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Zoller+Fröhlich GmbH for technical supports on the FLRS.

I would like to thank Dr. Joan Knapp for proofreading my manuscripts. She

kindly improved them and gave me a lot of appropriate suggestions.

I also wish to thank my former bosses, Mr. Kazuo Mogami and Dr. Takehiko

Takatori of National Research Institute of Police Science.

Finally, I wish to express my gratitude to all people who have have supported

my research activities.

iii





ABSTRACT

”Modeling from Reality” techniques are making great progress because of the

availability of accurate geometric data from three dimensional digitizers. These

techniques contribute to numerous applications in wide areas such as academic in-

vestigation, industrial management, and entertainment. Among them, one of the

most important and comprehensive applications is modeling cultural heritage ob-

jects. For a large object, scanning from the air is one of the most efficient methods

of obtaining 3D data. Nevertheless, in the case of large cultural heritage objects,

there are some difficulties in scanning with respect to safety and efficiency. To rem-

edy these problems, we have been developing a novel 3D measurement system, the

Floating Laser Range Sensor (FLRS), in which a range sensor is suspended beneath

a balloon. The obtained data, however, have some distortion due to movement dur-

ing the scanning process. We propose two novel methods to rectify the shape data

obtained by a moving range sensor in this thesis. One method rectifies the distorted

range data by using image sequences and another one rectifies the data without im-

ages. Both methods are applicable not only to our FLRS, but also to a general

moving range sensor.

In Chapter 2, we explain our FLRS system. While we use a commercial prod-

uct as a scanning unit, we have designed whole system and the mirror configura-

tions of the FLRS. Thus, the FLRS is our original system. The system overview

and components are introduced in this chapter. In addition, we explain the algo-

rithm of 3D reconstruction by using mirrors from a fixed-point measurement range

data.

In Chapter 3, we explain a full perspective factorization, which is utilized as

the initial solution for the camera motion. We use a weak perspective factorization

iteratively for the perspective projection camera model. Interest point detectors are

essential for the factorization. We explain two detectors, Harris operator and SIFT

key. Finally, we estimate the performance of our full perspective factorization.

In Chapter 4, we describe our proposed algorithm for refinement of the parame-
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ters. Our method applies the three constraints for optimization, which are tracking,

smoothness and range data constraint. Applying these constraints and optimizing

the cost function, we can estimate more precise parameters. For the optimization

method, we apply a conjugated gradient method and the golden section search.

In Chapter 5, some topics on calibration for our FLRS system are described.

In fact, the video camera is assumed to be calibrated with range sensor in the pre-

vious chapters. With respect to the FLRS, fixing it on the ground, we can easily

acquire shape model and its image simultaneously. In the case of the calibration

with 3D reference objects, many methods suffer from noise in accuracy. Using the

RANSAC (Random Sampling Consensus) technique, we propose a robust calibra-

tion method in the first half of this chapter. Furthermore, in the second half of the

chapter, we show that our algorithm is also applicable for the uncalibrated system.

In Chapter 6, we describe another method for shape rectification that needs

no image sequences. Instead of using images, this method requires range data

obtained by another range sensor fixed on the ground. Incomplete range data of

the fixed sensor are sufficient to rectify FLRS range data. There are many cases

such a situation in real measurements. Originally, the FLRS has been proposed in

order to complement the fixed sensors. Based on overlapping shape between two

data sets, we rectify FLRS range data. In this method, it is also assumed that the

sensor moves smoothly. We can easily build a graphic user interface (GUI) onto

this method and therefore produce practical software.

In Chapter 7, we evaluate our algorithms with known models. Constructing

a virtual FLRS on a PC by using CG model, we estimate the accuracy of our

methods.

In Chapter 8, we show several experimental results conducted in the Bayon

Temple in Cambodia. To evaluate our methods, the rectified shapes are compared

with other data sets obtained by a range sensor on the ground. Now, we are con-

ducting the Digital Bayon Project, in which our algorithms are actually applied for

range data processing and the results show the effectiveness of our methods.

Finally, we present our conclusions and summarize our possible future works

in Chapter 9.
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Chapter 1

Introduction

1.1 Background

Nowadays, many researches on real object modeling are making great progress

because of the availability of accurate geometric data from three dimensional dig-

itizers. The techniques of real object modeling contribute toward numerous appli-

cations in wide areas such as academic investigation, industrial management, and

entertainment.

Among them, one of the most important and comprehensive applications is

modeling cultural heritage objects. Modeling these heritage objects has great sig-

nificance in many aspects. Modeling them leads to digital archives of the object

shapes. Utilizing these data enables us to restore the original shapes of the heritage

objects, even if the objects have been destroyed due to natural weathering, fire,

disasters and wars. In addition, we can provide images of these objects through the

Internet to people in their homes or in their offices. Thus, the techniques of real

object modeling are available for many applications.

We have been conducting some projects to model large scale cultural her-

itage objects such as great Buddhas, historical buildings and suburban landscapes

[MNS+00] [INHO03]. Basically, to scan these large objects, a laser range finder is

usually used with a tripod positioned on stable locations. In the case of scanning

a large scale object, however, it often occurs that some part of the object is not

visible from the laser range finder on the ground. In spite of such a difficulty, we

have scanned large objects from scaffolds temporally constructed nearby the ob-

ject. However, this scaffold method requires costly, tedious construction time. In

addition, it may be impossible to scan some parts of the object due to the limitation

of available space for scaffold-building.

