methods.

Finally, we present our conclusions and summarize our possible future works
in Chapter 9.
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Chapter 1

Introduction

1.1 Background

Nowadays, many researches on real object modeling are making great progress
because of the availability of accurate geometric data from three dimensional dig-
itizers. The techniques of real object modeling contribute toward numerous appli-
cations in wide areas such as academic investigation, industrial management, and
entertainment.

Among them, one of the most important and comprehensive applications is
modeling cultural heritage objects. Modeling these heritage objects has great sig-
nificance in many aspects. Modeling them leads to digital archives of the object
shapes. Utilizing these data enables us to restore the original shapes of the heritage
objects, even if the objects have been destroyed due to natural weathering, fire,
disasters and wars. In addition, we can provide images of these objects through the
Internet to people in their homes or in theifices. Thus, the techniques of real
object modeling are available for many applications.

We have been conducting some projects to model large scale cultural her-
itage objects such as great Buddhas, historical buildings and suburban landscapes
[MNS*00] [INHOO3]. Basically, to scan these large objects, a laser range finder is
usually used with a tripod positioned on stable locations. In the case of scanning
a large scale object, however, it often occurs that some part of the object is not
visible from the laser range finder on the ground. In spite of sucliaulty, we
have scanned large objects from fgkls temporally constructed nearby the ob-
ject. However, this sdkold method requires costly, tedious construction time. In
addition, it may be impossible to scan some parts of the object due to the limitation
of available space for sffald-building.



2 CHAPTER 1. INTRODUCTION

We are now conducting a project [I[HR4] to model the Bayon Temple [VZG01]
in Cambodia; the temple’s scale is about X850 square meters with over 40 me-
ter height. Scanning such a huge scale object from severébklsais unrealistic.
To overcome this problem, several methods have been proposed. For example,
aerial 3D measurements can be obtained by using a laser range sensor installed
on a helicopter platform[TDHO03]. High frequency vibration of the platform, how-
ever, should be considered to ensure that we obtain highly accurate results. To
avoid irrevocable destruction, the use of heavy equipment such as a crane should
be eschewed when scanning a cultural heritage object.

Figure 1.1: The FLRS and the Bayon Temple

Based upon the above considerations, we proposed a novel 3D measurement
system, a Floating (or Flying) Laser Range Sensor (FLRS)[HMa] [HMK*04b]
[HHO*04] [HHO'05]. This system digitizes large scale objects from the air while
suspended from the underside of a balloon platform (Fig.1.1). Our balloon plat-
form is certainly free from high frequency vibration such as that of a helicopter
engine. The obtained range data are, however, distorted because the laser range
sensor itself is moving during the scanning processes (Fig.1.2).
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Figure 1.2: An sample snap shot and the distorted range data obtained by the FLRS.

1.2 Our Contributions

In this thesis, we propose two methods to rectify 3D range data obtained by a
moving laser range sensor. Not only is this method limited to the case of our
FLRS, but it is also applicable to a general moving range sensor.

In fact, several attempts have been made to rectify the deformed FLRS data.
The following three strategies have been considered to solve this problem:

¢ Window matching-based method [HHQ4] [HHO'05]
¢ 3D registration-based method [HMR4a] [HMK*04b] [MHNIO5]
e Structure from motion-based method

In the first strategy, under the assumption that translation of the balloon is very
small and within a plane parallel to the image plane without any rotation, the shape
is recovered by using a video sequence image. Then supposing that the changes
in sequential images are very small, the balloon motion is estimated by a local
window matching technique. This method is very fast, but it restricts the balloon
to a simple and small motion.

In the second strategy, the balloon motion is parametrized motion beforehand
(e.g. the velocity vector for a linear uniform motion or a constant angular velocity).
Then, an extended ICP algorithm is applied to align the deformed model obtained
by the FLRS with the correct model obtained by a range sensor located on the
ground. This method does not require image sequences, but it assume the simple
motions.
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In this thesis, we adopt two strategies for the rectification. Firstly, we adopt the
third strategy among the methods listed above, and propose a method with image
sequences and destorted range data by FLRS. Next, we adopt the second strategy.

In the first method based on "Structure from Motion”, We use distorted range
data obtained by a moving range sensor and image sequences obtained by a video
camera mounted on the FLRS. The motion of the FLRS is roughly estimated only
by the obtained images. And then the more refined parameters are estimated based
on an optimization imposing some constraints, which include information derived
from the distorted range data itself. Finally, using the refined camera motion pa-
rameters, the distorted range data are rectified.

In the second method based on "3D registration”, we adopt a method similar
with [HMK *04a] [HMK*04b] [MHNIO5], but supposing smooth and more gener-
alized balloon motion.

These methods are not limited to the case of our FLRS but also applicable to
a general moving range sensor that has smooth motion. In this thesis, we do not
utilize physical sensor such as gyros, INS and GPS for estimation of self position
and pose. We try to solve our problems only by range sensors and video cam-
eras through the techniques of "Computer Vision [Fau93] [TV98] [FLO1] [FP02]
[HZ04] "

1.3 Outline of the Thesis

In this dissertation, we have been wrestled with the FLRS throughly. Then we
propose two novel methods to rectify the shape data obtained by a moving range
sensor.

One method rectifies the distorted range data by using image sequences and
another one rectifies data without images.

In the method with images, the initial motion parameters are estimated by using
a full perspective factorization. Then they are refined through an optimization with
some constraints. In fact, this method is based on the technig&ratture from
Motion”. This technique is applicable both calibrated cameras and uncalibrated
cameras.

In the method without images, the original distorted shape is rectified based on
the correct shape obtained by another range sensor fixed on the ground.

This thesis is organized as follows.

We explain our FLRS system in Chapter 2. While we use a commercial product
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‘ Data Acquisition FLRS (chap.2)

with image sequencez/

Full-Perspective without image sequences
Factorization (chap.3)
l Rectification without
Images (chap.6)
Refinement (chap.4)

catibrated |1 Calibration z.md
system Reconstruction
(chap.5)
Y ¥ | Evaluation (chap.7)
[ Shape Rectification
Experiments (chap.8)

Figure 1.3: The context of this thesis.

as a scanning unit, we have designed whole system and the mirror configurations
of the FLRS. Thus the FLRS is our original system. The system overview and
components are introduced in this chapter. And we explain the algorithm of 3D
reconstruction by using mirrors from a fixed-point measurement range data.

In Chapter 3, we explain a full perspective factorization, which is utilized as
the initial value for the camera motion. We use a weak perspective factorization
iteratively for the perspective projection camera model. Interest point detectors
are essential for the factorization. Two detectors, Harris operator and SIFT key, are
explained in this chapter. Furthermore, in the last part, we estimate the performance
of our full perspective factorization.

In Chapter 4, we describe our proposed algorithm for refinement of the param-
eters. Our method applies three constraints for the optimization, which are tacking,
smoothness and range data constraint. Implying these constraints and optimizing
the cost function, we can estimate more precise parameters. For the optimization
method, we apply a conjugated gradient method and the golden section search.

In the above method, the video camera is assumed to be calibrated with the
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range sensor. The method for the calibration is described in the first half of Chapter
5. By using 3D reference model, the video camera is calibrated. With respect to
the FLRS, when we fix the FLRS on the ground and obtain range data and image
sequence, we can easily acquire shape model and its image simultaneously. In the
case of the calibration with 3D reference model, many methofisrsoom noise

in accuracy. Combining RANSAC (Random Sampling Consensus) technique, we
propose a robust calibration method with 3D model in this chapter. Furthermore,
we show that our algorithm is also applicable for the uncalibrated system in the
second half of Chapter 5.

In Chapter 6, we describe another method for shape rectification which need
not any image sequences. Instead of using images, this method requires range data
obtained by another range sensor fixed on the ground. Incomplete range data of the
fixed sensor are $licient to rectify FLRS range data. There are many cases such a
situation in real measurements. Originally, the FLRS has been proposed in order to
complement fixed sensors. Based on overlapped shape between two data sets, we
rectify FLRS range data. In this method, it is also assumed that the sensor moves
smoothly. We can easily build a graphic user interface (GUI) onto this method and
a practical software.

In Chapter 7, we evaluate our algorithms with known models. Constructing a
virtual FLRS in PC by using CG model, we estimate the accuracy of our method.

In Chapter 8, we show several experimental results conducted in the Bayon
Temple in Cambodia. To evaluate our methods, the recovered shapes are com-
pared with other data sets obtained by a range sensor on the ground. Now, we are
conducting the Digital Bayon Project, in which our algorithms are actually applied
for range data processing.

Finally, we present our conclusions and summarize our possible future works
in Chapter 9.



Chapter 2

FLRS

2.1 System Overview

FLRS(Floating Laser Range Sensor) has been developed to measure large objects
from the air by using a balloon without constructing anyfBads (Fig. 2.1). There
are several demands for the system because of dangling the entire system under the
balloon.

In the beginning of the development, the following points were required:

e The entire system should be light and compact in order to float in the air.
e The structure of the platform should be firm.

e The range sensor can measure quickly to minimize the influence of the bal-
loon motion.

Several considerations suggested that we determined the configuration of the sys-
tem and scanning time as 1.0 second.

With respect to measurement principle, passive stereopsis method could cap-
ture images without the influence of balloon motion. However it would be forecast
to cause the fatal inadequate accuracy in the eye of the cultural heritage preserva-
tion and repair.

On the other hand, there are many active stereopsis methods with laser range
sensors which can measure within 1 second. There are, however, a few problems
in this measurement principle.

e unsuitable for large scale objects because they need wide baselines.

7
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Figure 2.1: The FLRS (25m sensor)

e dangerous because they require strong laser beams for long range measure-
ment.

e not adequate to measurement in daytime.

Generally, laser radar method is suitable for outdoor measurement for large
objects. Therefore, we had adopt a range sensor of "time-of-flight” in principle.
Moreover we were able to utilize two kinds of mirrors to shorten the measurement
processing time. Then we have desighed and developed a novel measurement sys-
tem based on the laser radar method.

Some details of the system will explained in the next section.

2.2 The Components of the FLRS

We have two types of FLRSs. Each FLRS is composed of a scanner unit, a con-
troller and a personal computer (PC). These three units are suspended beneath a
balloon.

2.2.1 The Scanner Unit

The scanner unit includes a laser range finder, especially designed to be suspended
from a balloon. Figure 2.2 shows the interior of the scanner unit. It consists of a
spot laser radar unit and two mirrors. We chose the LARA25200 and LARA53500
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supplied by ZollerFrohlich GmbH[Z+F] as laser radar units because of their high
sampling rate. Each laser radar unit is mounted each FLRS scanner unit. Two
systems equipped with Lara25200 and LARA53500 are respectively referred to as
"25m sensor” and "50m sensor”.

The specifications of two units are shown in Table 2.1.

Table 2.1: The specifications of the 25m (LARA25200) and 50m (LARA53500)
Sensors

H 25m Sensor ‘ 50m Sensor ‘
Ambiguity interval 25.2m 53.5m
Minimum range 1.0m 1.0m
Resolution 16bit range 1.0 mm 1.0 mm
Data acquisition rate < 625,000 pi¥sec| < 500,000 pixsec
Linearity error <3mm <5mm
Range noise at 10m >1.0mm >1.5mm
Range noise at 25m >1.8mm >2.7mm
Laser output power| 23 mw 32mw
Laser wavelength 780nm 780nm

Both sensors have the similar mirror configurations. There are two mirrors
inside each unit to give a direction to the laser beam. One is a polygon mirror with
4 reflection surfaces, which determines the azimuth of the beam. In normal use, the
polygon mirror, which rotates rapidly(2400rpm), controls the horizontal direction
of the laser beam. Another is a plane mirror (swing mirror) which determines the
elevation of the beam. The plane mirror swings slowly to controls the vertical
direction of the laser beam.

The lase beam emitted from the LARA is hit on a surface of the polygon mirror
at first. Then the polygon mirror reflects the laser beam into the plane mirror. The
plane mirror also reflects the beam into the outside of the unit(lower of Fig.2.2).

The combination of two mirror demonstrate the following specifications.

2.2.2 The Controller and the PC

The controller is composed of a signal processing unit, an interface unit, a mirror
controller and a power supply unit. The signal processing unit receives the signals
from the PC and performs actual control of rotation angles of the mirrors and the
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Polygon mirror

Laser beam

\
Laser radar unit
(Lara25200)

Figure 2.2: The interior of scanner unit (25m sensor)

Table 2.2: The specifications of the 25m sensor and 50m sensor

|| 25m Sensori 50m Sensori

Angle Resolution
Horizontal | 0.05 deg 0.05 deg
Vertical 0.02 deg 0.02 deg
Horizontal field|| <90 deg <90 deg
Vertical field || < 30 deg <30deg
Scanning periolange image| < 15 sec <1lsec
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laser radar unit. The range data obtained by the laser radar and the angle data
obtained by the mirror encoders are subsequently combined in the interface board.

the controller

the PC

range &
encoder data

laser on/off

the scanner unit

Figure 2.3: The diagram of the signals in the FLRS system

Figure 2.4: The PC of the FLRS system

The PC includes a CPU board, a DIO(Digital Infiutitput) board, an image
capture board and a LARA-PCI board. The DIO board outputs the signal of the
laser oroff. The commands for the mirror operations are send through a LAN
cable. Then synchronized range and encoder data (*.zfs) are transmitted to the PC
via the LARA-PCI board. The zfs data consist of range data, reflectance and two
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kind of encoder data sets (the polygon and the plane mirror). These data sets are
stored in the PC and converted into 3D shape data (*.pts). The PC of the FLRS is
mounted on the balloon platform. Therefore the PC is actually operated remotely
via another mobile PC on the ground through a LAN cable.

2.2.3 The Monitoring Camera

In order to monitor the object whose shape the FLRS scans, a camera is mounted
on the platform(Fig.2.5). Because bulky data are transmitted into the PC in the
scanning process, it is necessary to avoid CPU load with respect to the image cap-
ture. Therefore we adopt a capture board with SDRAM (Interface Corporation
[Int]), which enable to stock image data temporally without any CPU load.

Figure 2.5: The monitoring camera mounted on the FLRS

The acquirable frame number is determined by the capacity of the SDRAM
(64MByte). In a short period scanning (1 second) the capture board stocks an
image sequence of VGA size (640x480) while in a long period scanning (over 3
seconds) it stocks images of 320x240 size.

By using this board, we can obtain whole images during a scanning process.

The ordinary use of the FLRS, the camera is calibrated before measurements.
Calibration is to estimate the camera position and pose in the sensor-oriented co-
ordinate system. Before floating the balloon in the air, we adjust the video camera
roughly in order to capture the area where the range sensor scans (Fig.2.7). Then
fixing the whole system on the ground, we measure several still scenes. By using
these measurement data sets, the camera is calibrated through the method men-
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Camera view

Figure 2.6: A range image and a camera view

tioned in Section 5.1.

2.2.4 The Balloon and the Platform

We use a ready-made device "Photo Balloon AS-21"(Asahi Co., Ltd.), which is
modified for the FLRS. The balloon is filled with helium gas. Floating in the
air, the balloon is controlled by several hands on the ground with four peaces of
rope. The balloon is made of particular flexible chloroethene, which avoid rapid
expansion of a hole in an emergency.

Table 2.3: The specifications of the balloon

Diameter 50m
Weight | about 12 kg
Capacity | about 65.45m3
Maximum buoyancy|| about 60 kgf

The platform is equipped with pan and tilt mechanism, which can point the
sensor at from the horizontal direction to the directly below, scope of 180 degree
from side to side. We can operate the pan and tilt mechanism via the cable for the
video monitor.



14 CHAPTER 2. FLRS

Figure 2.7: The balloon for the FLRS

2.2.5 The Operation

During the scanning process, the laser beam is directed horizontally by the rotating
polygon mirror and vertically by the swinging plane mirror. The scanning with
respect to the horizontal line of a range image is a fast one-way scanning. On the
other hand, the vertical motion is a slow reciprocating one. To make up a range
image with the raster scan order, we take plenty of time for a scanning process. By
a single scan we actually utilize a portion of the whole data, which are acquired in
a one side of a reciprocating motion. For example, it takes 1 second for a single
scanning period. In this case, the FLRS actually acquires range data for 2 seconds.
During the 2 seconds, a thorough one side motion must be contained, that is the top-
to-bottom or bottom-to-top motion. It is the timing of a scan start that determines
whether the top-to-bottom or bottom-to-top order. By using the half data, range
data are constructed through the method mentioned in the next section. In the case
of a 1 second scanning with a 2400rpm of the polygon mirror rotation, incidentally,
the acquired range image includes 160 horizontal scan lines because

2400 frpm] 3
W x 1[sed x 4 [face/reV] = 160
In the case of a 5 seconds scanning, by the same token, the FLRS operates for 10
seconds in practice.
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2.3 Data Reconstruction

As mentioned above, the stored data in the PC consist of range data, reflectance val-
ues and encoders’ values of two rotors. By using these data, 3D coordinate values
of measured points are reconstructed. In this section, we explain the reconstruction
method.

First, let’s determine the axes of the coordinate system. Taking account of the
mirror configuration of the FLRS, we se®s the direction where the laser beam is
emitted from the laser radar unit. Then it correspondsdivection that the axis of
rotation of the polygon mirror, while the rotary shaft of the plane mirror is parallel
to thex-axis (Fig.2.8).

the plane (swing) mirror

the laser source

the polygon mirror

Figure 2.8: The mirror configuration of the FLRS

Then, we set the unit vectap (= (1, 0,0)) of the laser beam from the laser
radar unit. Supposing the normal vector of a polygon mirror surfac athe
direction of the reflected beam toward the plane mirror can be describigd as

—

1=ro—-2(@p-m)m (2.1)

=

Here, let us consider the cross section of the 3D configuration by the ptane
0 (Fig.2.9). Setting the origin of the coordinate system at the center of the polygon
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the centerline(reflection-line) %
of the plane mirror —

Figure 2.9: The 2-dimensional mirror configuration. (projected on the @an@)

mirror and given the position of the laser light source-at, &, 0), the reflection
point P on the polygon mirror surface is obtained by the following system.

{ NxX + nyy—-h=0 2.2)

y—-a=0

where,m = (N1, N1y, 0) is the unit normal vector of the polygon mirror surface.

. . h-nya
Then we can obtain the reflection poRi = (x,a,0) = - ,a,0l.

1x
As in Fig.2.9, pointP; is always has the minus value of x. We therefore define

x1(= 0) the dfset along thex-axis between the origin and the cross point as in
Fig.2.9.

h-nya h-asing
" Tn, | cod

X1 = (2.3)
Here,0 (O <6< 7—2r) indicates the angle between the normal vector of the polygon
mirror surface andxdirection as in Fig.2.9.