1
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We are now conducting a project [IHN+04] to model the Bayon Temple [VZG01]

in Cambodia; the temple’s scale is about 150×150 square meters with over 40 me-

ter height. Scanning such a huge scale object from several scaffolds is unrealistic.

To overcome this problem, several methods have been proposed. For example,

aerial 3D measurements can be obtained by using a laser range sensor installed

on a helicopter platform[TDH03]. High frequency vibration of the platform, how-

ever, should be considered to ensure that we obtain highly accurate results. To

avoid irrevocable destruction, the use of heavy equipment such as a crane should

be eschewed when scanning a cultural heritage object.

Figure 1.1: The FLRS and the Bayon Temple

Based upon the above considerations, we proposed a novel 3D measurement

system, a Floating (or Flying) Laser Range Sensor (FLRS)[HMK+04a] [HMK+04b]

[HHO+04] [HHO+05]. This system digitizes large scale objects from the air while

suspended from the underside of a balloon platform (Fig.1.1). Our balloon plat-

form is certainly free from high frequency vibration such as that of a helicopter

engine. The obtained range data are, however, distorted because the laser range

sensor itself is moving during the scanning processes (Fig.1.2).
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Figure 1.2: An sample snap shot and the distorted range data obtained by the FLRS.

1.2 Our Contributions

In this thesis, we propose two methods to rectify 3D range data obtained by a

moving laser range sensor. Not only is this method limited to the case of our

FLRS, but it is also applicable to a general moving range sensor.

In fact, several attempts have been made to rectify the deformed FLRS data.

The following three strategies have been considered to solve this problem:

• Window matching-based method [HHO+04] [HHO+05]

• 3D registration-based method [HMK+04a] [HMK+04b] [MHNI05]

• Structure from motion-based method

In the first strategy, under the assumption that translation of the balloon is very

small and within a plane parallel to the image plane without any rotation, the shape

is recovered by using a video sequence image. Then supposing that the changes

in sequential images are very small, the balloon motion is estimated by a local

window matching technique. This method is very fast, but it restricts the balloon

to a simple and small motion.

In the second strategy, the balloon motion is parametrized motion beforehand

(e.g. the velocity vector for a linear uniform motion or a constant angular velocity).

Then, an extended ICP algorithm is applied to align the deformed model obtained

by the FLRS with the correct model obtained by a range sensor located on the

ground. This method does not require image sequences, but it assume the simple

motions.
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In this thesis, we adopt two strategies for the rectification. Firstly, we adopt the

third strategy among the methods listed above, and propose a method with image

sequences and destorted range data by FLRS. Next, we adopt the second strategy.

In the first method based on ”Structure from Motion”, We use distorted range

data obtained by a moving range sensor and image sequences obtained by a video

camera mounted on the FLRS. The motion of the FLRS is roughly estimated only

by the obtained images. And then the more refined parameters are estimated based

on an optimization imposing some constraints, which include information derived

from the distorted range data itself. Finally, using the refined camera motion pa-

rameters, the distorted range data are rectified.

In the second method based on ”3D registration”, we adopt a method similar

with [HMK +04a] [HMK+04b] [MHNI05], but supposing smooth and more gener-

alized balloon motion.

These methods are not limited to the case of our FLRS but also applicable to

a general moving range sensor that has smooth motion. In this thesis, we do not

utilize physical sensor such as gyros, INS and GPS for estimation of self position

and pose. We try to solve our problems only by range sensors and video cam-

eras through the techniques of ”Computer Vision [Fau93] [TV98] [FL01] [FP02]

[HZ04] ”.

1.3 Outline of the Thesis

In this dissertation, we have been wrestled with the FLRS throughly. Then we

propose two novel methods to rectify the shape data obtained by a moving range

sensor.

One method rectifies the distorted range data by using image sequences and

another one rectifies data without images.

In the method with images, the initial motion parameters are estimated by using

a full perspective factorization. Then they are refined through an optimization with

some constraints. In fact, this method is based on the technique of”Structure from

Motion” . This technique is applicable both calibrated cameras and uncalibrated

cameras.

In the method without images, the original distorted shape is rectified based on

the correct shape obtained by another range sensor fixed on the ground.

This thesis is organized as follows.

We explain our FLRS system in Chapter 2. While we use a commercial product
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Figure 1.3: The context of this thesis.

as a scanning unit, we have designed whole system and the mirror configurations

of the FLRS. Thus the FLRS is our original system. The system overview and

components are introduced in this chapter. And we explain the algorithm of 3D

reconstruction by using mirrors from a fixed-point measurement range data.

In Chapter 3, we explain a full perspective factorization, which is utilized as

the initial value for the camera motion. We use a weak perspective factorization

iteratively for the perspective projection camera model. Interest point detectors

are essential for the factorization. Two detectors, Harris operator and SIFT key, are

explained in this chapter. Furthermore, in the last part, we estimate the performance

of our full perspective factorization.

In Chapter 4, we describe our proposed algorithm for refinement of the param-

eters. Our method applies three constraints for the optimization, which are tacking,

smoothness and range data constraint. Implying these constraints and optimizing

the cost function, we can estimate more precise parameters. For the optimization

method, we apply a conjugated gradient method and the golden section search.