Next, let us consider the reflection on the plane mirror. FRynto the reflec-
tion point on the plane mirrd®,, the laser beam travels distarice P, P,. Setting
the dfset between the origin and the centerline of the plane mirrdy, &g can
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estimate the distandey using sing — 20) = ?.
b-a
| = e (2.4)
Similarly, thex element oﬂDfPZ is calculated as
b-a
= - 2.
2 tan @ (2:5)

Note thatx, takes a minus value in the casefof 72: and takes a positive value

in the case of > _.
Therefore, a laser beam hits the plane mirror at pBjnt

(2.6)

P2:(_X1+X2,b’0):(_h—asm0 b-a 0);

cosd  tand
Until arriving at pointP5, a laser beam fligls+ (¢ — xy).
A laser beam is emitted outside of the scanner unit from gejiralong direc-
tion ra.
R=ri—2(1-m)mn (2.7)
where,m = (0, nyy, N2,) is the unit normal vector of the plane mirror surface.
Therefore, when the laser finder outputs the rangefas a point in space, the

point is located at
(L-T-(c=x))r2

in the coordinate system with the origiz, which moves according to the mirror
configuration.
Translating the origin to the center of polygon mirror,

(XY,2 =Pa+(L-1-C+Xxp)r2
« = (L_b—a_c+h—asine)rzx_h—asine_b—a
sin2 coy coy tan 2
_ I__b—a_c+h—asin€)r b
y sin 29 co9y » (2.8)
, - (L— p—a_c+h—asin0)r22
sin coy

Here,0 andn, are estimated based on the encoders of the motors which rotate the
mirrors. Then, we can reconstruct the 3D data from the array of 1D range data and
encoded values.






Chapter 3

Full Perspective Factorization

In this chapter, we explain a full perspective factorization, which is utilized as
the initial value for the camera motion. We use a weak perspective factorization
iteratively for the perspective projection camera model. Interest point detectors are
essential for the factorization. Two kind of the detectors, Harris operator and SIFT
key, are explained in this chapter. Furthermore, in the last part, we estimate the
performance of our full perspective factorization.

First, we briefly refer to some projection models which are utilized in computer
vision. Then we explain weak-perspective factorization, which is subsequently
extended to the perspective factorization as in [HK99]. In the next section, the
weak-perspective factorization is extended to full perspective factorization. The
solution by the full perspective factorization is utilized as the initial value for the
optimizing problem described in the next chapter. Finally, some demonstrations of
the full perspective factorization are shown.

3.1 Projection Model

The perspective projection model(Fig.3.1) can faithfully represent ordinary cam-
eras. This model is corresponds to a pinhole camera.

c
Il
—

(3.1)
\

1l
—_
NI NI X

The mathematical description is, however, non-linear and that makdésdtutli
to treat the model. Therefore, some linear projection models have been formulated,

19
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|

the optical center

the optical axis

the image plane

Figure 3.1: The perspective projection model (Pinhole camera model)

which are well-approximated to the non-linear projection model under certain con-
dition.

In the rest of this section, we briefly explain three common approximation
models.

3.1.1 Orthographic Model

The orthographic projection model(Fig.3.2) projects 3D points onto the image
plane along the optical axis. This model is generally utilized in the field of tech-
nical designs such as drafts of buildings and machine designs. In this model, the
coordinate values with respect xcandy in the 3D world are projected onto the
image coordinates directly while the depthis ignored.

|

the optical center

the optical axis

the 1mage plane

Figure 3.2: The orthographic projection model

Therefore, the orthographic projection is represented by the next equations:
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{“:X (3.2)
v=y

In this representation, the equation is simple linear and easy to handle while
the perspective model is non-linear. However the assumption of the orthographic
model is too simple to be applied to real cameras. There are few cases applicable to
actual data for this model. The original factorization[TK92] was developed under
the assumption of this simple projection model.

3.1.2 Weak-Perspective Model

This model is considered as an intermediate one between the perspective and or-
thographic projection. The weak-perspective model(Fig.3.3), which is also called
scaled orthographic model, is approximated more accurately than orthographic
model since the weak-perspective model has the scaffegtdcloser objects ap-
pear bigger then further objects). But it is not so accurate as para-perspective
model.

Consider a reference plane< z), which is located at the center of the object
and parallel to the image plane. All points are, firstly, projected onto the reference
plane along the optical axis. Then these projected points on the reference plane are
projected again onto the image plane with a simple scale fdctor

the reference plane

.
P e X
S -
77__'__'_____77’__'_____ -

the optical center

the optical axis

the image plane

Figure 3.3: The weak-perspective projection model

The weak-perspective projection model supposes the depths of all point have
the same valug. Therefore, this model is represented in linear manner with the
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focal lengthf and the constant depty:

u= f%
(3.3)

V= fl

Z

If the scene depth is enough small relative to the distance between the camera
and the center of the object, the depths of all points can be taken to be constant.
Therefore, this approximate model is valid only when the depth range of the object
is considerably smaller than the distance to the object.

3.1.3 Para-Perspective Model

Para-perspective projection model(Fig.3.4) will be the closest approximate model
among the linear models. It has the scalifigget and the positionfeect (objects

in the periphery of the image are viewed from felient angle than those near the
center of projection [Alo90]).

In this model, similarly consider the reference plame=( zp) located at the
center of the object and parallel to the image plane. Next, object points are pro-
jected onto the plane along the direction of the line between the optical center and
the object’s center of mass. Then, the points projected on the reference plane are
projected again onto the image plane with the scale faiGtarhich is equivalent
to a simple scalingféect by the ration of the focal lengthand the distance to the
reference plane. Therefore, théfdience between the weak- and para-perspective
model is the projection method onto the reference image.

the optical center

the reference plane

R

the optical axis

the image plane

Figure 3.4: The para-perspective projection model
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Given the object’s center of mass(yo, ), this model is represented in linear
manner with the focal length and the constara:

z
X — Xo— + Xg
u=f zzo
. (3.4)
Y—=Yo— +Yo
V= f —ZO
2

The above equations are certainly linear because of corgtant

3.1.4 Generalized Approximate Model

In the eyes of mathematics, above three approximate models are interpreted as
follow:

Let us consider a point around the object’'s center of mass in space. The 3D
coordinate value of the poink(y, 2) is represented with the centey(yo, z0) as
follows:

(X.¥:2) = (X0 + 0%, Yo + OY, Z0 + 62)

The coordinate valua under the perspective projection model is estimated as
X :
fE (Eq.5.1). Therefore, supposiig < 2.

X X x 1
u = - = = —
z 2o+ 0z % 4 0z
Z
~ fﬁ(l—‘s—z) (3.5)
7 7y

In the case off —» 1,7y — 1 andéz — 0, this equation is close to the
orthographic model.

In the case 06z — 0, it is close to the weak-perspective model.

Then, from Eq.3.5,

u=f @(1+5—X)(1—5—Z)z f E(1+‘5—X—5—Z)
AR A AR

Here, the term with respect txz is ignored.

-2

u=f 1(x0+6x Xo
A} A}

Z
X—Xo— + Xo
):f— (3.6)
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Consequently, we can obtain the formulation for the para-perspective projection
model.

As seen above transformations, these linear models are built upon the assump-
tions of 6X <« Xg, 0y < Yo andsz < z.

3.2 Factorization

3.2.1 Previous Works

Estimations of the shape of an object or of camera motion by using images are
called "Shape from Motion” or "Structure from Motion”, and are main research
fields in computer vision.

The factorization method proposed in [TK92] is one of the mésintive algo-
rithms for simultaneously recovering the shape of an object and the motion of the
camera from an image sequence. By using the singular value decomposition(SVD),
the shape and motion are estimated from the trajectories of interest points. Orig-
inally, this method was limited to the orthographic model. Then the factoriza-
tion was extended to several perspective approximations and applications [CK95]
[MK97] [CH96] [PK97] [HK99] [GW04]. Among them, in [PK97] a factorization
method on the weak-perspective (or scaled orthographic projection) model was
proposed, in which the scalindgfect of an object is accounted for as it moves to-
ward and away from the camera. At the same time, they applied the factorization
method under the para-perspective projection model, which is a better approxi-
mation of the perspective model than that of the weak-perspective model. In the
para-perspective model, the scalirffpet as well as the fferent angles from which
an object is viewed are accounted for as the object moves in a direction parallel to
the image plane. In [PK97], they also presented perspective refinement by using
the solution under the para-perspective factorization as the initial value. In [HK99]
a factorization method with a perspective camera model was proposed. Using the
weak-perspective projection model, they iteratively estimated the shape and the
camera motion under the perspective model.

3.2.2 Weak-Perspective Factorization

Given a sequence of F images, in which we have tracked P interest points over all
frames, each interest point p corresponds to a single ﬁéin’n the object. In im-
age coordinates, the trajectories of each interest point are dend(@ghagp)|f =
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1,..Fp=1..,P 2F > P}.

Using the horizontal coordinates,, we can define ai x P matrixU. Each
column of the matrix contains the horizontal coordinates of a single point in the
frame order, while each row contains the horizontal coordinates for a single frame.
Similarly, we can define aR x P matrixV from the vertical coordinateg,. With
respect to the coordinate valuesupf andvs, we set the origin of the coordinate
system as the principal point.

The combined matrix of 2 x P becomes the measurement matrix as follows,

U
W = (v] (3.7)

Each frame f is taken at camera positrﬁn in the world coordinates. The
camera pose is described by the orthonormal unit vetipis andk:. The vectors
it andj? correspond to th& andy axes of the camera coordinates, while the vector
Kt corresponds to theaxis along the direction perpendicular to the image plane
(Fig.3.5).

the 1image plane

the camera center the reference plane

an mterest point

the origin of the world
coordinate system

Figure 3.5: the coordinate systefiy denotes the position of the camera at time of
frame f. The camera pose is determined by three unit basis vectors.

Under the weak-perspective camera model, we can derive the following equa-
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tion from (Eq. 3.3).

= o -

U= fiz flf (Sp—Ty)
Y4 Zt

-t o -

Y _ gl (Sp-Th)

=t

(3.8)

v=f

Here, a single point in the world coordina1§§ is projected onto the image
plane f at (kp, V¢ p) Of a camera at; in the world coordinate system.

We denote the distance between the camera center and the reference plane (the
mass center of the object) as Then we obtain the following,

>t =2 -
Zf = kf . (C - Tf) (3.9)

The vectorC is the center of mass of all interest points. Without loss of gen-
erality, the origin of the world coordinates can be placed at the centroid, that is
C =3 S, = 0. Then this means that

>t -

Zs = —kf - Tk (3.10)

to simplify the expansion of the following formulations.
They are summarized as follows:

Ufp = I’ﬁ’ft-S_)p+Xf (3.11)
Vip = Nt Sp+ s (3.12)
mo= i (3.13)
Zf
S f -
Zf
f —t —
Xf = —— 5 ‘Tf (3.15)
Zs
f -t -
yi = ——Ji - Ty (3.16)
Zt

and these equations are expressed in a matrix form:

t
Uip ... Up rﬁl
t
Uz ... Up 97
t
Urt ... Uep [=| M [(S1 ... %)
t
Vi1 ... Vpp m
>t
VE1 ... VEp Ng
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X1
X2

+ x.,: a...1) (3.17)
Y1

YF

Using the setting that the center of all interest points is the origin, from Eq.(3.11),

P P P
ZUfp=Zm’ft-§6+ Xi = PXg (3.18)
p=1 p=1 p=1

similarly from Eq.(3.12),

P
vap = Py; (3.19)
p=1

Thereforexs andy; are easily calculated with all interest points.
P

2,

p=1

1 P
Yi = EZpr
p=1

We obtain the registered measurement mafvixafter translationV = W —
(X1 X2 ... XE Y1 ... YE)'(1 1...1) as a product of two matrixdd andS.

Xf =

Ol

(3.20)

W=M-S (3.21)

whereM is a ZF x 3 matrix andS is a 3x P matrix.
In [TK92], they stated the following;

Theorem (Rank Theorem) Without noise, the registered measurement ma-
trix W is at most of rank 3.

This theorem means that the registered measurement rimi2F x P are
highly redundant. The matriW/ is originally the product of the2 x 3 matrix M
and the 3x P matrix S. Therefore, it follows that the matri¥ has at most rank
three.
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With respect to the decomposition of the matik we utilized the Singular
Value Decomposition(SVD) [GL96]. By the SVD, supposing that 2 P, the
matrix W is decomposed as follows.

W =020, (3.22)

whereOs is a F x P matrix, X is a diagonaP x P matrix andO; is aP x P matrix.

In addition, the matrice®; andO, fulfill that O} Oy = O}, O, = E, whereE is the

P x P unit matrix. The matriX has only diagonal elements (other elements are 0),
which are the singular values, > ... > op > 0 sorted in non-decreasing order.

The above Rank Theorem also says that the mathas at most three singu-
lar values of non-zero. It is, therefore, only necessary to consider the first three
columns ofO;, the most upper left & 3 submatrix o= and the first 3 rows 0D».

In real case, the observed values, that mean the coordinate values of the interest
pointsus, andvp, include noises. Consequently more than three diagonal elements
of matrixX are non-zero. In the case of noisy measurements, the following theorem
is provided.

Theorem (Rank Theorem for Noisy Measurements)All the shape and rota-
tion information inW is contained in its three greatest singular values.

Therefore, we can deal with the registered measurement nvaltvisth noise
in the same manner. The singular values out of the first three corresponds to the
noises.

As mentioned above, we have only to deal with the first three colum@g of
the most upper left & 3 submatrix ofX and the first three rows @,. Then, we
suppose the following partitions @, ~ andO,.

O = (0]0)
¥ 0
s = ( ) (3.23)
0 X
O/
oy

where theO/ is a 2 x3 matrix,X’ is a diagonal &3 matrix andO), is a 3x Pmatrix.
Without noise, the following equations are perfectly satisfied.

W=M-S =0,20,=0,% O, (3.24)
0¥ 0y =0 (3.25)
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In noisy cases, the term &f/ X O corresponds to noise. As a consequence,
we can regard
W=W=0;20;=0;

and consideYV form here on.
Let us return the decomposition of the registered measurement matrix into the
rotation matrixM and the shape matri® (Eq.3.21). In the meanwhile, we define

M =0 vV (3.26)
S = V¥ 0, (3.27)

we obtain the next equation.
W=MS (3.28)

Here, M is a &F x 3 matrix andhatS is a 3x P matrix, which posses the same
configurations of Eq.3.21.

The above decomposition, however, is not unique because any invertitie 3
matrix A makes a valid decomposition bf as

(MA)(ALS) = M(AAHS = MS =W (3.29)

To get rid of the ambiguity, using the fact that the matvixepresents the axes
of the camera coordinates(Eq.3.13 and 3.14), the following constraints should be
satisfied.

M| = || (3.30)

mi'-m =0 (3.31)
t

where MA = ( [rﬁft] ] (3.32)
[nt]

These constraints give us the motion maivband the shape matri.
Then, we need to estimate &3 matrixA. From Eq.3.32, twd- x 3 matrices
M’ andN’ are defined as follows.

t v
(['ﬁf]]= I\7IA=( M ]A (3.33)

(3.34)
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n

7t

- n,
N =| - (3.35)

by

Ne

Considering Eq.3.32 and each vectﬁ;r,

MR = e = (0, A) - (A =, AANT, =, T, (3.36)

T = AA'is a 3x 3 symmetric matrix. Similarly onz ,

M2 =T (3.37)
In addition,
it = (0 A) - (7, A) =t T (3.38)

Here, estimating the matri& corresponds to estimating the matfix Then
based on the constraints of Eq.3.30 and 3.31, the next cost fur@gtihould be
minimized to estimate the symmetric matfix

G

(el = 12 )? + w (et i) )

M= M

((Td, — 0T + w(m, TH)?)  (3.39)

_,,
1l
iy

w: a weighted coicient

In this thesisw is set at 1. We can easily minimize the cost functidby a linear
method to obtain the symmetric matiix(see Appendix A).
Once obtaining the matrix T, we can calculate the 3 matrix A as follows.
First, T is decomposed as
T = UAV! (3.40)

whereU andV are both 3x 3 matrices and\ is a diagonal 3 P matrix, just like
Eqg.3.22. In this particular case of the symmetric matrixhe matrixU is identical
with the matrixV. Consequently,

U VA VAU! = (U VA) (U VA) = AA
UvVA (3.41)

T = UAU!
A
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Then based on Eq.3.29 we obtain the approximate shape rSadsx

—

S=(S1S, ... Sp)=AS (3.42)
Form; andnt, from Eq.(3.32)

m = Ant (3.43)
m = An (3.44)
The distance between the camera center and the reference plaise;alcu-

lated by Eq.3.13 and 3.14;

£2 2
Mt = — and M= —
Z

2
" =f [|— 3.45
5T e (3.49)

Then, the axises of the camera coordinate sy$¥eamdj? can be calculated.
Another axisk? is estimated as the cross prodﬂfptx j?. However, it does not
assure the orthogonality betweiérandj?. Then three axises are given in practice
by the following post-treatment with the SVD.

(i? it k?)=uzvt, then Ul 1 vtﬁ(i? it k?) (3.46)
1

When it comes to the camera positl‘ﬁn we can obtain the next equation from
Eq.3.10, 3.15 and 3.16.

i Xf

m' [Tt =] v (3.47)
-t

kf Zs

Tt is easily calculated as the linear solution for the above system.

Under the assumption of the weak perspective projection model, by using
known values ofifsp, vip) andf, we can obtain unknown parametersﬁqfﬁ, k?,
SpandTy.

Finally, there is one further problem that we can’tignore. It is an enantiomorph
problem. As a matter of fact, the weak perspective factorization gives two kinds of
solutions. If a certain shaps},, is proper for the solution, the enentimorph is also
proper for the solution. This means, there is another solution in Eq.3.29

W = NS = (MA)(AS) = (M(-A)) ((-A)1S) (3.48)
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The shape {A)~1S is the enantimorph for the modeh1S. Thus, the weak
perspective factorization leaves the shape ambiguity. The only way to determine
which shape should be adopted as the correct one would be the choice by eye
observation. However our algorithm can select the proper shape automatically by
using deformed range data as mentioned in next section.

3.2.3 Extension to Full-Perspective Factorization

The above formulation is under the weak perspective projection model, which is a
linear approximation of the perspective model. Next, using an iterative framework,
we obtain approximate solutions under the non-linear, full perspective projection
model.

Under the perspective projection model, the projective equations between the
object pointSﬁIo in 3D world and the image coordinate g, vs,) are written as

ot o o
rp = 02T (3.49)

kf : (Sp - Tf)
Ir G- T0 '(S:p _T:f) (3.50)
ki - (Sp—Tt)

Replacingz; = —k?t - Tt, we obtain the following equations.

f —t o >
(Atp+ D = il (Sp—Trx) (3.51)
f ot o N
(Aip+Dvip = Zlf (Sp—-Tx) (3.52)
ki - S,
Adfp = Z (3.53)

Note that the right hand sides of Eq.3.51 and Eq.3.52 are the same form under
the weak-perspective model (see Eq.3.8). This means, multiplying a image coor-
dinate () p, vip) by a real numbens, maps the coordinate in the full perspective
model space into the coordinate in the weak-perspective model space. Solving
for the value of1¢ iteratively, we can obtain motion parameters and coordinates
of interest points under the full perspective projection model in the framework of
weak-perspective factorization.

The entire algorithm of the perspective factorization is as follows:

Input: An image sequence of F frames tracking P interest points.
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Output: The 3D positions of P interest poin&l The camera positioft; and
posest, jt, ki at each frame f.

1. Givenitp =0

2. Supposing the Equations 3.51 and 3.52, solveSforTy, it, jt, ki andzs
through the weak perspective factorization.

3. Calculatelt, by Equation 3.53.

4. Substitutelsp into step 2 and repeat the above procedure.
Until: A¢p's are close to ones at the previous iteration.

We must now return to the point which we postponed in the previous section,
the enantiomorph problem. In fact, the ambiguity of enantiomorph is removed in
our method. With respect t, if a |ooint§p is located on the reference plane, the
value ofd¢p = O because the value af means the depth of the reference plane
for the camerd, and the value Ok_]:t . S, means the depth of the pois}, for the
cameraf. The value ofl¢, takes more than O for the poist, located further away
than the reference plane from the camer&imilarly, At for the point closer than
the reference plane from the camera takes a negative value.

On the other hand, we measure the temporal relative position of each interest
points (see Section 4.3). Supposing the fraimen which the range sensor scans
the interest poinp, we can obtaim?t(§p - T?p), the depth of the interest poipt
at framefp as the observed value by a moving range sensor. But we can not obtain
the valueds, exactly because we do not have any information about the depth of
the reference plane at franig.

Nevertheless, if the sensor does not move so widely along the optical axes
direction, we can roughly estimate the.

Roughly speaking we can regazg as a constart; at all frames in the case
of small sensor motion along to the optical axis. Thep is roughly calculated
as constant for each interest pomtisp = 1p =~ Af,. Supposing that we observe
the depth values of interest poiptas Dy at frame f, from the distorted range
data of FLRS. Therefore, we can estimate from the range data based on the

. . 1
approximation ofz, =~ 5 Z Dp.
Let us consider the enantiomorph with two array$,+ 1, 25 + 1, -, 45+ 1} and
. D D
{A8+1,25+1,-, 23+ 1}. When we also obtain the array{e%, ZZ . ZP} from
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the range data, we can select the proper shape matjedr (1B} by comparing the
correlations.

3.3 Tracking

As input stdf, we need P interest points at each frame whole a sequence, which
are tracked identified points in the 3D world. There are several methods to de-
rive interest points of images [Mor77] [SB97]. Among them, we addptris
operator[HS88] andSIFT key[Low99] [Low04] for derivation of interest points.
Harris operator, a corner detector, is the most famous operator in the field of im-
age processing. While SIFT key was originally proposed for the purpose of object
recognition. This operator is robust for scale, rotation affithe transformation
changes. Many operators with robustness for these changes are recently proposed.
The main reasons why we adopt SIFT key are its stability of points derivation and
usefulness of the key, which has 128 dimensional elements and can be used for the
identification for each point.

3.3.1 Harris Operator

ox 09X
ox’ ay
we define a matrixC at a pointp based on its neighborhood as follows,

First, let us consider the spatial gradient of intensitigs, Ey) = ( ). Then

(3.54)

SE T ExEy
S ExEy Y E?

The key for feature detection is the eigenvalue of mairind their geometric
meanings. MatrixC is a symmetric one and without any loss of generality it can
be diagonalize by a rotation of the two coordinate axes.

c H[ 1 0 ]
0 A
A1 andA; are the eigenvalues &f (11 > 12 > 0).
If the region around poinp in the image is perfectly even arfg}, = Ey = 0,
matrix C has eigenvaluey = 1, = 0. If point p is located on a line or an edge
where is even along one direction and has a intensity gradient along the another,
we obtaind; > 0, A2 = 0. In fact, the larger the intensity gradient, the larger

its corresponding eigenvalue. That is, the eigenvectors encode edge directions and
the eigenvalues encode the strengths of the edges. Then, ifpp@nbcated on
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a corner which has gradients along the both directions, we oltain 1, > 0.

It means that poinp is located on a strong corner in the case of latgelf the

smaller eigenvalue is larger than a threshold, the pwistto be an interest point.
Instead of actual calculating the smaller eigenvalue, the next value is evaluated.

r = detC — «(traceC)? (3.55)

In the most studies with Harris operators 0.04 is used and we adopt it. Then the
interest points are detected if the valuest corresponding points are greater than
the threshold.

With respect to the inter-frame connections of each interest point, we adopt a
local window matching method.

Consequently, our tracking algorithm with Harris operator is as follows.

1. Given aimage sequence of F frames.

2. Harris operator is applied to the all images and det@gts interest points
at each frameRax > P).

3. Eachinterest point at franfeis identified at the point as framé ¢ 1). Point
pi at framef and pointp; at the next framd + 1 is considered as the same
point if a similarity index is lower than a threshold. The similarity index is
defined as follows based on the window matching around the point.

2, (e~ l2a(py))” (3.56)
neighbor

The traveling distance of each point is restricted inter neighboring frames
because of small image changes. The next constraint is also implied.

llpi — Pjll < dthreshold (3.57)

4. The interest points tracked from start to finish in the sequence are recorded
and utilized in the factorization.

3.3.2 SIFT Operator

Recently, several detectors of interest points are proposed which are invariant with
respect to scale, image resolution and wide view point changes [SM97] [MS01]
[MSO02] [MS04] [DSHO04]. In addition there are many studies on the evaluations
for these detectors [SMB98] [MS03]. Among them, we adopt SIFT key [Low99].
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As mentioned above, SIFT key was proposed originally for object recognition.
The features detected by SIFT key are invariant to image scaling ans rotation, and
partially invariant to change in illumination and 3D camera viewpoint [Low04]. In
our research, we utilize it for tracking.

For the detection of interest points from an image, SIFT key searches them in
the 3D scale space. The scale space is a volumetric space of 2D images applied by
various Gaussian smoothening. Given an imidggy), the scale spadg(x,y, o) is
defined as the following convolution,

L(xY,0) = G(X.Y,0) * [(X.Y) (3.58)
X2 +y?\ . .
whereG(x, Y, o) = - exp(— 22 ) is a Gaussian.

For an dficient detection of interest points, a method is proposed [Low99],
which searches the scale space peaks in tiierdhce-of-Gaussian (DoF) function
convoluted with the image.

D(x.y. o)

(G(x,y, ko) = G(x, Y, o)) = 1(X,y)
L(x,y, ko) — L(X,y,0) (3.59)

This means the flierence of two nearby scales separated by a constant factor
k (k> 1).

The interesting point detection corresponds to the detection of all local maxi-
mums and minimums iD(x,y, o) as in Fig.3.6. We can not specify the number
of interest points in SIFT key since the detector picks up all these pe&is the
most dficient searchk = V2 is chosen.

For the accurate localizations of the interest points, they are estimated in sub-
pixel level. At the accurate positions of peaks, the derivativd3(®j = D(x, y, o)
take 0. By Taylor expansion,
aDy 1 ,62D

D(x) =D + (& X+ =X'—=X (3.60)

Therefore, the peak positiofisare calculated as

(3.61)

o laxe)  ox

Here, o corresponds to the scale at the interest point, which makes this operator
scale-invariant.

it is possible to specify the total number of the interest points in the Harris operator according to
the values of Eq.3.55, for example.
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the scale space the DoF space
@
&
g * ¢
2
©
< ®
E Ny®
S
o >
an original image local maximums and minimums

Figure 3.6: The scale scape and théeatent-of-Gaussian space.

Besides the localizations of interest points, SIFT key detect the orientations
and the local image descriptol?siround the points. The gradient magnitude
and orientatior® at all pixels around each interest point is calculated by the local
Gaussian smoothed image.

m = \/(Lx+1,y - Lx—1,y)2 + (Lx,y+1 - I-x,y—l)z (3-62)
o = taml YT ot (3.63)

I—x+l,y - I—x—l,y
Based on the gradient orientations around an interest point, an orientation his-
togram is formed. The orientation histogram has 36 bins for thé 88@ye. Then
the peak in the histogram corresponds to the dominant direction of the region,
which makes a rotation-invariant detector.

For the local description, the region around each interest point is normalized
in advance with respect to scateand rotatiory . Then the gradient magnitude
and orientation are compared at each interest point. In the left figure in Fig.3.7, the
circle shows a Gaussian window. These samples are accumulated into orientation
histograms summarizing the contents over large region with the length each arrow
corresponding to the summation of the gradient magnitudes (the right figure in
Fig.3.7). In practice, a &4 4 array of the sample regions with 8 orientation bins in
each region is used. Therefore, each SIFTﬁ(bjas 4x 4 x 8 = 128 dimension.

The advantage of SIFT key in the tracking process is that we can use the 128-
dimensional vectok for the inter-frame identification. Consequently, our tracking
algorithm with SIFT key is as follows.
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Figure 3.7: The local descriptor by SIFT key [Low04].

Harris operator SIFT operator

Figure 3.8: The results of the two detectors. In Harris detector, the total number of
interest points is set at 500. And 1623 points are detected by SIFT operator.

1. Given a image sequence of F frames.
2. SIFT key is applied and detects interest points at each frame.

3. Each interest point at franfeis identified at the point as framé ¢ 1). Just
like in the Harris operator, Eq.3.56 and 3.57 are applied. In addition, the next
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constraint is taken into account.

IIKs (1) — Kt42(pj)ll < threshold (3.64)

4. The interest points tracked from start to finish in the sequence are recorded
and utilized in the factorization.

Then, we show the results of the interest point detection by two operators. The
top picture in Fig.3.8 is the original one and applied with the operators. The left
bottom image shows the result by Harris operator. In this example, the strongest
500 interest points are detected according to the values of EQq.3.55. The right bot-
tom image shows the result by SIFT key, which detects 1623 interest points. Many
part of them are detected in largespace, where the locations of interest points are
unstable. While SIFT key detects more points from an image than Harris operator,
there is not a large number of the interest points which can be tracked in the whole
sequence. Consequently, there are not larfjerénces between the results by both
operators.

3.4 Demonstration

In this section, we demonstrate our algorithm by using two kinds of sequences. As
the first image sequence, we use an CG animation which means an ideal image
sequences taken by an ideal camera. As the second example, we use a real image
sequences taken by a digital camera in laboratory which shows that the method is
applicable to real data.

CG Sequence

We made an image sequence by 3ds m@kut]. In this sequence, CG pictures of

a textured box putted on the textured floor are taken by a virtual camera in a linear
uniform motion. It consists of 72 frames, which is the same frame number as the
data by the FLRS. Some examples of the sequence are shown in Fig.3.9.

Then, we extract the interest points by Harris operator, which are all observable
on the entire frames from start to finish. Consequently, 136 interest points are
extracted and an example picture is shown in Fig.3.10.

The history of the total residual errors defined as the next function is shown in
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Figure 3.9: The image sequence of "BOX". (top lefttop right— bottom left—
bottom right)

Figure 3.10: The interest points of the "BOX” sequence.

Fig.3.11.

F o f ot o > 2 f ot o > 2

b [(wp F = it (S =T [+ D 357 (ST ]
Zf Zg
f=1p=1
(3.65)

We can see that the total error is decreasing with iteration smoothly and converges
within finite iterations adequately. The estimated shape by the full perspective fac-
torization after 50 iterations is shown in Fig.3.12. While the floor is not completely
flat nor the object is not a complete cube, it is considered that the result is practical
for estimation of the shape. One can safely state that the full perspective factoriza-
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Figure 3.11: The histry of the error convergence in the "BOX” sequence.
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Figure 3.12: The estimated shape of the "BOX” sequence by the full perspective
factorization.

tion is dfective for shape estimation only from images.

Real Sequence

We apply the full perspective factorization to a real sequence. By using a commer-
cial digital camera and a miniature house model, we verify practitattveness
of our implementation.

Similarly, some examples of the sequence are shown in Fig.3.13. In this case,
the motion of the hand-held camera consists of arbitrary translation and rotation.

The number of tracked interest point, 40, is rather small because the camera
motion in this dataset is wide. An example picture of the interest points is shown
in Fig.3.14.

The similar history of the error convergence is shown in Fig.3.15, and we can
find that the error converges adequately.
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Figure 3.14: The interest points of the "Miniature House” sequence.

The recovered shape after 100 iterations is shown in Fig.3.16.
Figure 3.16 shows the full perspective factorization comes in very useful also
for practical operations.
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Figure 3.15: The histry of the error convergence in the "Miniature House” se-
quence.

side view top view

Figure 3.16: The estimated shape of the "Miniature House” sequence by the full
perspective factorization.






Chapter 4

Refinement

Without noise in the input, the factorization method leads to the excellent solution.
As aresult, the rectified 3D shape through the estimated camera parameters is valid.
Real images, however, contain a bit of noise. Therefore, it is fhit&@nt to rectify

range data obtained by the FLRS only through the factorization. For the sake of
a more refined estimation of motion parameters, we impose three constraints: for
tracking, movement, and range data. The refined camera motion can be found
through the minimization of a global functional. To minimize the function, the
solution by the full perspective factorization is utilized as the initial value to avoid
local minimums.

4.1 Tracking Constraint

As the most fundamental constraint, any interest pST,gmmust be projected at

the coordinatesup, Vtp) on each image plane. This constraint is well known as
Bundle Adjustment [Bro76]. When the structure, motion and shape have been
roughly obtained in the meantime, this technique is utilized to refine them through
the image sequence. In our case, the constraint conducts the following function:

ot o o
Fa= 3 0o 1 STy

K - (Sp-T¥)

J._;t . (S_)p - T_)f))z)

Ki' - (Sp—T1)
The minimization ofF leads to the correct tracking of fixed interest points

by a moving camera. However, we can see that the presence of parameters we are

+(vip - f (4.1)

45
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trying to estimate in the denominator makes this equatiorfeuali one. We have

to seek the optimal solution via some non-linear minimization techniques. Then,
suppose that instead, we consider the following function:

F P . . )
Fa= ZZ((kf (Sp=Trup—f-is - (Sp- Tf))
f=1p=1

>t o - -t o 5 \2
+(kf (Sp=Tevp—T-j5 - (Sp —Tf)) ) (4.2)

The termkﬁft . (S*p — T7) means the depth, the distance between the optical
center of camerd and a plane, which is parallel to the image plane and include
the pointSp. The cost functiorF » is the summation of squared distances on the
image plane while the cost functidij, is estimated on the plane of the po&ﬁ;. It
is true that we can only observe the image points on the image sequence, therefore
the noise occurs on these images. However it is also true that the cost fuRgtion
does not assure that the reconstructed points are close to the correct ones in the real
3D world. In [BCSO01], it has reported that these functions are likely to give good
results.

Based on the above consideration, we choose to minimize the cost fuRgtion
for the facility of the diferential calculation.

4.2 Smoothness Constraint

One of the most significant reasons for adopting a balloon platform is to be free
from the high frequency that occurs with a helicopter platform [H\)Ka]. A
balloon platform is only under the influence of low frequency: the balloon of our
FLRS is held with some wires swayed only by wind. This means that the movement
of the balloon is expected to be smooth. Certainly, the movement of the balloon is
free from rapid acceleration, rapid deceleration, or acute course changing. Taking
this fact into account, we consider the following function:

27, 2
Fg = f(wl(%)z + Wg(aa%)z) dt (4.3)

Here, Tt denotes the position of the cametas time; wy, w, are weighted
codficients; andj; is a unit quaternion (see Appendix B) that represents the cam-
era pose. The basés j; and ki are described by the quaternion immediately as
follows:
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q=((s)u,v,w) (4.4)
S+ +v2=1 (4.5)
P+ U -V —wW
it = 2(uv— sw) (4.6)
2(uw - sV
2(uv+ sw
jt=| S-uw2+v2-w? 4.7)
2(vw—su)
2(uw— sV
G = 2(vw+ su) (4.8)
- -V +wW

The first term of the above integrand represents smoothness with respect to
the camera’s translation while the second represents smoothness with respect to
the camera’s rotation. When the motion of the camera is smooth, the furigion
becomes a small value.

For a quaternion, there are three independent variables which we have to es-
timate. The parametes is, for example, calculated by other 3 parameters as
V1-u2-v2-w2. Therefore, we take account of only v andw with respect
toq.

We implement in practice the following discrete form:

F 27 2
, 0°T¢\2 07912
FL ;(Wl(_atz P w20 ) 4.9)
As discrete approximation formulation for the 2nd-order partial derivatives
with respect to timeAt = 1), we use the next forms [Ban96].

52F 2Ft — SFi1 + 4F2 — Frs (t=0)
Wzt ={ Fr1-2F + Fr1 O<t<T-1) (4.10)
2Ft — 5Ft_1 + 4Ft_2 — Ft_g (t =T - 1)

4.3 Range Data Constraint

Taking a broad view of range data obtained by the FLRS, the data are distorted by
the swing of the sensor. We can find, however, that these data contain instanta-
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neous precise information locally; that information is utilized for refinement of the
camera motion.

The FLRS re-radiates laser beams in raster scan order. This means that we can
instantly obtain the time when each pixel in the range image is scanned because
the camera and the range sensor are calibrated (Fig.4.1). If the video camera is
synchronized with the range sensor, we can find the frame among the sequence
when the pixel is scanned. With the video camera calibrated with the range sensor,
we can also obtain the image coordinate of each interest point in the 3D world with
respect to the instantaneous local coordinate.

Find ¢, suchas PGt )="P, .0, ) !

range

Figure 4.1: Finding the time when a pixel in the picture is scanned by the range
Sensor.

Considering this constraint, we can compensate the camera motion.

At time t, suppose that the sensor positio ($) and the 3 bases, jt, k; are
described a'§(t), T(t), R(t). At this moment, suppose that the range sensor output
X(t)(in the local coordinate) as the measurement of the pdimthich is described
in the world coordinate.

Based on Fig.4.2, the following equation is obtained.

X
)?:x?+yf+£+f:(?fl2) y [+T=Rx+T (4.11)
z

= D

Then, based oR = R (becausRR = (i JK)'(jK) = E), when the range
sensor scans interest poﬁ?g, we can conduct the third constraint to be minimized
as follows:
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Figure 4.2: The global position and its description in the local coordinates

P
Fo= Y | xtp-R(Sp-Tr) | (4.12)
p=1

Here, the indeX p denotes the frame number when the range sensor scans interest
point §p. It is very significant to note thatsp is the 3D coordinate values not
described in the sensor-oriented coordinate system but in the camera-oriented one,
which is rewritten based on the range data and camera-sensor calibration. In prac-
tice, we find sub-framd p by using a linear interpolating technique for the motion
of interest points between frames. The main purpose of the above constraint is to
adjust the absolute scale.

As Xtp = (Xfp, Yips Ztp), the above function can be rewritten as the stronger
constraint:

=)
, .ot o -
Fc= Z((Xfp —lip ‘(Sp—Tfp))2
p=1

>t o - >t o> -
+(Yip—Jtp - (Sp—Tip)* + @p—kip - (Sp-Trp)?)  (4.13)

4.4 The Global Cost Function

Based on the above considerations, it will be found that the next cost function
should be minimized. Consequently, the weighted sum

F = waFj, + wgFg + WcF¢& (4.14)
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leads to a global function. The déieientswp, wg andwc are determined experi-
mentally and we are going to discuss them later.

To minimize this function, we employ Fletcher-Reeves method or Polak-Ribiere
method [Pol71] [Jac77] [SR80], which are types of the conjugate gradient method
(in the next section, we explain the conjugate gradient method briefly). Then, we
use the golden section search to determine the magnitude of gradient directions.
For optimization, Levenberg-Marquardt method [Mar63] is generally employed to
minimize a functional value. Levenberg-Marquardt method is véiigcéve to es-
timate function’s parameters, especially to fit a certain function. However in our
function, it is not a parameter fitting problem to minimize the valu&pf What
we only have to do is to decreabg simply. Therefore we adopt the conjugate
gradient method.

As mentioned in the previous parts, we input the solution by the perspective
factorization as the initial value. Minimizing the functiénis basically quite dif-
ficult because this function has many local minimums. By employing the solution
of the factorization as a fairly good approximation, we try to avoid them.