In the above method, the video camera is assumed to be calibrated with the
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range sensor. The method for the calibration is described in the first half of Chapter

5. By using 3D reference model, the video camera is calibrated. With respect to

the FLRS, when we fix the FLRS on the ground and obtain range data and image

sequence, we can easily acquire shape model and its image simultaneously. In the

case of the calibration with 3D reference model, many methods suffer from noise

in accuracy. Combining RANSAC (Random Sampling Consensus) technique, we

propose a robust calibration method with 3D model in this chapter. Furthermore,

we show that our algorithm is also applicable for the uncalibrated system in the

second half of Chapter 5.

In Chapter 6, we describe another method for shape rectification which need

not any image sequences. Instead of using images, this method requires range data

obtained by another range sensor fixed on the ground. Incomplete range data of the

fixed sensor are sufficient to rectify FLRS range data. There are many cases such a

situation in real measurements. Originally, the FLRS has been proposed in order to

complement fixed sensors. Based on overlapped shape between two data sets, we

rectify FLRS range data. In this method, it is also assumed that the sensor moves

smoothly. We can easily build a graphic user interface (GUI) onto this method and

a practical software.

In Chapter 7, we evaluate our algorithms with known models. Constructing a

virtual FLRS in PC by using CG model, we estimate the accuracy of our method.

In Chapter 8, we show several experimental results conducted in the Bayon

Temple in Cambodia. To evaluate our methods, the recovered shapes are com-

pared with other data sets obtained by a range sensor on the ground. Now, we are

conducting the Digital Bayon Project, in which our algorithms are actually applied

for range data processing.

Finally, we present our conclusions and summarize our possible future works

in Chapter 9.



Chapter 2

FLRS

2.1 System Overview

FLRS(Floating Laser Range Sensor) has been developed to measure large objects

from the air by using a balloon without constructing any scaffolds (Fig. 2.1). There

are several demands for the system because of dangling the entire system under the

balloon.

In the beginning of the development, the following points were required:

• The entire system should be light and compact in order to float in the air.

• The structure of the platform should be firm.

• The range sensor can measure quickly to minimize the influence of the bal-

loon motion.

Several considerations suggested that we determined the configuration of the sys-

tem and scanning time as 1.0 second.

With respect to measurement principle, passive stereopsis method could cap-

ture images without the influence of balloon motion. However it would be forecast

to cause the fatal inadequate accuracy in the eye of the cultural heritage preserva-

tion and repair.

On the other hand, there are many active stereopsis methods with laser range

sensors which can measure within 1 second. There are, however, a few problems

in this measurement principle.

• unsuitable for large scale objects because they need wide baselines.

7
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Figure 2.1: The FLRS (25m sensor)

• dangerous because they require strong laser beams for long range measure-

ment.

• not adequate to measurement in daytime.

Generally, laser radar method is suitable for outdoor measurement for large

objects. Therefore, we had adopt a range sensor of ”time-of-flight” in principle.

Moreover we were able to utilize two kinds of mirrors to shorten the measurement

processing time. Then we have designed and developed a novel measurement sys-

tem based on the laser radar method.

Some details of the system will explained in the next section.

2.2 The Components of the FLRS

We have two types of FLRSs. Each FLRS is composed of a scanner unit, a con-

troller and a personal computer (PC). These three units are suspended beneath a

balloon.

2.2.1 The Scanner Unit

The scanner unit includes a laser range finder, especially designed to be suspended

from a balloon. Figure 2.2 shows the interior of the scanner unit. It consists of a

spot laser radar unit and two mirrors. We chose the LARA25200 and LARA53500
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supplied by Zoller+Fröhlich GmbH[Z+F] as laser radar units because of their high

sampling rate. Each laser radar unit is mounted each FLRS scanner unit. Two

systems equipped with Lara25200 and LARA53500 are respectively referred to as

”25m sensor” and ”50m sensor”.

The specifications of two units are shown in Table 2.1.

Table 2.1: The specifications of the 25m (LARA25200) and 50m (LARA53500)

Sensors

25m Sensor 50m Sensor

Ambiguity interval 25.2 m 53.5 m

Minimum range 1.0 m 1.0 m

Resolution 16bit range 1.0 mm 1.0 mm

Data acquisition rate ≤ 625,000 pix/sec ≤ 500,000 pix/sec

Linearity error ≤ 3 mm ≤ 5mm

Range noise at 10m ≥ 1.0 mm ≥ 1.5mm

Range noise at 25m ≥ 1.8 mm ≥ 2.7mm

Laser output power 23 mW 32mW

Laser wavelength 780nm 780nm

Both sensors have the similar mirror configurations. There are two mirrors

inside each unit to give a direction to the laser beam. One is a polygon mirror with

4 reflection surfaces, which determines the azimuth of the beam. In normal use, the

polygon mirror, which rotates rapidly(2400rpm), controls the horizontal direction

of the laser beam. Another is a plane mirror (swing mirror) which determines the

elevation of the beam. The plane mirror swings slowly to controls the vertical

direction of the laser beam.

The lase beam emitted from the LARA is hit on a surface of the polygon mirror

at first. Then the polygon mirror reflects the laser beam into the plane mirror. The

plane mirror also reflects the beam into the outside of the unit(lower of Fig.2.2).

The combination of two mirror demonstrate the following specifications.

2.2.2 The Controller and the PC

The controller is composed of a signal processing unit, an interface unit, a mirror

controller and a power supply unit. The signal processing unit receives the signals

from the PC and performs actual control of rotation angles of the mirrors and the
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Figure 2.2: The interior of scanner unit (25m sensor)

Table 2.2: The specifications of the 25m sensor and 50m sensor

25m Sensor 50m Sensor

Angle Resolution

Horizontal 0.05 deg 0.05 deg

Vertical 0.02 deg 0.02 deg

Horizontal field ≤ 90 deg ≤ 90 deg

Vertical field ≤ 30 deg ≤ 30 deg

Scanning period/range image ≤ 15 sec ≤ 1 sec
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laser radar unit. The range data obtained by the laser radar and the angle data

obtained by the mirror encoders are subsequently combined in the interface board.

Figure 2.3: The diagram of the signals in the FLRS system

Figure 2.4: The PC of the FLRS system

The PC includes a CPU board, a DIO(Digital Input/Output) board, an image

capture board and a LARA-PCI board. The DIO board outputs the signal of the

laser on/off. The commands for the mirror operations are send through a LAN

cable. Then synchronized range and encoder data (*.zfs) are transmitted to the PC

via the LARA-PCI board. The zfs data consist of range data, reflectance and two
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kind of encoder data sets (the polygon and the plane mirror). These data sets are

stored in the PC and converted into 3D shape data (*.pts). The PC of the FLRS is

mounted on the balloon platform. Therefore the PC is actually operated remotely

via another mobile PC on the ground through a LAN cable.

2.2.3 The Monitoring Camera

In order to monitor the object whose shape the FLRS scans, a camera is mounted

on the platform(Fig.2.5). Because bulky data are transmitted into the PC in the

scanning process, it is necessary to avoid CPU load with respect to the image cap-

ture. Therefore we adopt a capture board with SDRAM (Interface Corporation

[Int]), which enable to stock image data temporally without any CPU load.

Figure 2.5: The monitoring camera mounted on the FLRS

The acquirable frame number is determined by the capacity of the SDRAM

(64MByte). In a short period scanning (1 second) the capture board stocks an

image sequence of VGA size (640x480) while in a long period scanning (over 3

seconds) it stocks images of 320x240 size.

By using this board, we can obtain whole images during a scanning process.

The ordinary use of the FLRS, the camera is calibrated before measurements.

Calibration is to estimate the camera position and pose in the sensor-oriented co-

ordinate system. Before floating the balloon in the air, we adjust the video camera

roughly in order to capture the area where the range sensor scans (Fig.2.7). Then

fixing the whole system on the ground, we measure several still scenes. By using

these measurement data sets, the camera is calibrated through the method men-



2.2. THE COMPONENTS OF THE FLRS 13

Figure 2.6: A range image and a camera view

tioned in Section 5.1.

2.2.4 The Balloon and the Platform

We use a ready-made device ”Photo Balloon AS-21”(Asahi Co., Ltd.), which is

modified for the FLRS. The balloon is filled with helium gas. Floating in the

air, the balloon is controlled by several hands on the ground with four peaces of

rope. The balloon is made of particular flexible chloroethene, which avoid rapid

expansion of a hole in an emergency.

Table 2.3: The specifications of the balloon

Diameter 5.0 m

Weight about 12 kg

Capacity about 65.45m3

Maximum buoyancy about 60 kgf

The platform is equipped with pan and tilt mechanism, which can point the

sensor at from the horizontal direction to the directly below, scope of 180 degree

from side to side. We can operate the pan and tilt mechanism via the cable for the

video monitor.
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Figure 2.7: The balloon for the FLRS

2.2.5 The Operation

During the scanning process, the laser beam is directed horizontally by the rotating

polygon mirror and vertically by the swinging plane mirror. The scanning with

respect to the horizontal line of a range image is a fast one-way scanning. On the

other hand, the vertical motion is a slow reciprocating one. To make up a range

image with the raster scan order, we take plenty of time for a scanning process. By

a single scan we actually utilize a portion of the whole data, which are acquired in

a one side of a reciprocating motion. For example, it takes 1 second for a single

scanning period. In this case, the FLRS actually acquires range data for 2 seconds.

During the 2 seconds, a thorough one side motion must be contained, that is the top-

to-bottom or bottom-to-top motion. It is the timing of a scan start that determines

whether the top-to-bottom or bottom-to-top order. By using the half data, range

data are constructed through the method mentioned in the next section. In the case

of a 1 second scanning with a 2400rpm of the polygon mirror rotation, incidentally,

the acquired range image includes 160 horizontal scan lines because

2400 [rpm]
60 [sec]

× 1 [sec] × 4 [ f ace/rev] = 160

In the case of a 5 seconds scanning, by the same token, the FLRS operates for 10

seconds in practice.
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2.3 Data Reconstruction

As mentioned above, the stored data in the PC consist of range data, reflectance val-

ues and encoders’ values of two rotors. By using these data, 3D coordinate values

of measured points are reconstructed. In this section, we explain the reconstruction

method.