4.5 Optimization

There are many methods to minimize a multi-dimensional function value. Their
strategies are, nevertheless, almost the same. First, an initial approximate solution
is located in the space, which is expected to be close to the correct answer(global
minimum). Then the approximate solution moves to search the global minimum
iteratively. The method to decide the directions for the searffardiaccording to

the method.

The simplest method is a steepest descent method. To minimize a fuhX)on
for example, it searches the next approximate solution along to the direction of
VT(X). Itis certainly dfective to use the steepest descent method for minimization
of a simple function. In the case of a complex function, it is not alwdhectve to
search along the fierential direction.

Generally it is Newton method that can determine the search diredtiec e
tively. To determine the direction, however, the method needs inversion of huge
Hessian matrices.

Then in this thesis, we apply a conjugate gradient method, which need not
inverse a huge matrix.
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4.5.1 Conjugate Gradient Method

As mentioned above, the steepest descent directions are not always the most suit-
able directions. In a conjugate gradient method, the conjugate direction direction
for the previous search direction is applied. There are two familiar methods in this
category, Fletcher-Reeves method and Polak-Ribiere method.

First, we definéA as anxn positive definite symmetric matrigp as an arbitrary
vector andhy = do. Then two types of gradient vectors are defined as follows:

971=0-AA-h  hii=g21+yih (4.15)
Two vectorsg, andh; satisfyg2:' - g andhi1 - A- K. That means

T S AR
I _—ggtl AA ﬁh' (4.16)
i AT

Consequently, the next equations are introduced in the case pf

A = . =
g -A-h

g'-gj=0 ﬁ;t'A'h—}ZO (4.17)

Above equations mean thgtis orthogonal taj; and thath is conjugate tchj-.

the current solution

the siEépes_t_ descent direction

Figure 4.3: The search directions of the steepest descent and the conjugate gradient
method.

From Eqg.4.15 and 4.17, we obtain the followings.
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021 021 (@31-G) g%
i = = 4.18
ot 2
PR L (4.19)

Here,q is interrupted as the steepest descent directior-ah step. Suppose
that the equatiom = —Vf(P;) is satisfied at poinP;. Then searching alonlﬁ,
point P;.1 is to be found where the functiof(P;,,) takes the minimal value. A
theorem shows that vecteiV f (P;,1) coincides vectog;;, of Eq.4.15. Moreover,
by using Eqg.4.15 and 4.18, we can find vedtawithout calculating matripA (ma-
trix A corresponds to the Hessian). The conjugate gradient method is summarized
as follows.

Input: A cost functionf(X) and the initial approximate solutiof.

Output: The extremunx.

1. Given the initial approximate solutio
2. Calculate the deviation df at current point.
3. Setgy = hg = —V{(%).

4. Search for the minimal poing; annghB.

(replace 1— i)

5. Calculates = —-Vf(X) (i = 1,2,---). Then also calculate by using Eq.4.15
and 4.18.

6. Search for the next minimal poing; 1 alongﬁi.

7. Return to the step 5.
Until: X are close to the previous step.

The point is that the essential techniques in this method are the calculations of
hi and the minimization along the search line. For the line minimization we explain
in the next. For your information, Fletcher-Reeves method adopts the first equation
of Eq.4.18 as the definition ofand Polak-Ribiere method adopts the second one.
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45.2 Golden Section Search

We adopt Golden section search method as the line minimization technique, which
searches the minimal point along a lindeetively and does not need any devia-
tions. Golden section search is based on an enclosure method.

Here, the underlying problem is to findwhich satisfies<= arg rr)1(inf(x). The
strategy of Golden section search is as follows. First, to enclose the minimal point,
we suppose three poings b andc (a < b < ¢). If f(b) is smaller than botti(a)
and f(c), the minimal pointxdoes exist betweem,(c). Then, we narrow down the
search rangea( c) iteratively to find out the minimal point.”

When f(b) is smaller than botH (a) and f(c), we consider another point
between § b) or (b,c). For example, let us consider the caseaof x < b. If
f(x) > f(b), the minimal point should exist betweex €). Then,xis relabeled aa
in the next step and then the minimal point is to exist betwagr) (If f(X) < f(b),
the point is betweenra(b). For the next step, pointandb are relabeled als and
c respectively. The search region becomes narrower in this way. Repeating this
procedure, the search region is getting narrower and we can find out the minimal
point, X numerically.

S(x)

: X
a b X c
-th st
. p TP
candidate region '
"a x| b c n
i+1)-th ste

< > | (i+1) p
| |
| ] | ]
| | | |
| ] | ]
| | | |

Figure 4.4: The Golden section search for line minimization.
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Then, where shall we set the poitor an dfective search? In Golden section
search method, the mosffective position ofx is rigidly determined [PFTV88].
First, given the initial range o&( ¢) (Fig.4.4), the first position df is locates so as
to

ab: bc=0.38197 : 061803

Then,x is to be set in the wider regiot,(c) so as tdbx : Xc = 0.38197 : 061803.
Comparing the values df(x) and f (b), the next step’s search region is determined
as mentioned above. The next poxit located so that its fraction is 0.38197 into
the larger of the two intervalsb andbc. The ratio of 038197 : 061803 is called
the golden section ratio.

4.6 Shape Rectification

After the refinement, we possess the vedgrand three bases, j; andk; at
each frame. That means we know the position and pose of the camera at dis-
crete time. To rectify the deformed shape data by using these extrinsic parame-
ters quantized with respect to time, these parameters have to be interpolated. To
be more precise, we have to interpolate three components with respect to trans-
lation T; = (Txt, Tys, Tzf), and three components with respect to rotatign=
((Sf,) Uf,Vf,Wf). Each parameter’s variation with respect to time is, therefore,
approximated by a polynomials. In this study, we adopt 7-order polynomials.

A range sensor outputs the temporal coordinate vaki@s= (x(t), y(t), z(t))
in the temporal sensor-oriented coordinate system. That means, suppose the range
sensor with positioff (t) and three basag), j(t) andk(t) outputsx; when a point
X = (X, Y, Z) in the world coordinate system is scanned.

Therefore, the next equation should be satisfied.

X = x(t) - i(t) + y(t) - j(t) + z(t) - k(t) + T(t) (4.20)

Consequently, defining the matri(t) = (i{t) j(t) k(t)) as the rotation matrix,
we can rectify the deformed range data as;

X = ROX(E) + T(1) (4.21)

Combining the initial estimation for camera parameters by the full perspective
factorization (Chapter 3) and the refinement method mentioned in this section, we
can estimate the more accurate motion parameters. Then, for parameter estimation
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of a moving sensor, we utilize not only image sequences but also distorted range
data.

In this method, we use a calibrated camera-sensor system as a precondition.
Then a robust method for the calibration is described in the next section. Moreover,
we show that this method is applicable for uncalibrated system too.






Chapter 5

Calibration and Reconstruction

The method described in the previous chapters is based on a calibrated system,
in which the relative positions are known between the range sensor-oriented co-
ordinate system and the camera-oriented one. In the first half of this chapter, we
describe how to calibrate two coordinate systems. In the second half, we apply
our method to an uncalibrated system, in which the configuration between the two
systems is unknown. We use "Shape from Motion” techniques to calibrateghem
posteriori

5.1 Calibration

Calibration is to obtain camera parameters. There are two kinds of camera param-
eters, intrinsic and extrinsic. The intrinsic parameters are proper to each camera
and the extrinsic parameters are in reference to position and pose of a camera. In
the FLRS system, we assume the intrinsic camera parameters are known in ad-
vance (weak calibrated camera). On the hand, the extrinsic camera parameters are
unknown. Moreover, on the FLRS, the sensor-oriented coordinate sysfiers di
from the camera-oriented one. Therefore, we have to estimate the relative ori-
entation between the range sensor and the monitoring camera on the FLRS. For
the acquisition of the relative orientation, we use calibration techniques. Given a
known 3D geometry model by the range sensor and some 2D images by the mon-
itoring camera with known intrinsic parameters, we have to estimate the extrinsic
parameters. That means, calibration corresponds to 2D-3D registration.

There are many techniques for camera calibration by using 3D reference ob-
jects [Tsa86], 2D reference planes [SM99] [Zha99], [Zha00] and 1D lines [Zha04].
Most of the techniques using 3D reference objects estimate the lens distortions si-

57
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multaneously [Tsa87] [WCH92]. In [UTO03], a method for simultaneous calibration
of multi cameras is proposed. By using more simple object(circles [WZHWO04],
spheres [Agr03]), several methods are proposed to estimate only intrinsic parame-
ters. On the other hand, many calibration methods without any reference objects,
called "Self calibration”, have been published recently [Hr96] [LF97] [PKG99]
[PG99].

Calibration algorithms require some kinds of information about the correspon-
dences between 2D features on images and 3D features in space (in most cases, the
features mean points). In order to find 2D-3D correspondences, in some cases, cal-
ibration boxes or checker boards which has prominent markers are utilized for cal-
ibration. In some methods, the correspondences are specified manually by users.
These methods work, but they are labor intensive. On the other hand, many re-
searchers are tying 2D-3D registration automation. In [OhkO03], they aligned 2D
images and a 3D model on the optimization framework, in which conventional
edges in a 2D image were aligned to edges in the rendered image by using the 3D
model.

There are many studies, textbooks and reviews on camera calibration [Hor86]
[Fau93] [Dav97] [Pol02] [UOSO05], because it is one of the mofidalilt and im-
portant problems. The main reason of thiidulty is that the accuracy of parame-
ter estimation is very sensitive to noises. With severe errors and noises, incoherent
parameters are estimated. To overcome thicdity, we adopt a robust estimation
of the intrinsic parameters that rejects the incoherent parameters.

Calibration, the process of estimating the intrinsic and extrinsic parameters of
a camera, is divided into 2 steps.

1. Estimate the & 4 projection matrix, which describes the direct mapping of
a 3D point onto the 2D image.

2. Divide the projection matrix into the intrinsic and extrinsic matrices.

We will explain the process and our robust estimation of the intrinsic parameters.
As mentioned in 3.1, a 3D point at,fy, 2) described in the camera coordinate
system is projected on to a 2D point af) according to Eq.5.1.

(5.1)

<
Il
—
NI NI X
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Here, defining a real number= z, we can describe Eqg.5.1 in a matrix form.

u f
kM=«| v |= f y (5.2)
1 1 Z

Suppose that the camera is locatediaand has the basés j andK in the
world coordinate system. A 3D poirﬁ described in the world coordinate system
is described ag = (x, Y, 2) in the camera coordinate system as follows:

x=1t-(X-T)
y=j"(X-T) (53)
z=kt- (X-T)
Here,x is, for example, rewritten as follows:
K= T (R T) = TR T T = (1 —i*t-f)()z] 5.4)
1
Therefore, the system (Eq. 5.3) is described in a matrix form as,
x) (Tt T
=y l=| |t -]t-T (z]:(Rt —Rtf)(z] (5.5)
5 5 1 1
z kt -kt T
Substituting Eq.5.5 into EQ.5.2,
u f %
I _ _pt
=kl v |= f (R Rf)( ) ) (5.6)

1 1

According to Eq.5.6, 3D pointX, Y, Z) described in the world coordinate sys-
tem is mapped onto pointi(v) in the image.

The coordinate valuasandv are not described in the general coordinate sys-
tem utilized by many studies. In our method, the origin of the image coordinate
system (,v) = (0,0) is located on the center of the image. Moreover, we have
assumed that the image on the image plane is the same picture that we can obtain
like as a photo. Generally, the origin of an image coordinate system is located on
the left top corner of the image, and we have to take into account a deformation
associated with the mapping from the image plane to the actual photo. That means,
an image (, v) projected by Eq.5.1 is fairly ideal without any distortions. There-
fore we have to consider the mapping from the ideal imagé (o the actual photo
image (1, Va) with the left top origin.
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The coordinate system of the the ideal image is centeredla intersection of
the optical axis and the image plane. Pairg mapped to the point atif, vp) in the
new coordinate system; poiais called theprincipal point Then we set one basis
i» of the actual image coordinate parallel to the basi§the camera coordinate
system. For the angle betweeni, and another basig (ideally, 8 = %), the
mapping is obeyed in the next equation.

Ua ky —kycotd ug
ky
V, =| 0 - \Y; 57
a sng © (®.7)
1 0 0 1 )U1

where k, andk, are scale factors with respectitand j, respectively. For simplic-
ity, we setk, = 1.

Consequently, the relationship between 3D pdfnin the world coordinate
system and the corresponding 2D poim, /5) in the observed image is described
as follows:

Ua 1 —cotd u f
fla = - K P TER T
KMy = k| Va = 0 Sing Vo ( ) 1
1 0o 0 1 1
f —fcotd ug 2
kv t t
= |lo f- R -RT 5.8
sing ( )( 1 ] (5.8)
0 0 1

The 3x4 matrix in the middle of Eq.5.8R —RT) consist of camera position
T and poseR, and it is thus called thextrinsic matrix
The first matrix in Eq.5.8 is rewritten:

f —fcotd ug f s w
ky
A= = 5.9
0 sing Vo 0 of Vo ( )
0 0 1 0 0 1

wheresis theskewanda is theaspect ratio The five parameters ( the focal length

f, the principal point o, Vo), the skews and the aspect rati@ ) do not depend

on the position and orientation of the camera in space affierdiom camera to
camera, or from lens to lens. They are, therefore, calledntini@sic parameters

and matrixA is called thantrinsic matrix In fact, the skews and the aspect ratio

a have roots in the manufacturing accuracy of image pickup devices. Generally,
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the skew can be ignored and the aspect rati® almost 10 in the modern digital
camera. And often the principal point is also presumed on the center of the images.
In practice, besides the skew and the aspect ration, lens distortiondfelsio a
the observed image deformation. They primarily consist of radial distortion and
tangential distortion, which are especially notable when the wide-angle lenses or
small handy cameras are used. Lens distortion can be estimated by various methods
[Bro66] [SNOO] [STEYO05]. We adopt the method in [Zha99] [Zha00] as described
later.
Equation 5.8 is rewritten as follows:

Ua
wia=k| v, [=A(R -RT)W=PW =P
1

= PW (5.10)

N < X

The 3x 4 matrixP = A(Rt - Rtf) is called theprojective matrix which directly
connects the 3D point in space and the corresponding 2D point in the image. To
estimate all extrinsic and intrinsic parameters, the first step is to estimate the com-
ponents ofP. Then, decomposinB, we can obtain the intrinsic matri and the
extrinsic parameter® and T

5.1.1 Solving for the Projective Matrix

In Eq.5.8, the number of unknown parameters seem to be 1.2 These are 12
elements of the & 4 matrix P and«. We can’t determine the value ef which

is called theprojective deptland difers from point to point. This means we can't
determine the scale of an object only by watching its image. Therefore, we use the
following equation derived from Eq.5.8.

ma(x PW
. Max PW =0 (5.11)

Moreover, there is ambiguity in the scaleRi§ components. We can't determine
the absolute value of the components. The number of unknown parameter is, there-
fore, only 11. It corresponds to the 5 intrinsic parameters and 6 extrinsic parameters
(3 in rotation and 3 in translation).

If we know the coordinate value of 3D poinX,(Y, Z) and its corresponding 2D
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point (U, Va), we can derive two equations from Eqg.5.11. For example, suppose

P, P, P; Py
P=|Ps Ps P; Pg (5.12)
Po Pio P11 P12

then we obtain two equations as follows:

(5.13)

XP1+YP + ZP3 + Py — uaXPg - UaYplo - uaZPll — Uaplz
XP5 + YP6 + ZP7 + Pg - vaXPg - VaYplo — vaZPll— VaP12

If we get more than six pairs oK( Y, Z)-(ua, V5) correspondences, we can solve
for the vectorP = (P1, Pa, -+, P12) of unknown 12 parameters as a linear system
problem.

As mentioned above, we can't determine the absolute lengkhbEcause of
the ambiguity in scale. In our study, we i = 1.

5.1.2 Solving for the Intrinsic Matrix

Let us consider the leftmost® part of the matrixP. From Eq.5.10, we can obtain
the next.

Pi P, P3
P = Ps P P; |= AR (5.14)
Py Pio P11

Here is a significant property with respect to the rotation marix

it 1
RR=| 1 | [K-= 1 =E (5.15)
Kt 1
Therefore,
P'(P)' = (AR)(AR)' = ARRA = AA (5.16)

The next task is the decomposition®¥{P’)! into the upper triangle matrik.
SinceP’(P’)! is a symmetric matrix, the above decomposition can be attained as
follows:

ki ko ks
if K=|k ki ks |=AA
ks ks 1



5.1. CALIBRATION 63

\/kl 2 ek do—kaks

P N o
Vks —ks? ks

1

then A= (5.17)

Consequently, we can estimate all intrinsic parameters.

5.1.3 Solving for the extrinsic parameters

Once having estimated the projective matfixand the intrinsic matrip@d, it is
simple to solve for the extrinsic parameters.

R=(P)A™ (5.18)
T=-RAlp (5.19)

wherep = (Pg, Pg, P1)'.

Thus, given more than 6 pairs of 3D-2D corresponding points, we can estimate
5intrinsic and 6 extrinsic parameters with scale ambiguity. The method mentioned
above is called a linear solver since it consists of only linear calculations.

In practice, we apply a non-linear solver after solving by above linear solver.
Suppose NN > 6) pairs of 3D-2D correspondences,(Yi, Z) — (ui, i), we have
to minimize the following cost function:

2

F = ZN{(Ui—Ua(Rf,XisYivzi))2+(Vi—Va(R»fvxiinin))

i (ui ) fx(Rf,xi,Yi,zi)+sy(Rf,xi,Yi,zi)+uoz(Rf,xi,Yi,zi))2
i 2R T, %, Yi, Z)
+(V' _ofyRT. XY 2) + vozR T, Xi,Yi,Zi))z

2R T, %, Y, Z) (5.20)

where the functiong(R, f, Xi, Y, Z) etc. have been defined in Eq.5.3.
Therefore, refined parameters by the non-linear solver are estimated as

{f,sa,u,Vvo,RT}=arg min F (5.21)
f,sa,UpVo.RT

We adopt Levenberg-Marquardt method for the minimizakon
Here, the procedure of solving for camera parameters is summarized as follow.
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Input: N(= 6) pairs of 3D-2D correspondences extracted manually.

Output: The intrinsic and extrinsic camera parameters.

1. Solve for the projective matriR by using N pairs of Eq.5.13.
2. By using the left 3k 3 part ofP, solving for the intrinsic matriA.

3. Solving for the rotation matriRk and the camera positio‘ﬁ by Eq.5.18 and
5.19, respectively.

4. Input these parameters into Eg.5.20 and refine them through the non-linear
minimization of the cost function.

Before we come to Levenberg-Marquardt method, let us return to the lens dis-
tortions. In our study, we consider only on the radial distortion, which is modeled
as

{ Uy = (Ua — o) (1 + kar? + ko) + g (5.22)

Vé = (Va - Vo) (1 + k1r2 + k2r4) + Vo

where P = (Us — Ug)? + (Va — Vo)?

The parametek; andk, represent the lens distortions. In order to remove the
distortions, the cost functioR which includes the parameteks andk, based on
Eq.5.21 should be minimized.