First, let’s determine the axes of the coordinate system. Taking account of the

mirror configuration of the FLRS, we setx as the direction where the laser beam is

emitted from the laser radar unit. Then it corresponds tozdirection that the axis of

rotation of the polygon mirror, while the rotary shaft of the plane mirror is parallel

to thex-axis (Fig.2.8).

Figure 2.8: The mirror configuration of the FLRS

Then, we set the unit vector~r0 (= (1, 0,0)) of the laser beam from the laser

radar unit. Supposing the normal vector of a polygon mirror surface as~n1, the

direction of the reflected beam toward the plane mirror can be described as~r1

~r1 = ~r0 − 2 (~r0 · ~n1) ~n1 (2.1)

Here, let us consider the cross section of the 3D configuration by the planez =

0 (Fig.2.9). Setting the origin of the coordinate system at the center of the polygon
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Figure 2.9: The 2-dimensional mirror configuration. (projected on the planez = 0)

mirror and given the position of the laser light source at (−c, a,0), the reflection

point P1 on the polygon mirror surface is obtained by the following system.


n1xx + n1yy− h = 0

y− a = 0
(2.2)

where, ~n1 = (n1x,n1y,0) is the unit normal vector of the polygon mirror surface.

Then we can obtain the reflection pointP1 = (x, a, 0) =

(
h− n1ya

n1x
, a,0

)
.

As in Fig.2.9, pointP1 is always has the minus value of x. We therefore define

x1(≥ 0) the offset along thex-axis between the origin and the cross point as in

Fig.2.9.

x1 = −h− n1ya

n1x
=

h− asinθ
cosθ

(2.3)

Here,θ
(
0 ≤ θ ≤ π

2

)
indicates the angle between the normal vector of the polygon

mirror surface and -x direction as in Fig.2.9.

Next, let us consider the reflection on the plane mirror. FromP1 to the reflec-

tion point on the plane mirrorP2, the laser beam travels distancel = P1P2. Setting

the offset between the origin and the centerline of the plane mirror asb, we can
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estimate the distancel by using sin(π − 2θ) =
b− a

l
.

l =
b− a
sin 2θ

(2.4)

Similarly, thex element of ~P1P2 is calculated as

x2 = − b− a
tan 2θ

(2.5)

Note thatx2 takes a minus value in the case ofθ <
π

4
and takes a positive value

in the case ofθ >
π

4
.

Therefore, a laser beam hits the plane mirror at pointP2.

P2 = (−x1 + x2,b,0) =

(
−h− asinθ

cosθ
− b− a

tan 2θ
, b, 0

)
; (2.6)

Until arriving at pointP2, a laser beam fliesl + (c− x1).

A laser beam is emitted outside of the scanner unit from pointP2 along direc-

tion ~r2.

~r2 = ~r1 − 2 (~r1 · ~n2) ~n2 (2.7)

where,~n2 = (0, n2y,n2z) is the unit normal vector of the plane mirror surface.

Therefore, when the laser finder outputs the range asL for a point in space, the

point is located at

(L − l − (c− x1)) ~r2

in the coordinate system with the originP2, which moves according to the mirror

configuration.

Translating the origin to the center of polygon mirror,

(x, y, z) = P2 + (L − l − c + x1)~r2

x =

(
L − b− a

sin 2θ
− c +

h− asinθ
cosθ

)
r2x − h− asinθ

cosθ
− b− a

tan 2θ

y =

(
L − b− a

sin 2θ
− c +

h− asinθ
cosθ

)
r2y + b

z =

(
L − b− a

sin 2θ
− c +

h− asinθ
cosθ

)
r2z

(2.8)

Here,θ and ~n2 are estimated based on the encoders of the motors which rotate the

mirrors. Then, we can reconstruct the 3D data from the array of 1D range data and

encoded values.





Chapter 3

Full Perspective Factorization

In this chapter, we explain a full perspective factorization, which is utilized as

the initial value for the camera motion. We use a weak perspective factorization

iteratively for the perspective projection camera model. Interest point detectors are

essential for the factorization. Two kind of the detectors, Harris operator and SIFT

key, are explained in this chapter. Furthermore, in the last part, we estimate the

performance of our full perspective factorization.

First, we briefly refer to some projection models which are utilized in computer

vision. Then we explain weak-perspective factorization, which is subsequently

extended to the perspective factorization as in [HK99]. In the next section, the

weak-perspective factorization is extended to full perspective factorization. The

solution by the full perspective factorization is utilized as the initial value for the

optimizing problem described in the next chapter. Finally, some demonstrations of

the full perspective factorization are shown.

3.1 Projection Model

The perspective projection model(Fig.3.1) can faithfully represent ordinary cam-

eras. This model is corresponds to a pinhole camera.



u = f
x
z

v = f
y
z

(3.1)

The mathematical description is, however, non-linear and that makes it difficult

to treat the model. Therefore, some linear projection models have been formulated,

19
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Figure 3.1: The perspective projection model (Pinhole camera model)

which are well-approximated to the non-linear projection model under certain con-

dition.

In the rest of this section, we briefly explain three common approximation

models.

3.1.1 Orthographic Model

The orthographic projection model(Fig.3.2) projects 3D points onto the image

plane along the optical axis. This model is generally utilized in the field of tech-

nical designs such as drafts of buildings and machine designs. In this model, the

coordinate values with respect tox andy in the 3D world are projected onto the

image coordinates directly while the depth,z, is ignored.