5.1.4 Levenberg-Marquardt Method for Optimization

Levenberg-Marquardt [Mar63] method is a general non-linear optimization algo-

rithm for parameter fitting when the form and derivatives of the objective function

are known. It mixes a gradient descent and Newton method dynamically in each

iteration. In this subsection, we explain our implementation of the method briefly.
Let us consider the following situation, where given some observed vajues ~

we want minimize a functiorr (p|X) with respect to unknown parametgss In

other words, we want to estimate the optimal parameiggs

Bop = arg rr%inF(mX) (5.23)

In the gradient descent method, a new candidate of the solgtians esti-
mated by using the current solutiginas follows:

IF(PIX)

ﬁt+1=§t_/l aﬁ f=pr

(5.24)
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whereJ is a positive real number.

The gradient descent method tries to bring the solution close to the global min-
imum along the direction of the steepest descent at each iteration. The direction
of the steepest descent, however, does not coincide with the direction toward the
global minimum in the multi-dimensional space.

Then, Newton method, which uses 2nd-order approximatioR,ofvas pro-
posed in order to bring the global minimum faster. We apply Taylor-expansion to
f(p) around pointdp.

() = F(Po) + (8- B 0 + 5B~ BoYH(PIP- P + -+ (5.25)

+

whereH(p) is called theHesse Matrixor theHessian With N-dimensional vector
B = (p1, P2, - - -, Pn)', the Hessian is defined as

9°F 9°F &°F
op1?2  0p1op2 Op10pN
9°F 9°F o°F
H(p) =| 9P20PL  0p? dp20pN (5.26)
0°F T
opnopL  Apndp2z T OpN?

At the extremal point, the derivative dftakes 0.

OF _ OF(Po)

B op + H(Po)(P— Po) =0
B = o - () 22 5.27)
Comparing Eq.5.24 to 5.27,is used in the steepest descent method-ifid)

dF (o)
op

proximate solutiorp; is far from the extremum, the steepest descent method brings
the solution to it faster than Newton method. On the other hand, the convergence
of the steepest descent method becomes worse near the extremum and Newton
method becomes moré&ective.

Levenberg-Marquardt method adopts advantages of both methods. In Levenberg-
Marguardt method, the update formulation of the solution is set as follows:

1 0F ()
ap

. When the current ap-

in Newton method respectively as a @ogent of

P = Bt — (AE + H(B))~ (5.28)
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Levenberg-Marquardt method modifies the valuel@ynamically at each itera-
tion. Equation 5.28 allows the Levenberg-Marquardt method to smoothly switch
between the steepest descent method (layged Newton method (small). In
practice, it starts with large. Then,A is reduced when the last iteration gives an
improved estimation, i.e=(Pi1) < F(B).

Here, it is a daunting task to calculate the Hessian (Eq.5.26). For simplicity,
instead of 2nd-order derivatives we approximate the Hessian by using 1st-order
derivatives as follows. Suppose the cost function is set as

M
F =, 0 f(PI%)? (5.29)

whereX; andy; are observed values with indéexA 1st-order derivatives is

oF

M . of
. = —ZZm - 1) 5 (5.30)

The 2nd-order derivative is therefore

PF S
=2
pk Z

of of oy Of?
I K (vi — £(AI%)) Ipe 0k (5.31)

The second term of the above equation is interpreted as the summation of weighted
errors(y; — f(PI%Xi)). Assuming it is close to 0, we can approximate the 2nd-order
derivative as

opk Ip Ipk Ok

Thus, we can estimate the 2nd-order derivative as the summation of the products

2 M
52F -2y of af (5.3
i

of 1st-order derivatives.

5.1.5 Robust Estimation of Parameters

In practice, the linear solver mentioned so far fteeted the influence of noises
strongly. If there are some noises in image or positions of interest points, they
affect the accuracy not only on the linear solution but also on the refined parameters
by non-linear minimization.

Let us take an object without any geometrical feature for example (see Fig.5.1).
The figurine of the cat in Fig.5.1 has a smooth shape and only a few geometric fea-
tures while there are several features with respect to texture. In the case of manual
detection of interest points from a smooth model, noise in inevitable. Figure 5.1
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Figure 5.1: Calibration with a known model.

shows 17 corresponding point pairs between the 3D model and its 2D picture. At a
glance, the 3D position on the model looks proper with respect to its 2D image. The
estimated intrinsic parameters by a conventional linear solver are, however, wrong.
The next intrinsic parameters are estimated through the above linear solver.

421969 -69437 -180650
A= 433027 -157174
1

First of all, the principal point is located outside of the imHgélso the focal
length is very large and the value of the skew is incredible. Consequently, the
extrinsic parameters include huge errors.

The reason why the linear solver outputs incorrect parameters is considered
to be that there are outliers in the input. In the case of an object with smooth
surfaces, it is very diicult to specify the locations of interest points on the 3D
model. Therefore, we try to get rid of outliers from input data. It is, unfortunately,
not easy to make judgments as to which points include error only by watching the
input data.

Then we take particular note of the facts that the aspect ratio of the camera
intrinsic parameter is close to(land the skew nearly vanishes in modern digital
cameras. Moreover, almost all cameras locate their principal point at the center of
their images. That means, given input pairs that output the aspect ratio far from

lthe image size is 648 480.
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the skew far from @ or the principal point far from the center of the image,

there must be errors in the input data.
Therefore, adopting the RANSAC (Random Sampling Consensus [FB81]) tech-

niqu

e, we propose the following algorithm for the estimation of camera parameters.

Input: N(= 6) pairs of 3D-2D correspondences extracted manually.

Output: The intrinsic and extrinsic camera parameters.

[EEN

. Pick up 6 pairs from N pairs at random.
. Solve for the projective matri® and estimate the intrinsic parameters.
. Calculate the next cost function,
G = f2((a = LOY + &) + w|(up — Cu)? + (vo - C)?] (5.33)
Here, Cu, Cy) is the center of the image amdis a weight.

. Repeat above procedure, and store the intrinsic parameter set with the min-
imum G. The intrinsic parameter set with the minimunis considered as
the proper intrinsic matrix element.

. By using 6 input data sets with the minim@nthe extrinsic parameters are
estimated.

. Considering the above parameters as the initial solution, entire parameters
are refined through Eq.5.21 by using all N pairs.

By using this robust method, we estimate the parameters as follows from the
same data of Fig.5.1,

83244 1836 28499
A= 80098 10208
1

While some noises seem still left in the intrinsic parameters, the above result is
better than the previous result achieved by the conventional method.

2We setw = 0.01.
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5.2 3D Reconstruction by Images

The method described in Chapters 3 and 4 is based on a calibrated system in which
the relative positions are known between the range sensor-oriented coordinate sys-
tem and the video camera-oriented one. In this section, we describe how we applied
our method to an uncalibrated system in which the configuration between the two
systems is unknown.

The strategy is as follows. First, we reconstruct the 3D scene with ambigu-
ity in scale from image sequences. In this process, camera positions with scale
ambiguity and camera poses are estimated. Then the reconstructed 3D data with
scale ambiguity are aligned to the roughly rectified 3D data obtained by the range
sensor, which are derived from translational parameters with scale ambiguity. This
alignment process removes the scale ambiguity and determines the relationship
between the camera and sensor coordinate systems. After obtaining the absolute
scale, we apply the refinement method mentioned in the previous section and rec-
tify the shape.

Before describing this process, we will pause here to look briefly at related
works on 3D reconstruction.

Three-dimensional reconstruction from images is one of the most significant
and interesting field in Computer Vision. Besides factorization, stereopsis is one
of the most traditional methods for reconstructing an object shape by using several
images. Generally, it is said that there are two problems in stereo viSimme-
spondencandReconstruction

Correspondence is determining which token in a image corresponds to another
token in other images. The interesting point detector mentioned in Section 3.3 is
one on the solutions for this problem. While the reconstructed model is sparse, it
can deal with wide view point change bffiae invariant feature detectors [Bau00Q]
[PZ98] [STGO3]. Besides the feature-based method, many area-based methods
have been recently proposed. In [TSRO0OQ], [TSR01], the scene is reconstructed
by using small patches segmented by color. In [RLSPO8&hepatches are uti-
lized. Optical flow [PGP0O94] [SG02a] [SG02b], [ADSW02] and Graph cut [IG98]
[SC98] [Roy99] [BVZ01] [KZ01] [KZ02] [SZS03] technique are also used dense
reconstruction of scenes.

The another problem, Reconstruction, is dealt with in this section. In stereo
vision, given the disparity between correspondence tokens, knowledge of the pa-
rameters of camera positions and poses enables reconstruction of the shape. If the
parameters of all cameras are known in advance (e.g. a parallel stereo), the shape
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will be easily reconstructed. When we do not know camera parameters, especially
extrinsic parameters, we have to estimate the camera configuration by images. In
[LH81], [TH84] and [WHAS89], they estimated the rotation matrix and the transla-
tion vector from the essential matifix By using the eight-point algorithm [Har97]

and the five-point algorithm [Nis03], the fundamental matiand the essential

matrix E are estimated, respectively, only through images. Ambiguity of scaling,
however, remains in these methods. Recently, many researchers have used some
sophisticated physical sensors, including gyros and GPS, to obtain the absolute
scaling. In particular, for modeling large objects such as buildings and scenes,
a great deal of research combining these sensors (sensor fusion) has been under-
taken. In [ZNHO04], they recovered camera poses and 3D structures of large objects
by image sequences from the air by using motion stereo. Then the reconstructed
shapes (3D point clouds) are registered to other correct 3D data, and texture images
are mapped onto the 3D data.

5.2.1 Increment of Track Points

According to our strategy in the uncalibrated system, we need to construct a 3D
model. However by using the factorization, only sparse 3D points can be recon-
structed because of using the points visible from the whole sequence. Unfortu-
nately, the number of estimated 3D points is small especially in the case of wide
camera motion. It is, therefore,filcult to align this sparse 3D model to the dense
model obtained by a range sensor. To overcome this problem, we increase the
number of tracked points and construct dense 3D model from images. In this sec-
tion, we use other points that are visible over a certain number of frames while we
utilize the points that are trackable over a sequence in the previous factorization.
After increasing the number of track points, we estimate their 3D coordinates. To
estimate these re-registered 3D points, we use a Maximum Likelihood (ML) esti-
mation method [DHSO0Q].

5.2.2 3D Reconstruction by ML Estimation

Let us consider a situation that we are given images taken by a moving camera with
known parameter and that we are given a point on each image that corresponds to
the same 3D point. Here, we want to determine the 3D position of the point.
Theoretically, the position of the point is interpreted as the intersection of all rays
that connect optical centers and 2D points on image planes. However in practice,
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these rays do not intersect at a point because of noises and errors in measurements
(Fig.5.2).

Then, where is the most proper 3D position? Here we assume that all the rays
go through neat the true 3D point. In this case, the error corresponds to the distance
between the ray and the 3D point. In addition, we assume that the error distribution
follows a Gaussian function. If we denote the correct 3D poirk ard X as the
nearest point on each ray of framethe distribution of error — X follows the
Gaussian. All vectorg; andX are described in the world coordinate system.

The error is estimated as follows in each image,

p(X | %) p(X — %)

1 (X - %)'(X - %)
(277)3/2|A|1/2 EXF{— i ]
Here, A is covariance with respect to frame The probabilityp(X | X) is in-
terrupted as the conditional probability for the closest p&irgiven the 3D point

X.

(5.34)

For 3D reconstruction, we must estimate fheith the maximump(X | X). By
ML estimation, we maximize the probabiliy(X | X) instead ofp(X | X) since we
have no prior knowledge about the functipfX | ).

For all frames, total probability is estimated as

pX1%) = [ | % - %) (5.35)

Therefore, the correct 3D point is estimatedk@s by maximizing the above
probability.

XvL = arg rr;axp(X|>?)
= argmaxo XX
gm 9| p(X 1 %)]

= arg n;ia»iog[]i_[ p(% - %)

(X - R)'(% - %)
= arg rr;iaxzi:[——le\i X ]

- i = AR - R 5.36

arg rng(K X)'A;TH(X - X) (5.36)

In each frame, T; is the position of cameraandd; is the unit ray of frame
described in the world system.

X =vid +Ti (5.37)
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the truc point x

Figure 5.2: The 3D reconstruction of a point.

Here,y is the length between thieh camera center and the 3D point, and

yi = IIX-Till = &'&-T) (5.38)
therefore, we obtain
X-%=aa'&-T)+Ti-& (5.39)
For the minimization of Eq.5.36, the derivative takes O.

dXmL
dx

- 3 DICRUICE
_ I PR d(x — X)
= Z 207K - R) e
= 2) A (aa'k-T)+ T %) @a'-E)  (5.40)

=0

where,E is the 3x 3 unit matrix.
Then, replacingi'a = A,

P A A-BR-(A-BT) (A-B)=0 (5.41)

ZAi‘l(Aa ~E)(A-E)x= Z ATHA - BNA - BT, (5.42)

When we know all the camera parametersaalare estimated. In this thesis,
we set as\;j = E. Therefore, we have now obtained a linear system in the general
form of Kx =y.
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Thus, given camera parameters and an interest point on each frame, we can
estimate the proper position of the corresponding 3D point in closed form. In
addition, we can construct a dense 3D model by this method.

Here, we apply this method to a sample sequence (the sequence of "Case3” in
Chapter 7. For further details of the sequence, see Chapter 7). First, 140 interest
points are detected through the whole sequence (Fig.5.3). On the other hand, the
increment method detects 10,119 points, which are visible in over 30 continuous
frames.

Figure 5.3: Increment of interest points. (top : ground truth)

5.3 Refinement by Levenberg-Marquardt Method

The camera positions and poses, and 3D positions of interest points include some
amount of noise, so it is very useful to refine these parameters. In the case of 3D
reconstruction, it is#ective to refine parameters by Levenberg-Marquardt method.
For the refinement, the minimization of the next cost function is required (Bundle
Adjustment) .

F P -t o - -t o >
it - (Sp—T¢)\2 it - (Sp—Ts) 2)
G = O(Uf_fﬁ + (Mo f S
fzipz; (e kft-(sp—Tf)) P kft-(sp—Tf))
F P
= ZZOfP(g?erh%p) (5.43)
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Here,Op takes 1 if pointp is observable in theé-th frame: otherwise it takes
0. Note that the above equation has the same form as Eqg.4.1 in Chapter 4 and
(ufp, v¢p) is described in the principal point-origin coordinate system.

There are two kinds of parameters to be solved; camera position and pose (6
degree of freedom per frame) and the 3D position of interest points. In the case
of F frames and P interest points, the total number of parametersFa#e3p.
Describing the unknown parameter vectofawe divide it into two partséCamera
of camera motion anashapeof 3D point.

0= [-rl, as, T, qz, -, S1.S, - ] = [é)camera é)shapd (5.44)

Then, let us consider the Hessian. The Hessian is a huge matrix because it has
(6F + 3P) x (6F + 3P) elements. In this case, however, the Hessian is a very sparse
matrix. For convenience, we divide the Hessian into 4 blocks a8Fig.

First, we shall focus on the top left block-&6F matrixU. Based on Eq.5.32,

(i — j) element olU is calculated as

8°G g 891p 89ip  dhep dhep
Ulii = =2 0] 5.45
[Vli 06; 06 ZZ fp( a6, 06; * a6; 06 ) ( )

here, 1< i, j, < 6F.
For camera motion parameters, each paramétecta only the other param-
eters in the same frame. Therefore, it is found thatas a diagonal structure of

6 x 6 sub-matrices and

d9¢p 09t p ahfpahfp
U]"‘ZZO (ae. 96 " 0 6] (5.46)

Similarly, it is found thatV has a diagonal structure of>33 sub-matrices
because each shape parametéects only other parameters of the same point.
Therefore,

F
agfp agfp ahl‘pahfp
=2 A7
Viij ZO”’( a6, 96, o6 a6, (5.47)
where 1< i, j < 3P.
Finally,

o 09tp 09tp  Ohgp dhyp

(Wi _ZOfp( a6; 06 " a6, 06, (5.48)

where 1<i <6F,1< j < 3P.
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From Eq.5.28,

. G
A0=§‘+1—§t=—(ﬂE+H)‘181

L 9G
L ME+H)AG= -2 (5.49)

-

SincelE has only diagonal elements, the following displacement does not lose

generality.
AE+H=| EFY W Jvow (5.50)
= > .
Wt AE+V Wt v

1

E
After the replacement, multiply Eq.5.49 by mat(ixo ] from the

left side, then

E -wvi)(U w) . (u-wvwW 0) . (E -wv?!)aG
A = A = —
0 E wt v wt \Y, 0 E 00
(5.51)
This transformation can divide whole system into two groups of equations.
First,

agcamera agshap

Abcamera= (U - W\rlwt)‘l( G g1 %6 ) (5.52)
Then,Adzameracan be used to solve the next
S 4 0G "
Aeshape: \ 1( S - WtA@camere) (5-53)

Qshape

The computation of invers¥ is very dfective sinceV has a diagonal structure
of 3 x 3 sub-matrices. These transformations result in fast calculation of updated
parameters.

5.4 Alignment-based Calibration

Next, we estimate the configuration between the camera-oriented coordinate sys-
tem and the range sensor-oriented system. Using the refined camera parameters in
the previous subsection, camera rotation ma®iwith respect to time f is repre-
sented as

R =t 1 Kr) (5.54)

Here, the configuration between the video camera and the range sensor is de-
scribed by rotation matrikia and translation vecto‘ﬁmra. Solving forRinya and



76 CHAPTER 5. CALIBRATION AND RECONSTRUCTION

Tintra is calibration. Using scale facta; the minimization of the next function
(Eq.5.55 uses M-estimator, which is explained in the next chapter in detail) leads
to the estimation of the relation between two coordinates.

P z
. fp
arg min log(1+ — (5.55)
Rintrasfintra,spzz;l_ 20'2
Ztp = Rintra(Re X + Sff) + -rintra - S§p (5.56)

There is scale ambiguity i and§p, which are derived only from images.
The scale factosis, therefore, multiplied by these parameters. The above function
takes a small value when the shape of a clség is aligned to the rectified range
dataR¢X + ST¢. After the estimation o6, Rpya and Tinra, We can use the same
method described in Chapter 4.

top view side view

Figure 5.4: The result of alignment with scale factor in translation

Here, Fig.5.4 shows the result of the alignment in the sample sequence. The
top left figure shows the initial solution by manual operations. The top right figure
shows the result by Eq.5.55. It is found that the rectified range data (blue model)
are well-fitted to the point clouds constructed by images (red points).

Incidentally, we build a software of this algorithm and it makes calibration easy
(Fig.5.5).
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Figure 5.5: The GUI of the alignment based calibration method.






Chapter 6

Shape Rectification without
Images

The method mentioned so far does not need another range data set. We can rectify
distorted range data by using only a single range image and an image sequence.

In actual cases, however, there should be some available range data sets taken
by another range sensor fixed on the ground. Our FLRS is originally devised to
complement the measurement for the region that is invisible from the ground.

Some parts of a range image taken by the FLRS are also taken by another
range sensor fixed on the ground. Based on these overlapping regions, we propose
another algorithm which rectifies the distorted range data obtained from the FLRS.
In this method, we do not use any image sequences.

6.1 Basic ldea

Originally ICP(lterative Closest Point) algorithm [BM92] [CM92] was developed
to align two shapes. In a range image, coordinates of 3D points are described in the
sensor-oriented coordinate system. Two range images fraraft viewpoints,
therefore, have flierent coordinate systems. To unify two shapes, two data sets
have to be described in the unified system. In order to do that, we apply a co-
ordinate conversion to one data set. When there are some overlapping regions in
the two data sets, we apply a transformation of the coordinate system in order to
coincide them.

To simplify the transform procedure, we assume that one shape is fixed and
another can move. We call the fixed shape the "model shape” and the movable one

79
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the "data shape”. Rotating and translating the data shape aligns two shapes. In
overlapping region, a point on the model shape has a corresponding point on the
data shape. Which point is the corresponding point, however, is usually unknown.
We resolve this correspondence problem by an iterative method. Initially a tempo-
ral corresponding point is assumed. A movement is determined so as to minimize
an objective function, which is defined by distances between the corresponding
points. The temporal correspondences are changed after the movement. Then a
new movement is determined under the new temporal correspondence. This pro-
cedure is repeated until the total distance converges. The objective function, which
should be minimized for the alignment, is defined as

fRT)=f(aT) Z||R(q)>c+f yi I (6.1)

This objective function indicates the summation of distances between all pairs
of corresponding points. Initially the function takes high values because there are
a lot of wrong relationships of correspondences. As iterating calculations, wrong
correspondences are improved and the function takes a converged value. If two
shapes coincide, the function takes a low value. When the function converges
under a threshold, we decide two shapes are similar.

There are many variations of ICP algorithms [RLO1]. For example, while we
estimate the cost function as the total distances of point-to-point pairwise [BM92]
[Zha94], some methods adopt the distance between a point and its mate’s tangent
plane [CM92] [Neu97].

For corresponding points, there are several methods to determine them. Some
methods search the corresponding point along the ray [BL95]. In this thesis,
we adopt the nearest neighbor points as the corresponding points. We speed up
searches for the nearest neighbor point by using KD-tree [FBF77] [Whe96] [Nis01]
[Mas03].

We use quaternion to minimize the objective functfoBy substituting quater-
nion q to rotate matrix}, motion vectofT can be found as follows.

(9, 7.} arg m|nf q, Z IR@R +T -V I (6.2)

In the conventional ICP algorithm mentioned above, it is assumed that both
shapes are obtained by fixed range sensors. On the other hand, in our situation, the
model shape is obtained by a fixed range sensor while the data shape is measured
by a moving sensor. Therefore we have to take account into the motion of the range
sensor.
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The motion of the sensor is expected to be smooth, as mentioned in the previous
chapter. Itis, therefore, proper that the traces of the motion parameters are approx-
imated by some polynomials with respect to time. Consequently, we approximate
six parameter, three translational elements and three elements of the quaternion, by
following polynomials.

T(t) = To+tT1+ 2T +--- = > t"Ty (6.3)
n=0

q(t) = qo+tqs + t2qo + - - - = Z t"gn (6.4)
n=0

where{To, T1,- -+, Tn, 0o, u, - - -, O} are the parameters that describe the sensor
motion. Then we formulate a new cost function including the above forms.

6.2 Extended ICP Algorithm

Instead of Eq.6.1, we have to set up a new cost function.

First, we will change the index of points of data shapeQur sensor measure
the distance to a point in the raster scan order. Therefore, all points on the data
shape, which are measured by the moving sensor, are distinguishable by time
According to the time factor, the corresponding points on the model shapkich
are obtained by a fixed sensor, are described as fundgtioifs).

Then, the cost function for the extended ICP algorithm is described as follows:

f(To, Te, - TN, os G-+, Gn) = Y ITR@M) X(t) + T(t) - YXO) 17 (6.5)
t

We take a summation form with respect to titni@ spite of the continuity of
time. Since it is only necessary to pick up the moments when the point on the data
shape is actually scanned.

To minimize the above function, the parameters of the sensor motions are esti-
mated.

{To. T2+, TN- G0, 1. - -+ ON} =

. > o -
arg_ min f(TO’Tl"",TN’qo,CIL'",qN) (6.6)
To,T1,+,TN,00,d1,*,0N
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If we assumeéN-order polynomials, the number of unknown valuables i$ 6(
1).

We minimize the cost function through the steepest descent method and Golden
section search. The reason why we adopt them is that the many corresponding
pairs change at every iteration and the contours in Fig.4.3 change on each iteration.
There is no advantage to applying Levenberg-Marquardt nor the conjugate gradient
method, which can search the next approximate solutifectvely in the fixed
contours.

Furthermore we adopt a robust estimation to reject outliers in the minimization.

6.2.1 M-Estimator

In the original ICP algorithm, the rigid transformation parameRasidT are esti-

mated by minimizing the cost function. In fact, however, there are many situations

in which the solutions do not result in conformation of the data shape to the model
data because both data sets are contaminated by noise. Moreover, since two data
sets are measured fromfidirent viewpoints, some parts of the data shape have no
corresponding points on the model shape. In the above method, the nearest neigh-
bor points are use as the corresponding points. There are, therefore, many wrong
pairs in the correspondenceso& Y(X).

+ outher

Model shape

\

\

Data shape

Figure 6.1: Alignment of two shapes with an outlier. left: least-square method.
right: an expected fitting with outliers

Because of the above reasons, there are many disadvantages to minimize Eq.6.5
of a simple least-square form. For example, suppose two models on the right side
of Fig.6.1, which contains outliers in the data shape. The minimization of a simple
least-square leads to the solution on the left side of Fig.6.1.
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At the next step, we have to reject outliers robustly and estimate valid parame-
ters. Following are several types of methods that estimate the solution in the case
of noisy data sets. Among them, we adopt a technique of M-estimator [PFTV88]
[GMW81] [WP97]. In M-estimation, the cost function has the general form as
follows:

E@ =) 00 (6.7)

wherep(2) is an arbitrary function of the errogsin the data set. When we adopt
the p(2) asp(2) = 7, itis a simple least-square method. That is, a least-square
method is one of the branches in M-estimations. In our implementation, we adopt
Lorentzian function as the M-estimator.

o(2) = log (1 + %,222) (6.8)

This function is introduced as follows: Suppose that the probability distribution
of outliers is in this form;

P[] expl-s@) ©9)

For example, when the probability distribution has a Gaussian fofmh,= %zz,
we define the deviation ¢f(2) asy/(2).

9p(2)

W2 = —~ (6.10)

Here, we want to minimize the probability P of Eq.6.9. The errors means the
differences between the observed values and the theoretical figures with parameter
a. Minimizing P equals minimizing lod?. Therefore by taking the deviation of
log P with respect ta as 0,

ologP 0p 9z 0z
- _\N'"P% __ )— =0 6.11
Ja L 57 9 Z Wa) 5, 6.11)
As can be seen in Eq.6.11, a functig(e) can serve as a weight for each data
setsz, and M-estimator can be interpreted as a weighted-least-square method.
In the conventional least-square methgdz) = zis applied, in which the
greater errorg, the greater value takgg?z).
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Figure 6.2. Several types @f(z2). o = 1.0 in the Lorentzian function and the
threshold is set at.3

Consequently some data sets with huge errors prevent the proper estimation of
parameters.

In this thesis, we adopt Lorentzian function as M-estimator as follows;

@) = —5— (6.12)
2

In Lorentzian function, the weiglgt(Z) is increasing as the erraincreases within a
certain range. As the error increases more than it, the weight is decreased (Fig.6.2).
Consequently perfect outliers have less influence on the estimation of the parame-
ters. Integrating Eq.6.12 with respeciztteads to Eq.6.8. Andt is interpreted as a
parameter that determines the weight for the outliers. The largire heavier the
weight for the outliers. As seen as Eq.6.12, in the case ef oo, M-estimation
corresponds to the least-square method.

6.2.2 Minimization with M-Estimator
Based on the above considerations, the cost function Eq.6.5 is rewritten as follows:

. 1,
arg min log (1 +—z ) (6.13)
To.T1, TN 00,1, 0N Zt: 202
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where z = R(Q(D)X() + T(t) - Y(X(1))
T() = To+tTL+2To+--- = > t"T;
n=0

A(t) = Qo +tqa + P2 +--- = )" 1"y
n=0

Replacing Eq.6.13 a8, a derivative with respect 6 is
Fo_y
oT = 202+ 2 9T,
2 .
Py (6.14)

= 202+ 7

Similarly, a derivative with respect @ is
Fo_ oy 2 i
aq; a 202 + 72 00
2z OR
202 + 72 0q
2z OR
202 + 72 0q

(t)
t' X(t) (6.15)

2
2

We can easily build a graphic user interface (GUI) onto this method and a
practical software (Fig. 6.3).
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I ‘-.T

Figure 6.3: The GUI of the extended ICP algorithm



Chapter 7

Evaluation

In this Chapter, we evaluate our algorithms by using known CAD models. Con-
structing a virtual FLRS using a PC, we estimate the accuracy and the limitation of
our methods objectively.

7.1 Benchmark Shapes

To evaluate our rectification algorithms quantitatively, the mé#tient method is
to check them for given models in advance.

In order to do that, we construct a virtual FLRS system on a PC and obtain the
distorted range data and the image sequences for known model. Motion parameters
are know completely. Also, we rectify the distorted range data through our two
proposed methods.

The rectified shape data are, eventually, compared with the correct shape data,
and the results are evaluated numerically.

We use the following CAD models as a benchmark for the evaluation (Fig.7.1).
The benchmark has a large depth, which has a strong perspdtéiee Eor refer-
ence, the height of the pyramid is 0.6, that of the side wall is 0.78 and the thickness
of the side wall is 0.2. The equation of the back plane4s0 and that of the floor
isy=0.

Then, we map textured pictures onto the surfaces of the benchmark shapes
to detect many interest points for tracking. In this chapter, we do not intend to
evaluate the performance of the interest point detectors. All we are interested in is
to evaluate the performance of rectification and the accuracy of the rectified shapes.

After that, we provide three sensor motions for virtual measurements (Fig.7.2).

87
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Figure 7.1: The benchmark shape for the evaluation.

1. Pure translation along thedirection (parallel to the image plane).
2. Pure translation along thez direction (perpendicular to the image plane).

3. Translation and rotation around thexis.

7.2 Evaluation of Our Algorithm with Images

First, let us evaluate the method mentioned in Chapters 3 and 4, which uses image
sequences for initial estimation of the shape and motion parameters. This method
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Figure 7.2: The sensor path for the evaluation.

is based on "Structure from Motion” techniques. In the nature of things, we pre-
suppose that the motion of the sensor has translational components. If the motion
has only rotational components and does not have any translational ones, it is im-
possible to reconstruct 3D shapes or motions by using image sequences only. In
this section, itis also assumed that the virtual FLRS use a calibrated camera for the
sensor-oriented coordinate system because we are not interested in the accuracy of
calibration in this step.

Codficients (wy, Wy, ws) in the Cost Function

In this thesis, we determine the dbeientswi, wz, andws in Eq.4.14 as follows:
First, let us approximate the valueskf, Fg andF(, respectively.

The function value oF 5 in Eg.4.1 originally means the total distances between
the interest points and the re-projected points through the whole sequence. We can
expect the distance of each pair in a frame as' pixel order,0(10Y). Then the
number of the interest points is at m@3¢10?) and that of the frames is almost
O(10%). The order oi§p — T} is considered a®(10%) since the size of the target
for the real FLRS iD(10) [m]. Therefore, the value df), is expected a®(10%).

The function value oFj is the squared summation of total velocity and quater-
nion accelerations. While it depends upon the case, it is expected to be of a small
order. We approximate the orderf asO(1073) based on several measurements
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by the real FLRS.

The value of the third constraifi, means the total errors with respect to 3D
positions of the interest points. They depend on the accuracy of the range sensor.
For our FLRS, it is expected &(1072) [m]. Therefore, we approximate the value
of F£ asO(1072).

Based on the above considerations, the values of the three functions are consid-
ered ag0(10%), O(1073) andO(10?) respectively. Then we set three @eents
aswy 1 W, 1wz =1:10 : 10° so that all constraints have the same weight, which
is fixed in all cases.

Case 1:

In this case, the FLRS simply moves during the measurement process toward the
horizontal direction with respect to the camera-oriented coordinate system. The
motion path is parallel to the image plane and the back plane of the benchmark
model.

Some example images of the sequence are shown in Fig.7.3. These images
look like pictures obtained by simple parallel stereo vision since there are not any
rotational elements in Case 1.
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Figure 7.3: Some sample images of the sequence Case 1. (tep tefi right —
bottom left— bottom right)

The distorted shape which is obtained by the virtual FLRS is shown in the left
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of Fig.7.4. Especially, it is found that the top region of the side wall is skewed to
the right side. On the other hand, in the right shape, which is the rectified shape by
our algorithm, the side wall stands perpendicular to the ground. For the time being,
the shape seems to be rectified properly by our method. The numerical evaluation
for the rectified shape is show at the end of this section.

Figure 7.4: The original and rectified model of Case 1.

Figure 7.5 indicates the estimatadoosition and the ground truth. In Case
1, we set a uniform straightly-line motion and the result shows it. THerénce
between the estimated velocity and the ground truth is only 6.4%.

020 r
—— estimate ()
— ground truth

010

Q.00
/ frame
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Figure 7.5: The camera path and the ground truth in Case 1.

All parameters, three components of translation and three components of cam-
era pose, through the scanning period are shown in Fig.7.6. As the translational
components, the position &t= 0 is set as the origin. The left figure shows that the
FLRS moved only along thedirection, which corresponds to the ground truth. In
addition, the right figure shows that the motion did not have any rotational compo-
nent, which also corresponds to the ground truth.
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Figure 7.6: The all camera parameters in Case 1.

Case 2:

In this case, the FLRS moves along the optical axis, which is perpendicular to
the image plane. Figure 7.7 shows several images of the sequence. Compared to
Case 1 we set a larger moving distance in this case. It is found that the scene is
dynamically closing.
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Figure 7.7: Some sample images of the sequence Case 2.

The distorted shape which is obtained by the virtual FLRS is shown in the left
of Fig.7.8. When the virtual FLRS scans the top region of the scene it is located
far from the scene. Then the closer the FLRS moves, the lower region it scans.
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Therefore, the obtained shape seems as though it is skewed backward. As with
Case 1, the right side of the figure shows the rectified shape, which looks like the
proper shape.

Figure 7.8: The original and rectified model of Case 2.

Figure 7.9 indicates the estimategosition and the ground truth. Thefiir-
ence between the estimated velocity and the ground truth is 13.4 %. While the
estimated error is larger than that of Case 1, the motion of Case 2 is wider than that
of Case 1. The virtual FLRS’s speed in Case 2 corresponds to abont/8.i0
terms of the real FLRS scale. It is thought that the our algorithm can rectified the
distorted shape in spite of the wide motion.
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40 F — ground truth

30 r

25

Figure 7.9: The camera path and the ground truth in Case 2.

All motion parameters are shown in Fig.7.10. The left figure which shows the
translational components shows that the FLRS moved only alongdivection.
And the right figure shows that the FLRS was keeping the same pose during the
scanning process. These figures indicate that the parameters are estimated properly.
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Figure 7.10: The all camera parameters in Case 2.

Case 3:

In this case, the virtual FLRS motion has two translational componeatsjz. In
addition, the FLRS rotates &round they axis during the scanning process. Figure
7.21 shows several images of the sequence.

AR G
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Figure 7.11: Some sample images of the sequence Case 3.

The distorted shape obtained by the virtual FLRS is shown in the left side of
Fig.7.12. Asin Case 1, it is found that the top region of the side wall is skewed to
the right side. The right side of the figure shows the rectified shape, which looks
like proper shape.
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Figure 7.12: The original and rectified model of Case 3.

Figure 7.13 indicates the estimated parameters and the ground truths. In Fig.7.13,
three parameters, position (a),z position (b) and rotational component around
axis are shown. The fierence between the estimated velocity and the ground truth
is 13.8 % with respect ta and 15.0 % with respect to But the diference with
respect to the rotational angle is within 5.6 %.
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Figure 7.13: The camera path and the ground truth in Case % p@sition (b)z
position (c) Rotational component aroupexis



96 CHAPTER 7. EVALUATION

All motion parameters are shown in Fig.7.14. These figures show that our
algorithm works well on a case with several motion components.
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Figure 7.14: The all camera parameters in Case 3.

Finally, Table 7.1 shows the errors in all cases. These values are mean errors
by point-to-patch distance. The errors in "Before Rectification” row are the mean
errors between the distorted shapes and the ground truth, which are aligned by ICP
algorithm [BM92] [CM92]. On the other hand, the values in "After Rectification”
row are the mean errors between the rectified shapes and the ground truth. It is
found that our method could decrease the errors in all cases. In the case of the real
25m FLRS, the maximum distance for scan is at most 25 meters while the distance
to the backplane in the benchmark shapes is about 3.5 in the CAD model. There-
fore, multiplying the values of Table 7.1 by at most 7 gives the estimated errors
in practical measurement. In almost data sets in the Bayon Temple, we measure
objects at a distance of 1518 meters. For example, the estimated accuracy in
Case 2 will be about 3 cm in practice.

Table 7.1: The mean errors of the method with images.
H casel case2 case3d
Before Rectification| 0.0134202| 0.066315 | 0.0310331
After Rectification|| 0.00499022 0.00637914 0.00426805,
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7.3 Evaluation of Our Algorithm without Images

Next, we evaluate the method mentioned in Chapter 6, which uses correct shapes
obtained by other fixed laser sensors without any image sequences. In this section,
the data sets are the same as in the previous section. Besides these, Case 4 is added,
in which the motion of the sensor contains only rotation without any translational
components. In fact, the method with images failed in Case 4 since any disparities
could not be detected in images.

Case 1:

In Casel, the sensor simply moves toward the horizontal direction.

Figure 7.15 shows the rectified model and the ground truth (the original dis-
torted model is shown in Fig.7.11). At a glance, we see that the method could
rectified the distorted model properly.

Figure 7.15: The ground truth and rectified model of Case 1.

The following figures show all motion parameters. All translational parameters
change in time although the ground truth setting moves the sensor only along the
x axis. In addition, the estimated velocity is not constant. Comparing it to Fig.7.6,
it is found that the graphs, especially in the left figurdfatifrom those using the
method with images.

In spite of these graphs, we can safely state that our methdgtkidiee. This
method places more emphasis on the minimization of the geometrical error and
less on the proper estimation of sensor motion. For example, when the FLRS scans
a simple plane, many patterns of motion can be right. Therefore, we consider that
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our method could rectify the deformed shape properly.
The table of errors in all cases is shown at the end of this section.
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Figure 7.16: The all camera parameters in Case 1.

Case 2:

In this case, the sensor moves along the optical axis at a fast speed. Figure 7.17
shows the rectified model in Case 2. There are some mismatched parts, especially
at the top of the side wall. We consider the high speed motion would cause the
mismatches.

Figure 7.17: The ground truth and rectified model of Case 2.

Figure 7.18 shows the all motion parameters. Under the ground truth configu-
ration, only thex translational parameter is supposed to change. In Fig.7.18, it is
easily found that almost all parameters fluctuate.
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Figure 7.18: The all camera parameters in Case 2.

Case 3:

In this case, the sensor motion moves within a plane paralieHd and rotates
3° around they axis. Figure 7.19 shows the rectified model in Case 3. The rectified
model looks like proper because of a relatively moderate sensor motion.

Figure 7.19: The ground truth and rectified model of Case 3.