Figure 3.2: The orthographic projection model

Therefore, the orthographic projection is represented by the next equations:
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
u = x

v = y
(3.2)

In this representation, the equation is simple linear and easy to handle while

the perspective model is non-linear. However the assumption of the orthographic

model is too simple to be applied to real cameras. There are few cases applicable to

actual data for this model. The original factorization[TK92] was developed under

the assumption of this simple projection model.

3.1.2 Weak-Perspective Model

This model is considered as an intermediate one between the perspective and or-

thographic projection. The weak-perspective model(Fig.3.3), which is also called

scaled orthographic model, is approximated more accurately than orthographic

model since the weak-perspective model has the scaling effect (closer objects ap-

pear bigger then further objects). But it is not so accurate as para-perspective

model.

Consider a reference plane (z = z0), which is located at the center of the object

and parallel to the image plane. All points are, firstly, projected onto the reference

plane along the optical axis. Then these projected points on the reference plane are

projected again onto the image plane with a simple scale factorf .

Figure 3.3: The weak-perspective projection model

The weak-perspective projection model supposes the depths of all point have

the same valuez0. Therefore, this model is represented in linear manner with the
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focal lengthf and the constant depthz0:



u = f
x
z0

v = f
y
z0

(3.3)

If the scene depth is enough small relative to the distance between the camera

and the center of the object, the depths of all points can be taken to be constant.

Therefore, this approximate model is valid only when the depth range of the object

is considerably smaller than the distance to the object.

3.1.3 Para-Perspective Model

Para-perspective projection model(Fig.3.4) will be the closest approximate model

among the linear models. It has the scaling effect and the position effect (objects

in the periphery of the image are viewed from a different angle than those near the

center of projection [Alo90]).

In this model, similarly consider the reference plane (z = z0) located at the

center of the object and parallel to the image plane. Next, object points are pro-

jected onto the plane along the direction of the line between the optical center and

the object’s center of mass. Then, the points projected on the reference plane are

projected again onto the image plane with the scale factorf , which is equivalent

to a simple scaling effect by the ration of the focal lengthf and the distance to the

reference plane. Therefore, the difference between the weak- and para-perspective

model is the projection method onto the reference image.

Figure 3.4: The para-perspective projection model
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Given the object’s center of mass (x0, y0, z0), this model is represented in linear

manner with the focal lengthf and the constantz0:



u = f
x− x0

z
z0

+ x0

z0

v = f
y− y0

z
z0

+ y0

z0

(3.4)

The above equations are certainly linear because of constantz0.

3.1.4 Generalized Approximate Model

In the eyes of mathematics, above three approximate models are interpreted as

follow:

Let us consider a point around the object’s center of mass in space. The 3D

coordinate value of the point (x, y, z) is represented with the center (x0, y0, z0) as

follows:

(x, y, z) = (x0 + δx, y0 + δy, z0 + δz)

The coordinate valueu under the perspective projection model is estimated as

f
x
z

(Eq.5.1). Therefore, supposingδz� z0.

u = f
x
z

= f
x

z0 + δz
= f

x
z0

1

1 +
δz
z0

' f
x
z0

(
1− δz

z0

)
(3.5)

In the case off → 1, z0 → 1 andδz → 0, this equation is close to the

orthographic model.

In the case ofδz→ 0, it is close to the weak-perspective model.

Then, from Eq.3.5,

u = f
x0

z0

(
1 +

δx
x0

) (
1− δz

z0

)
' f

x0

z0

(
1 +

δx
x0
− δz

z0

)

Here, the term with respect toδxδz is ignored.

u = f
1
z0

(
x0 + δx− x0

z− z0

z0

)
= f

x− x0
z
z0

+ x0

z0
(3.6)
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Consequently, we can obtain the formulation for the para-perspective projection

model.

As seen above transformations, these linear models are built upon the assump-

tions ofδx� x0, δy� y0 andδz� z0.

3.2 Factorization

3.2.1 Previous Works

Estimations of the shape of an object or of camera motion by using images are

called ”Shape from Motion” or ”Structure from Motion”, and are main research

fields in computer vision.

The factorization method proposed in [TK92] is one of the most effective algo-

rithms for simultaneously recovering the shape of an object and the motion of the

camera from an image sequence. By using the singular value decomposition(SVD),

the shape and motion are estimated from the trajectories of interest points. Orig-

inally, this method was limited to the orthographic model. Then the factoriza-

tion was extended to several perspective approximations and applications [CK95]

[MK97] [CH96] [PK97] [HK99] [GW04]. Among them, in [PK97] a factorization

method on the weak-perspective (or scaled orthographic projection) model was

proposed, in which the scaling effect of an object is accounted for as it moves to-

ward and away from the camera. At the same time, they applied the factorization

method under the para-perspective projection model, which is a better approxi-

mation of the perspective model than that of the weak-perspective model. In the

para-perspective model, the scaling effect as well as the different angles from which

an object is viewed are accounted for as the object moves in a direction parallel to

the image plane. In [PK97], they also presented perspective refinement by using

the solution under the para-perspective factorization as the initial value. In [HK99]

a factorization method with a perspective camera model was proposed. Using the

weak-perspective projection model, they iteratively estimated the shape and the

camera motion under the perspective model.