Figure 7.20 shows the all motion parameters. Comparing it to Fig.7.14, the
graphs in Fig.7.20 have similar properties. The translational graphs are, however,
curved and thg component, which is supposed to be fixed, is moving.
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Figure 7.20: The all camera parameters in Case 3.

Additional Case (Case 4):

In this case, while the position of the sensor does not change, it rotatgeiihd

they axis. As mentioned in the previous section, the method with images can not
rectify the distorted model because it is impossible to reconstruct the 3D model
from images without disparity (Fig.7.21).

Figure 7.21: Some sample images of the sequence Case 4.

The left side of the figure in Fig.7.22 is a comparison between the ground truth
and the original distorted model while the right side of the figure is a comparison
between the ground truth and the rectified model. It is found that the method with-
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out images can properly rectify distorted models that are obtained from a sensor
only with rotation. Thus, this is the strong advantage for this method.

Figure 7.22: The ground truth and rectified model of Case 4.

Figure 7.23 indicates the estimated rotational angle and the ground truth. The
difference between the estimated angular speed and the ground truth is 15.4 %.
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Figure 7.23: The camera path and the ground truth in Case 4.

Figure 7.24 shows the all motion parameters. Itis found that the estimated posi-
tion is moving, especially with respect to tekeomponent, although all parameters
are supposed not to change.

Table 7.1 shows the errors by the method without images in all cases. These
values are also mean errors by point-to-patch distance. Overall, the method with
images is superior to the method without images in accuracy. This table shows
the worst result is obtained in Case 2, which has a rapid sensor motion, and the
accuracy in the practical case is about 10 cm. On the other hand, the accuracy of
other test case results, especially in Case 1 and 4, are the same level as those by the
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Figure 7.24: The all camera parameters in Case 4.

method with images. This means that the method without imagéeidiee in the
case of the sensor motion only with rotation.

Table 7.2: The mean errors of the method without images.
H casel case2 case3 case4
Before Rectification| 0.0134202| 0.066315| 0.0310331| 0.0458285
After Rectification|| 0.00556148| 0.014278| 0.00889398 0.00508361

Finally, we have used the complete model as the ground truth in this section.
In practical cases, it is expected that a correct shape will have many missing parts
and that we have to rectify the distorted shape based on an incomplete reference.
We are going to demonstrate such cases in the following chapter.



Chapter 8

Experiments

We have been conducting the "Digital Bayon Project”, in which the geometric and
photometric information on the Bayon Temple is preserved in digital form. With
respect to the acquisition of the geometric data, large parts of the temple visible
from the ground are scanned by range sensors placed on the ground. On the other
hand, some parts invisible from the ground, for example, roofs and tops of towers,
are scanned by our FLRS system.

8.1 Shape Rectification with Images

Casel:

Figure 8.1 shows a sample image of the sequence of Casel.

Figure 8.1: A sample shot of the image sequence

103
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Figure 8.2: The original distorted shape (left) and the rectified shape (right).

Figure 8.3: Range data before and after the rectification process: the upper figure
shows the original distorted shape by the FLRS (white) and the correct shape ob-
tained by the Cyrax-2500 fixed on the ground (blue). The lower figure shows the
rectified shape (pink) fitted onto the correct one.

In Fig.8.2, the left figure shows the original shape obtained by the FLRS while
the right figure shows the rectified shape by our method.
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To evaluate the accuracy of our shape rectification algorithm, we compare the
rectified shape with other data, which are obtained by a range finder, the Cyrax-
2500 [Lei] %, positioned on the ground. Aligning two data sets by using the con-
ventional ICP algorithm [BM92] [CM92], we analyze the overlapping area.

The result is shown in Figure 8.3. The fine blue shape in both images is a
non-distorted data (the correct data) obtained by the Cyrax-2500. The coarse white
shape in the upper figure indicates the original distorted shape obtained by the
FLRS, while the pink shape in the lower figure indicates the one rectified by our
method. One can easily find that the rectified 3D shape is well-fitted onto the
correct shape. In particular, taking notice of the area of ellipses in the upper figure,
makes it obvious that our algorithm iffective.

The cross-section, cuffat the forehead of the statue, also shows tfexcéve-
ness (8.4).

the correct shape

i/" the original distorted shape

the rectified shape \

"

Figure 8.4: The figure shows the cross section at the forehead of the statue.

Figure 8.5 also shows thdtectiveness of the method. The figures indicate the
point-to-point distances between the correct data and the rectified data. The left
image shows a comparison between the correct and the original distorted shapes,
while the right shows a comparison between the correct and the rectified shape.
The region where the distances between them are less than 6.0 cm is colored green
2. The area where the distances are further than 6.0 cm is displayed in blue. At a
glance, the green region is clearly expanded by the rectification algorithm. Some
parts of the rectified shape are colored blue because of the lack of corresponding

INow, Cyrax-2500 scanner is re-labeled as HDS2500 in Leica Geosystems
2In the previous chapter, we have approximated the accuracy in the practical case as 3.0cm.

Therefore, we set the threshold as 6.0cm, twice of the estimated error.
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points. Taking account of the fact the correct shape could not measure the parts
invisible from the ground, the method could rectify the 3D shape correctly.

Figure 8.5: The comparison between the Cyrax-2500’s (the correct data) and the
original distorted data (left), and that between the Cyrax-2500’s and the rectified
data (right): the green region indicates where the distance of two shapes is less than
6.0 cm.
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Figure 8.6: The trace of the camera translation: The curves in the upper graph
show the parameters (X, y in the world coordinates) obtained by the perspective
factorization. The lower graph shows the result of the refinement, in which the
camera motion becomes smooth.

Here, to verify the ffect of the refinement, we show the trajectory of camera
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motion parameters. The upper graph of Figure 8.6 shows the trace of the camera’s
translation obtained by the perspective factorization, while the lower graph shows
the results after the refinement.

The curves in the upper graph appear to be globally probable for a camera
movement. However, one can see that the they are not smooth locally, and therefore
are unacceptable for the motion of a balloon. On the other hand, the curves in the
lower graph are smooth and acceptable for the balloon motion.

Case2:

Figure 8.7 shows a sample image of the sequence of Case2.

Figure 8.7: A sample shot of the image sequence

Figure 8.8 shows a photo picture of the scanned area. On the right side of
Fig.8.8, the dense fine model is the correct shape obtained by the Cyrax-2500 fixed
on the ground.

The result is shown in Fig.8.9. The upper shape in Fig.8.9 is the original one
obtained from the FLRS. It is found that the shape is widely deformed. In the
middle of Fig.8.9, the rectified shape by full-perspective factorization is shown.
With respect to motion parameters, the ambiguity in scale is removed manually. At
a glance, the factorization seems to rectify the shape properly. In detail, however,
the distortion in S shape is still left. Especially, the shape of the entrance is skewed.
On the other hand, the lower shape is rectified correctly by our method. It is clear
that the distortion in S shape is removed and the shape of the entrance is correctly
recovered into a rectangle.
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Figure 8.8: A scene for Case 2

Figure 8.10 indicates the point-to-point distances in the ICP algorithm, similar
to Case 1. The upper figure shows the comparison between the correct shape and
the original distorted one obtained by the FLRS. The middle one shows the rectified
shape by the full-perspective factorization without ambiguity in scale. The lower
shows the rectified shape by our method. Note that the green region (match region)
is expanded by our method.

The upper graphs of Fig.8.11 shows the trace of camera’s translation obtained
by full-perspective factorization, while the middle one in Fig.8.11(b) shows the re-
sults after the refinement. The convergence in the factorization was not very good,
therefore, the curves in the upper graph of Fig.8.11 have jagged shapes, which are
not acceptable for the balloon’s motion. On the other hand, the curves in the middle
graph are smooth and acceptable. This result shows that our refineméetis e
tive in lessening the camera motion and leads to the correct motion estimation. The
lower graph of Fig.8.11 shows the estimated path by an accelerometer for reference
3

Figure 8.12 shows several samples of the method with images.

3The output of the accelerometer does not possess so higher reliability.
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Figure 8.9: The upper figure shows the original distorted shape obtained by the
FLRS. The middle one shows the rectified shape by the full-perspective factor-
ization without ambiguity in scale. The lower shows the rectified shape by our
method.
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Figure 8.10: The upper figure shows the comparison between the correct shape and
the original distorted one obtained by the FLRS. The middle one shows the rectified
shape by the full-perspective factorization without ambiguity in scale. The lower
shows the rectified shape by our method.
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Figure 8.11: The trace of the camera translation: The curves show the parame-
ters(x, y in the world coordinate) estimated by the perspective factorization(a), and
by our proposed method(b). In (b), the camera motion becomes smooth and valid.
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Figure 8.12: The original distorted data sets (left) and the rectified sets (right)
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8.2 Shape Rectification without Images

We also applied the method without images to the real data set. As the reference
shape, we utilize the shape obtained by the Cyrax-2500. There are some blank parts
in the reference shape because there are no data set on the part that is invisible from
the ground.

Figure 8.13: A sample shot in this case.

In Fig. 8.14, the left figure shows the original shape obtained by the FLRS
while the right one shows the rectified shape by our method.

Figure 8.14: The original distorted shape (left) and the rectified shape (right).

Figure 8.15 shows the comparison between the reference shape. The upper
figure shows the original distorted shape by the FLRS (white) and the reference
shape (blue). The lower figure shows the recovered shape in the lower figure (pink)
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and the reference one. It is found that the rectified 3D shape is well-fitted onto the
reference one, particularly the area of ellipses in the upper figure, in spite of the
blanks on the reference shape.

Similarly, we show the trajectory of camera motion parameters. The upper
graph of Figure 8.16 shows the trace of the translation parameters, while the lower
graph shows the trace of three elements/(andw) of the quaternion which rep-
resents the camera’s pose.

Finally, Figure 8.17 shows several samples of the method without images.
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Figure 8.15: Range data before and after the rectification method without images:
the upper figure shows the original distorted shape by the FLRS (white) and the
reference shape obtained by the Cyrax-2500 fixed on the ground(blue). The lower
figure shows the recovered shape in the lower figure (pink) fitted onto the correct
one.
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Figure 8.16: The trace of the camera translations and poses: the curves in the
upper graph show the translational parameters(x, y and z in the world coordinate),
those in the lower graph show the 3 components of the quaternion estimated by the
method without images.
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Figure 8.17: The original distorted data sets (left) and the rectified sets (right)






Chapter 9

Conclusions

9.1 Conclusions

In this thesis, we have described FLRS system and two proposed methods to rectify
3D range data obtained by a moving laser range sensor.

We described how an outstanding measurement system FLRS was built to scan
large objects from the air. This system allowed us to measure the large cultural
heritage objects by using a balloon. To rectify the distorted shapes obtained from
the FLRS, we proposed two methods:

¢ The rectification method based on the "Structure from Motion” techniques
by using image sequences

e The rectification method based on the extended ICP algorithm by using an-
other data set

In the first case, we described a method based on "Structure from Motion”.
We utilized distorted range data obtained by a moving range sensor and image se-
guences obtained by a video camera mounted on the FLRS. First, the motion of the
FLRS was estimated through full perspective factorization only by the obtained
image sequences. Then the more refined parameters were estimated based on an
optimization imposing three constraints: the tracking, smoothness and range data
constraints. Finally, refined camera motion parameters rectified the distorted range
data. For this method, while the calibrated range sensor and camera system was
originally assumed, we indicated that the method is also applicable to the uncali-
brated system.

119
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In the second case, we proposed an extended ICP algorithm without using any
images. Assuming that the motions of the sensor are smooth, we applied them to
polynomials. Then, we rectified the distorted range data based on the correct model
obtained by other sensors fixed on the ground.

Both methods have shown proper performance and practical utilities. The ex-
periments have shown that the distorted shapes can be rectified with the utmost
precision when the images are available. On the other hand, we found that the
second method has properly rectified the dataset of only rotation, which cannot be
rectified by the first method.

These methods can be generally applied to a framework in which a range sensor
moves during the scanning process, and is not limited to our FLRS because we
impose only the smooth movement constraint.

9.2 Future Works

We have mentioned some methods which rectify distorted range data obtained by
a moving range sensor. Originally, we developed these methods in the process of
digital archiving of cultural heritage objects.

We point up some future works based on two aspects: hardware and software.

Hardware

For hardware, there are some improvements we have to make. One of them is
the reduction in size and weight of the system. The current weight of the FLRS is
about 5kgand we need to lighten it. The weight makes the practical measurement
massive. We will attempt to lighten the FLRS so that we can easily scan large
objects. In the future, we would also like to utilize some handy device instead of a
balloon. We aspire to a hand-held measurement system as our ultimate goal.

Software

Also, there are a lot of works to do in the future on the software in our system.
First, we have to improve the accuracy of rectified shapes by our algorithm. The
burning issue is the improvement of the accuracy of the method without images.
We want to boost it to the same level as that of using the method with images.
Besides accuracy, there are a few challenging problems in the rectification al-
gorithm without images. Currently, we use a single distorted shape and a single
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correct shape. As the next step, we are trying to rectify several distorted shapes
at the same time by using a single correct shape. Moreover, we plan to rectify
and register multi-distorted shapes simultaneously without any correct shapes. We
envision a rectification method that utilizes both images and the correct models.

The framework of a moving range sensor during the scanning process is just
beginning to be applied to practical missions. We have several scanning missions
and many problems in practical scenes. However, we fully expect to overcome
these dificulties with "task-oriented vision”.

Figure 9.1: The Overview of the "Digital Bayon”.






Appendix A

Solving for the Symmetric Matrix
T In the Factorization

We have introduces the cost function (3.40) to estimate the symmetric matrix
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In this section, we show a method for solviig
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Then the function (A.1) is rewritten as

:
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The above function can be simplified by some replacements.
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To minimize the functiorG, we can derive the next 6 constraints.
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They are summarized in a matrix form as follows (divided by 2):
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Therefore, the unknown vectdr = (T1, T2, T3, T4, Ts, Te)' is calculated as the
F
null space of the & 6 matrixCD = (Z[Ciijf + WDyt Djf]ij). T corresponds to
f=1

the eigenvector with the minimal eigenvalue of the mat@j!(CD).
Referring to the replacements,

Cir = (M) - (n})?
Cor = 2(mf i, i)
Car = 2(mj,mp,—ni,n,)
Car = (M)? ()
Csr = 2(mi,m,—ni,m,)
Cor = (m],)*—(n)?

(A.9)
Dit = mi,m,

Dar = i,y + My,

Dar = i, + M,

D4 = anyn’fy

Dsr = myyn, + M,y

—_ 4
Def - nffznfz






Appendix B

Quaternion

In this thesis, we represent a rotational matrix with a unit quaternion and we have
to calculate the derivative with respect to its parameters. We explain quaternion
in this section, which can describe rotation and its derivative with respect to the
quaternion parameters.

Quaternion has the following parameters:

g=(su,v,w) (B.1)

Geometrically, when an object is rotat@dround axisi, these parameters have
the following meaning.

0

= — B.2

s cos2 (B.2)
.0

v | = sméd (B.3)

therefore,
5 0 . ,60 6 . ,0
f+u +v2+\/\/2:co§§+sm2§||ljll =0052§+3'”2§=1 (B.4)

Thus, quaternion is interpreted as a combination of a scalar and a 3-dimensional
vector. Here, we explain basis operations of a quaternion. Suppose 2 quaternion as
p = (a d)' andq = (b, V).

Addition (subtraction) of quaternions is defined as

b
p+q=[3:\7) (B.5)
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And the product is

ab—Qt-v
- B.6
Pa [aV+MHUxV] (B-6)

In addition, the norm of a quaternion is defined as
Ipl = Va2 + 02 (B.7)

Conjugate and inverse quaterniongois defined as follows, respectively

p - [ ° ] ©8)
pt= b 8.9

In the case of the rotation of angdearound axidli, the rotated vector of is
generally described by using the quaternioas

0)_ (0) .
BEH:

here,X is the destination vector of
In the case of the same rotatigh= RX, the rotational matriRis described by
using these parameters as follow.

L+ -V -w 2(uv+ sw 2(uw - sy)
R= 2(uv—sw P - U+ —wW 2(vw+ su) (B.11)
2(uw+ sv) 2(vw— su) - -V+wW

While quaternion has 4 components, it is adequate to consider only 3 compo-
nents since there are 3 independent variables. Based on Eq. B.4, we are to deal
with the parameteu, v andw. The parametes is an induced variable af, v
andw, that means = s(u,v,w). Then, let us consider the first- and second-order
derivatives ofs with respect to other parameters.

NI=

os _ ; (1-w2 -2 - )} :%(—Zu)(l—uz—vz—vz)_

au au

u u
S Vaoeoa s (B:12)
% R R (B.13)
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similarly,
0s \%
= - _Z B.14
ov S ( )
9s?
— = =2V B.1
a0 (B.15)
0s w
w - s (B.16)
9s?
T 2w (B.17)

Here, it is found that the derivatives of the rotational maRiwith respect to
u, vandw are written as follows:

uw uv
0 2(V— ?) 2(W+ —2)
g_'j _| 2w+ %V) 4y 2s- %) (B.18)
2
2w-7) -9 -4
2
4 2u- %") 2(Vg 9
2_'3 -l2ws D) 0 2w-) (B.19)
2
2(s— Vg) 2w+ %’) 4y
—4w 2(s— W?Z) 2(u+ %)
R_|  w uw B.20
w o 2(? -9 —4w 2(v - ?) (B.20)

VW uw.
2U-—) 2(V+ —
U--) 2v+—) 0






Appendix C

Removal of Specular with EPI

This appendix describes methods that removes specularities from image sequences
taken by a video camera in a uniform straightly-line motion. Specular components,
especially strong highlights, raise some problems in object recognition. We pro-
pose two methods to remove specular component based on spatio-temporal image
analysis and to reconstruct original texture on the body fiss#i components. In

the first method, analyzing the motion of specular components in EPIs (Epipo-
lar Plane Images), we can distinguish specularities from ordinary texture. In the
second method, by using a segmentation technique with Markov Random Field
(MRF), we remove specular components. Some experiments have been conducted
using our methods, and the results show tfieativeness of the method in remov-

ing specularities from image sequences. Even if the texture on a body is hidden by
strong highlights, these methods recover the original texture.

C.1 EPI (Epipolar Plane Image)

Image sequence is a collection of images taken at certain sampling interval. A box
that consists of these images accumulating in time is a "spatio-temporal volume”
(Fig.C.1). When the sampling interval is enough dense or when the motion of
the camera or the photogenic objects is slow, the spatio-temporal volume forms
images with strong correlations on the cross-sections. The motion of the camera or
the photogenic objects is detected by analyzing the cross-sections.

In this appendix, we suppose the situation where the camera moves in a uniform
straight line to the direction parallel to the optical axis taking stationary objects
(Fig.C.2).

Let us consider the horizontal cross-sections of a spatio-temporal volume. This
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A
=
T

gpatio-temporal volume

Figure C.1: The spatio-temporal volume and EPI.

interest point

image plane

catmnera

b EFI

An
At

Figure C.2: EPI as temporal stereo vision

type of image is called an EPI (Epipolar Plane Image) [BBM87]. In an EPI, we
can observe an interest point in space as a continuous trajectory. In our situation
a camera in a uniform straightly line motion, the trajectory of a stationary point
in space forms a line. In addition, a moving camera that is interrupted forms a
stereopsis configuration with timeftirence. Therefore, the following relation
exists between the depth of the 3D point and the slope of the trajectory in EPI:

Au

Vv
== (C.1)
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Here, f is the confocal length of the camend,is the velocity of the camera and

Z is the depth of the interest 3D point. From the above equation, it is easily found
that the further the 3D point, the steeper the slope, and that the nearer the point, the
gentler the slope in the constant velocity.