3.2.2 Weak-Perspective Factorization

Given a sequence of F images, in which we have tracked P interest points over all

frames, each interest point p corresponds to a single point~Sp on the object. In im-

age coordinates, the trajectories of each interest point are denoted as{(uf p, vf p)| f =
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1, ..., F, p = 1, ...,P 2F ≥ P}.
Using the horizontal coordinatesuf p, we can define anF × P matrix U. Each

column of the matrix contains the horizontal coordinates of a single point in the

frame order, while each row contains the horizontal coordinates for a single frame.

Similarly, we can define anF × P matrixV from the vertical coordinatesvf p. With

respect to the coordinate values ofuf p andvf p, we set the origin of the coordinate

system as the principal point.

The combined matrix of 2F × P becomes the measurement matrix as follows,

W =


U

V

 (3.7)

Each frame f is taken at camera position~T f in the world coordinates. The

camera pose is described by the orthonormal unit vectors~i f , ~j f and ~kf . The vectors
~i f and~j f correspond to thex andy axes of the camera coordinates, while the vector
~kf corresponds to thez axis along the direction perpendicular to the image plane

(Fig.3.5).

Figure 3.5: the coordinate system:~T f denotes the position of the camera at time of

frame f. The camera pose is determined by three unit basis vectors.

Under the weak-perspective camera model, we can derive the following equa-
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tion from (Eq. 3.3).


u = f
x
z0

= f
~i f

t · ( ~Sp − ~T f )

zf

v = f
y
z0

= f
~j f

t · ( ~Sp − ~T f )

zf

(3.8)

Here, a single point in the world coordinates~Sp is projected onto the image

plane f at (uf p, vf p) of a camera at~T f in the world coordinate system.

We denote the distance between the camera center and the reference plane (the

mass center of the object) aszf . Then we obtain the following,

zf = ~kf
t · ( ~C − ~T f ) (3.9)

The vector~C is the center of mass of all interest points. Without loss of gen-

erality, the origin of the world coordinates can be placed at the centroid, that is
~C =

∑ ~Sp = 0. Then this means that

zf = − ~kf
t · ~T f (3.10)

to simplify the expansion of the following formulations.

They are summarized as follows:

uf p = ~mf
t · ~Sp + xf (3.11)

vf p = ~nf
t · ~Sp + yf (3.12)

~mf =
f

zf

~i f (3.13)

~nf =
f

zf

~j f (3.14)

xf = − f
zf

~i f
t · ~T f (3.15)

yf = − f
zf

~j f
t · ~T f (3.16)

and these equations are expressed in a matrix form:


u11 . . . u1P

u21 . . . u2P
...

...
...

uF1 . . . uFP

v11 . . . v1P
...

...
...

vF1 . . . vFP



=



~m1
t

~m2
t

...

~mF
t

~n1
t

...

~nF
t



(~s1 . . . ~sP)



3.2. FACTORIZATION 27

+



x1

x2
...

xF

y1
...

yF



(1 . . . 1) (3.17)

Using the setting that the center of all interest points is the origin, from Eq.(3.11),

P∑

p=1

uf p =

P∑

p=1

~mf
t · ~sp +

P∑

p=1

xf = Pxf (3.18)

similarly from Eq.(3.12),
P∑

p=1

vf p = Pyf (3.19)

Therefore,xf andyf are easily calculated with all interest points.


xf =
1
P

P∑

p=1

uf p

yf =
1
P

P∑

p=1

vf p

(3.20)

We obtain the registered measurement matrixW̃, after translationW̃ = W −
(x1 x2 . . . xF y1 . . . yF)t(1 1. . .1) as a product of two matrixesM andS.

W̃ = M · S (3.21)

whereM is a 2F × 3 matrix andS is a 3× P matrix.

In [TK92], they stated the following;

Theorem (Rank Theorem) Without noise, the registered measurement ma-
trix W̃ is at most of rank 3.

This theorem means that the registered measurement matrixW̃ of 2F × P are

highly redundant. The matrix̃W is originally the product of the 2F × 3 matrix M

and the 3× P matrix S. Therefore, it follows that the matrix̃W has at most rank

three.
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With respect to the decomposition of the matrixW̃, we utilized the Singular

Value Decomposition(SVD) [GL96]. By the SVD, supposing that 2F ≥ P, the

matrixW̃ is decomposed as follows.

W̃ = O1 Σ O2 (3.22)

whereO1 is a 2F ×P matrix,Σ is a diagonalP×P matrix andO2 is aP×P matrix.

In addition, the matricesO1 andO2 fulfill that Ot
1 O1 = Ot

2 O2 = E, whereE is the

P×P unit matrix. The matrixΣ has only diagonal elements (other elements are 0),

which are the singular valuesσ1 ≥ . . . ≥ σP ≥ 0 sorted in non-decreasing order.

The above Rank Theorem also says that the matrixΣ has at most three singu-

lar values of non-zero. It is, therefore, only necessary to consider the first three

columns ofO1, the most upper left 3× 3 submatrix ofΣ and the first 3 rows ofO2.