C.2 Characteristics of specularity

A dichromatic reflection model is generally utilized for the description of an ap-
pearance by our visual perception. In dichromatic reflection, the model consists
of two components: specular andfdse component. While many reflection mod-

els based on the dichromatic model, such as Phone [Pho75] and Torrance-Sparrow
[TS67] etc., have been proposed, they assume the next two points.

e The strength of the diuse component is determined only by the incident
angle, the angle between the normal vector of the object surface and the
vector towards the light source (Fig. C.3). That means the strength of the
diffuse component does not depend on the view position.

e The strength of the specular component is greatest when the incident angle
equals the reflection angle. That means the strength of the specular compo-
nent depends on the view position.

‘!:i' light source specular component
‘\\

view point

Figure C.3: Two reflectance components.

Based on the above considerations, we assume the situation where the objective
scene and the light source remain stationary and the camera (view position) moves.
Watching a certain point on the surface, we find that what changes during obser-
vation is the specular component. Therefore, when the view position is far away
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from the region of mirror reflection and the specular component is negligible, we
observe only dfuse components.

C.3 Removal of specular

C.3.1 Removal by Line Search

In [S194], they decomposed two components by observing each RGB values of
each on the surface. Based on a similar consideration, in {8R|Sthey proposed
a method to detect and remove strong highlight.

Strong highlight is interpreted as reflection of the light source on the object
surface. Therefore, the observation of the highlight means the observation of the
imaginary light source on the opposite side of the camera (Fig. C.4). That means
the object is near and the imaginary light source is far from the camera. Conse-
quently, an EPI shows that the trajectory of the object is steep and that the trajectory
of the highlight is gentle. Generally, the trajectory of a far object is fragmented by
that of a near object because of occlusions. The trajectory of highlight of a far
object is, however, not fragmented. That is, the object far from the camera is not
occluded by a near object. Thus, the EPI with specularity has inconsistency and
we can determine that the slope without consistency is the trajectory of specularity.

imaginary light source

-
.-.-.
o
v

catnera real light source

Figure C.4: Observing the specular components means observing the imaginary
light source.

Based on the above considerations, specularity can be removed by the follow-
ing procedure (Fig.C.5).

1. Derive EPIs at all cross sections from the spatio-temporal volume.
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2. Extract the gentlest slope from at each EPI by using Canny operator and
Hough transform. Then arffme transform rectifies the EPI by which the
slop becomes vertical. In the rectified image, a vertical line means the tra-
jectory of a certain point on the object surface.

3. Derive the minimum RGB values along a vertical line. The RGB values on
a vertical point consist of specularity and constaffiiudie component. The
specular component is added to by viewpoint change. Therefore, without
specular component, the RGB values equal tiiusk component. Then,
we assume the minimum RGB values as theude component in study.

4. Replace all RGB values along a vertical line with the minimum RGB values
on the line. The inversefiine transformation unkinks the rectified image
into the original shape.

C.3.2 Removal by Image Segmentation

In EPIs, the edges of specularity regions are blurred and iffiwdt to segment

the specular regions by a region grow method. This means that a specular region
is taken a part in the ffusion region. Then representing the minimum GRB in
each segment leads to the specularity removal. Taking account of this property, we
propose the next procedure.

1. Noise removal by using anisotropididision.
2. Segmentation of color region by a region growing method.

3. Complement by using Markov Random Field (MRF).

First, the input EPIs are smoothened by an anisotroiugion over the color
images [PM90] which preserves edges. Then the region growing method maps all
pixels into the color space proposed in [OKS80].

_R+G+B
B 3

R-B
2=~ (C.2)

l1
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original image

EFI

J Affine transform

‘ gearch for the minimum B GE
. Inverse-Affine transform

. §

--

specular component  diffuse component

Figure C.5: Flowchart of the removal by EPI.

If the Euclidean distance in the color space between the adjacent pixels is less
than a threshold, these two pixels are classified into the same label.

The minimum RGB values of each segment are representative of the labeled
region. If the area of a segment is less than a threshold, the label is stripped because
it might be noise. Large parts of pixels of EPIs are labeled and large parts of
specularity are removed at this step. For the unlabeled regions, we complement
them to label by using Markov Random Field [GG84] [Muk02].

Markov Random Field gives unlabeled pixels labels at random in order to min-
imize a local energy taking account into the adjacent pixels. Supposing there is an
unlabeled pixel "p” and the MRF gives it label "1”, the local energy around the
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pixel is defined as follows based on the adjacent pixels "q”.

Up=a ) plu, po) + B, 1 (P)) (C.3)
q

Here,u represents the point of label "I” at the color space a(d, uk) is the
Euclidean distance between label "I” and label "k” in the color sp&i{g) means
the label of the adjacent pixel q ah(p) equals the original color of pr andg are
parameters.

The Gibbs distribution of whole labeling configuratienwith temperature T
is defined as follows:

1 U(w)
7T((U) = 2 eXp(—?) (C4)

When the local energy of each unlabeled pixel is decreased, the property of
the whole configuration of labels is increase. In our algorithm, we use a simulated
annealing technique to decrease the temperature T avoiding local minimums.

The entire algorithm of the complement by using MRF is as follows:

1. Given a high temperatuiie

2. Select an unlabeled pixel p at random and assume label "€.¢(q) : "I”
is the label of a adjacent pixel q)

3. Calculate the local energ;;t"p around the pixel p.
4. If U, decreases, the pixel p is given label "I. On the other hand)fif
~AU|
increases, the pixel p is given label "I” with a probability of {)ep_l_—p]
5. Repeat step 2 4 with a certain number iteration.

6. Decrease the temperatdreand repeat the above procedure untik Tgma

There would be some unlabeled pixels in spite of the complement by using
Markov Random Field. The original RGB values are given to these unlabeled
pixels.

C.4 Experiments

First, we show a result of a CG image(Fig.C.6). In the original image (the upper
of Fig.C.6), we can find the reflection of the circular cylinder in the picture. By
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observing EPIs, the specular components are easily detected (the middle image)
since the slope of the specular componefteds from that of the diuse compo-
nents. Then, the specular-free image is obtained by line search for the minimum
RGB (the lower).

original image

\_,I,_i

specular cotnponent

image without
specularity

Figure C.6: Reults of a CG images by EPI.

We apply the line search method to real images. The left side images of Fig.C.7
are taken from a video camera on a moving car. There are some strong highlights
on the surfaces of parked cars. We assume that the strong highlight exists on the
nearest surface in pictures. The results are shown on the right side of Fig.C.7. As
in the CG images, it is found that the specular components are removed in the case
of real images. The textured surface which is occluded by the strong highlight
(especially the letters on the surface of the taxi) is recovered.
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Figure C.7: Reults of real images by EPI.

Finally, we apply the method by image segmentation to CG images. Figure
C.8 shows the results of segmentation at each step. Some specular components
are found in the top left image of an original EPI. The right figure shows the EPI
applied the anisotropic flusion smoothing and the region growing segmentation.

It is found that almost all specularities are removed, and there are many unlabeled
pixels. The bottom left figure is the EPI after the complement by Markov Random
Field; a great number of unlabeled pixels are given labels.

The results of specular removal are shown in Fig.C.9. The highlights on the
pyramid and on the map are removed while some edges are blurred. It is confirmed
that the recovered color of the pyramid corresponds to the ground truth.



140 APPENDIX C. REMOVAL OF SPECULAR WITH EPI

original EPI

anisotropic diffusion and
segmentation by region growing

after the complement by MRF

Figure C.8: Specular removal in EPI by segmentation.

Figure C.9: Results of a CG image by Markov Random Field.

C.5 Conclusions

We describe two methods which remove the specular component from image se-
quences taken by a video camera in uniform straightly-line motion. Both methods
utilize EPIs to detect the fluse components. In the first method, assuming that
the specular components exist on the nearest surface to the camera, we derive the
diffuse components along the gentlest slope in the EPIs. The results shows that
our method has removed the specular components. Moreover it has recovered the
original texture on the surface, which was occluded by the strong highlights. In
the second method, based on the fact that the edges of the specularities are blurred,
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we remove the specular components by using image segmentation. The greatest
advantage of the second method is that the method does not require the assumption
of a camera in uniform straightly-line motion. We are, therefore, planning to apply
this method to an image sequence taken by a camera in general motion. Moreover
we intend to apply it to more complex scenes in the future.






Appendix D

3D ldentification of Fired Bullets

D.1 Introduction

Many striation and impression marks caused by various ordinary tools, such as a
screwdriver, a crowbar and a hummer, are left at crime scenes. These marks are
significant evidences. In particular, striation marks on a fired bullet are important
for identifying the suspicious firearm(Fig.D.1). Forensic scientists identify these
striations mainly by using optical tools such as comparison microscopes, CCD
cameras and photos. The surfaces of striation have three-dimensional roughness
intrinsically. By using optical devices, we compare reflectance images instead of
3D shapes. Appearances of striations through these devices, however, depend on
location of light and viewpoint [Leo97]. In other words, it is possible that the same
striation has will look diferent under dferent lighting conditions. Besides these
appearance-based methods [HLO3], we are also able to exploit 3D geometric data
of striations. That is model-based methods. The measurement of small elevations
on a striation had beenfticult in aspect of hard ware. However many sophisticated
3D measurement devices are developed recently and we can easily obtain fine 3D
maps of striation surfaces. The shape of striation surface is expected to be printed
intrinsic shapes of the tool that caused the striation marks. Moreover, 3D data are
independent of lighting condition.

In addition, there is anotherfticulty in identifying striations. That is, a perfect
correspondence of two striation patterns is rarely encountered, even if the two are
on non-deformed bullets and have been fired from the same firearm(Fig.D.2). We,
therefore, need an algorithm which is robust with respect to minute changes of
patterns.

Although there are some researches on 3D surfaces of bullets and tool marks

143



144 APPENDIX D. 3D IDENTIFICATION OF FIRED BULLETS

Figure D.2: An image by a comparison microscope. The correspondence of two
striations is "pretty” good.

[GZH*01] [KB99], they had not led to shape comparisons by using 3D surface
data directly. In the field of Japanese archaeology, Masuda et al.*[M]fave
analyzed shape fierence of ancient bronze mirrors with a method of computer
vision. In this study, we apply this method to identification of bullets, especially
landmark impressions. Moreover, by using neural networks, we have developed
a robust identification algorithm [BMI04]. Neural networks [RM86] are modeled
after the structure of the human brain, and the human brain has an advantage over
a computer in terms of pattern recognition [KC92]. In this study, neural networks
have appeared to overcome minute changes of striation patterns.

At first, we acquired 3D data of striations surfaces and compared global 3D
shapes numerically. The distance of two surfaces is calculated for the evaluation
of global shape matching. Then neural networks compare local elevation patterns.
This two-stage method enabled us to construct a robust identification algorithm of
striation patterns.



D.2. GLOBAL SHAPE COMPARISON 145

D.2 Global shape comparison

D.2.1 Alignment of 3D data

We obtained 3D data of striations surfaces by a confocal microscope. To compare
two shapes, we must move one shape in order to coincide two surfaces better. If the
two striations are derived from the same origin, the shapes will be similar. Further-
more, if we could calculate the distance of the two shapéiemince, similarity of

two shapes would be estimated according to the distance.

Figure D.3: Areal striation mark and it 3-D model.

We adopted the alignment method [N102], which is a kind of ICP method[BM92]
for shape matching. If two shapes have the same origin, a point on one shape has
the corresponding point on the other shape. The location of the corresponding
point, however, is usually unknown. Then, we resolve this correspondence prob-
lem by iterative method. The objective function, which should be minimized for
the alignment, is defined as:

F(RE)= > IIRK +F-ij 1P (D.1)
i,

Ris a Rotation matrix{’is a translation vector is thei-th point in one data and
Yijis the correspondingrth point in the another data fog.

This objective function indicates the summation of distances between all pairs
of corresponding points. When the function converges under a threshold, we decide
two shapes are similar [Ban04].

We use quaternion to minimize the objective function. By substituting quater-
nion g to rotate matrixR, motion vectorp can be found as follows.

q = arg rF?itp f(R, F) = arg r;nfn f(q,f) (D.2)
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Motion vectorp, that isq andf, is solved by the conjugate gradient method
and line minimization with golden section search. The solutions are the ones that
minimize the objective function Eq.(D.1).

D.2.2 Shape diference

Above alignment determines the relationship of corresponding points. Therefore,
the distance between each pair of corresponding points can be calculated. We
regard these distances between the corresponding points will be a cue of shape
matching. If the distance of a pair is less than a threshold, the correspondence is
regarded as right. Otherwise, the pair does not have correspondence, namely two
shapes do not match at this part.

In terms of shape matching of two surfaces, wide region of non-matching indi-
cates that two shapes ardtdrent.

D.3 Local shape comparison

D.3.1 Character extraction

The shape of a striation is usually uniform along the direction of the scratch. To
input into neural networks, elevations on the surface should be converted into a
binary signal. The method of binarization is simple(Fig.D.4); at first, gradients
of all patches are calculated. Then, shapes of striation are converted into binary
images by a threshold for these gradients. Finally, we derive a binary signal from
a binary image by using morphological processings.

3D data

morphol ogical
processings

a binary signal

Figure D.4: The binarization method, which converts a surface shape into a binary
signal.
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D.3.2 Neural network model

In this study, a multi-layer network that contains three layers is used(Fig.D.5).
There are 96 neurons in the input layer, 15 neurons in the middle layer and only
1 neuron in the output layer. The neurons in the input layer are divided into two
blocks: input blocks A and B. Each input block contains 48 neurons. There are
two patterns to be compared in terms of their similarity. Two patterns are inputted
into the two input blocks A and B separately.

Figure D.5: The structure of the three-layer network model with two input block.

D.3.3 Learning

Two training patterns to be compared are inputted into each block, which contains
48 neurons. The training patterns are binary signals with a 48-bit length. Each
signal consists of only one element with a value of "1” and forty-seven elements
with a value of "0”. Namely, in the learning process, only one neuron in each block
has an input value of "1” (this neuron is referred to as an "excited neuron”), and
the other 47 neurons in each block have an input value of "0”. Supposirigtithe
neuron of a block and thth neuron of the another block are excited, the teaching
signal is given in the following form.

TG, j) = exp(— (= 92) (D.3)
g

That is, if two patterns are the same, the output value of this network is "1". In

addition, the closer together two positions of the excited neurons are, the closer to

"1” the output value will be. On the other hand, the further apart the two positions

are, the closer to "0” is the value.
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D.4 Experiments

D.4.1 Shape diference

The shape dierence is visualized according to the distances of corresponding
pairs(Fig.D.6). If the distances are within a threshold (in this study, itis 0.015mm),
the area is displayed in pink region. While the distances are further than it, the area
is colored blue. In the left side of Fig.D.6, almost all part of overlapped region is
colored pink. It indicates that the two shapes are matched well because two images
in the left side are results of comparisons that compare two pairs from the same
origins.

On the other hand, a result, which compares two shapesteralt origin, is
shown in the right side. Blue region are wider than in the left side. It indicates the
number of corresponding pairs is fewer even in overlapped region. In addition, the
shape of non-coincide region spreads out along the direction of the scratch (a blue
region sandwiched between pink regions). This is an obvious feature when two
shapes have flerent origins.

Figure D.6: Shape éterences of landmark impressions. The left side pairs are
comparisons of impressions by the same landmarks, and the right side pairs are by
different ones.
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D.4.2 Simulation by neural networks

The neural network was used to identify 300 artificial patterns produced at random.
These patterns are stored as a database. Unidentified patterns are slightly deformed
database patterns. The deformed patterns are compared with the database. Accord-
ing to the output score, the Neural Network determines the ranking of all patterns in
the database. A deformed pattern resembles the original. Therefore, if the original
pattern ranks high, this simulation is proved successful.

The deformed patterns are produced on the following 4 systems;
(A) All elements transfer to 3-element.

(B) Elements on a certain pas20%) disappear.

(C) Elements tend to gather around the center.

(D) Elements transfer on a sine wave.

The results of the simulation are also shown in Fig.D.7. In deformed systems
(A), (C) and (D), over 91% of the original patterns were ranked within the top
5. Over 96% of the patterns were ranked within the top 10. The percentage of
the patterns that failed within the top 20 was only 2%. This indicates that if an
examiner searches at least 20 striations in the 300 database striations, we should
be able to find the answer with a probability of more than 98%. On the other hand,
the accuracy was worse for the deformed system (B) than for the others. Only 85%
of the original patterns were ranked within the top 10 and 7% patterns failed to
be included in the top 20. In many cases, many excited neurons corresponding to
failure patterns are located in the erased part.

— B 1lc %
A SlE ‘100
/ 3 90
s D
i 5 80
Original signal s 70

60

1 10 rank

Figure D.7: The 4 deformation systems and the result of query simulation with 300
artificial patterns.
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D.4.3 Two-stage evaluation

Finally, we want to calculate a combined evaluation that contains both global and
local shape similarities. We then introduce a combined score. When two data
Zy(database striation shape) afijunidentified striation shape) are given, a score
that presents two striation shapes have the same origin is defined as follow,

S(Zl, ZZ) = SIocal(zl, ZZ) : Sglobal(zla ZZ) (D-4)

The similarity score about global shape matchygna is represented as the
area ratio defined by

areaof pinkreagion
overlappedare

Sglobal = @ (D.5)

Here,a is a codficient that takes a low value (in this study 0.5) when there are
any non-coincide regions spreading out along the direction of the scratch. Other-
wise, it takes 1.

On the other hand, we regard the local shape similarity s8g¢g as the score
by the neural networks. The scoBgq is the averaged score evaluated in eight
local regions chosen among the whole surface at random.

We have compared 100 pairs of real striations on fired bullets. Figure D.8
shows the results. Ten pairs of them have the same origins and otherstlienandi
ones. This 2-stage method shows a good performance, since the result clearly
shows the dference between by the same origins and bfedint origins. All
pairs of same origins have scores over 0.4, while pairsftérdint ones have under
0.3. We could consider that a value of a threshold for identification is between 0.3
and 0.4.

0.8 |
060 the same origins
04
0.2 ] . -
T different origins
0] |

0 30 60 # 9

Figure D.8: Experimental results
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D.5 Conclusions

In this study, we presented a 2-stage algorithm for a shape comparison of impres-
sions on bullets, by using 3D shape data. Firstly, we measured surface topography
and compared the global shapes of two impressions. Neural networks were used
for similarity evaluation of local elevations.

Our goal is to propose a 3-Dimensional identification method. To extend this
method into rigid bullet identification, we have to compare numerous pairs of bul-
lets to determine the rigid parameters. This is one of the most important future
works about this method. We used striations on fired bullets mainly. It is not to say
that this algorithm can be applied to other tool marks and other shapes.

At present, we compared two shapes by global curvatures and by local small
elevations. Since elevations on striations of bullets are very small, it takes much
time to measure striations. Moreover, it takes huge memory to store many striation
shape data. As the future works, we are going to compress huge 3D data and build
a practical system for tool mark identification.
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