In real case, the observed values, that mean the coordinate values of the interest

pointsuf p andvf p, include noises. Consequently more than three diagonal elements

of matrixΣ are non-zero. In the case of noisy measurements, the following theorem

is provided.

Theorem (Rank Theorem for Noisy Measurements)All the shape and rota-
tion information inW̃ is contained in its three greatest singular values.

Therefore, we can deal with the registered measurement matrixW̃ with noise

in the same manner. The singular values out of the first three corresponds to the

noises.

As mentioned above, we have only to deal with the first three columns ofO1,

the most upper left 3× 3 submatrix ofΣ and the first three rows ofO2. Then, we

suppose the following partitions ofO1, Σ andO2.

O1 =
(
O′1 O′′1

)

Σ =

(
Σ′ 0

0 Σ”

)
(3.23)

O2 =


O′2
O′′2



where theO′1 is a 2F×3 matrix,Σ′ is a diagonal 3×3 matrix andO′2 is a 3×Pmatrix.

Without noise, the following equations are perfectly satisfied.

W̃ = M · S = O1 Σ O2 = O′1 Σ′ O′2 (3.24)

O′′1 Σ′′ O′′2 = 0 (3.25)
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In noisy cases, the term ofO′′1 Σ′′ O′′2 corresponds to noise. As a consequence,

we can regard

W̃ ' Ŵ = O1 Σ O2 = O′1

and consider̂W form here on.

Let us return the decomposition of the registered measurement matrix into the

rotation matrixM and the shape matrixS (Eq.3.21). In the meanwhile, we define

M̂ = O′1
√

Σ′ (3.26)

Ŝ =
√

Σ′ O′2 (3.27)

we obtain the next equation.

Ŵ = M̂ Ŝ (3.28)

Here, M̂ is a 2F × 3 matrix andhatS is a 3× P matrix, which posses the same

configurations of Eq.3.21.

The above decomposition, however, is not unique because any invertible 3× 3

matrix A makes a valid decomposition ofŴ as

(M̂A)(A−1Ŝ) = M̂(AA−1)Ŝ = M̂Ŝ = Ŵ (3.29)

To get rid of the ambiguity, using the fact that the matrixM represents the axes

of the camera coordinates(Eq.3.13 and 3.14), the following constraints should be

satisfied.

| ~mf | = | ~nf | (3.30)

~mf
t · ~nf = 0 (3.31)

where, M̂A =


[ ~mf

t]

[ ~nf
t]

 (3.32)

These constraints give us the motion matrixM and the shape matrixS.

Then, we need to estimate a 3× 3 matrixA. From Eq.3.32, twoF × 3 matrices

M̂′ andN̂′ are defined as follows.


[ ~mf
t]

[ ~nf
t]

 = M̂A =


M̂′

N̂′

 A (3.33)

M̂′ =



~m′1
t

~m′2
t

...

~m′F
t


(3.34)
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N̂′ =



~n′1
t

~n′2
t

...

~n′F
t


(3.35)

Considering Eq.3.32 and each vector~m′f ,

| ~mf |2 = ~mf
t · ~mf = ( ~m′f

t
A) · ( ~m′f

t
A)t = ~m′f

t
AAt ~m′f = ~m′f

t
T ~m′f (3.36)

T = AAt is a 3× 3 symmetric matrix. Similarly on~n′f ,

| ~nf |2 = ~n′f
t
T ~n′f (3.37)

In addition,

~mf
t · ~nf = ( ~m′f

t
A) · ( ~n′f

t
A)t = ~m′f

t
T ~n′f (3.38)

Here, estimating the matrixA corresponds to estimating the matrixT. Then

based on the constraints of Eq.3.30 and 3.31, the next cost functionG should be

minimized to estimate the symmetric matrixT.

G =

F∑

f =1

( ( | ~mf |2 − | ~nf |2 )2
+ w

(
~mf

t · ~nf
)2 )

=

F∑

f =1

( ( ~m′f
t
T ~m′f − ~n′f

t
T ~n′f

)2
+ w

( ~m′f
t
T ~n′f )

2
)

(3.39)

w : a weighted coefficient

In this thesis,w is set at 1. We can easily minimize the cost functionG by a linear

method to obtain the symmetric matrixT (see Appendix A).

Once obtaining the matrix T, we can calculate the 3× 3 matrix A as follows.

First,T is decomposed as

T = UΛVt (3.40)

whereU andV are both 3× 3 matrices andΛ is a diagonal 3× P matrix, just like

Eq.3.22. In this particular case of the symmetric matrixT, the matrixU is identical

with the matrixV. Consequently,

T = UΛU t = U
√

Λ
√

ΛU t =
(
U
√

Λ
) (

U
√

Λ
)t

= AAt

. . . A = U
√

Λ (3.41)
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Then based on Eq.3.29 we obtain the approximate shape matrixS as

S =
( ~S1 ~S2 . . . ~SP

)
= A−1Ŝ (3.42)

For ~mf and ~nf , from Eq.(3.32)

~mf = At ~m′f (3.43)

~nf = At ~n′f (3.44)

The distance between the camera center and the reference plane,zf , is calcu-

lated by Eq.3.13 and 3.14;

| ~mf |2 =
f 2

zf
2

and | ~nf |2 =
f 2

zf
2

. . . zf = f

√
2

| ~mf |2 + | ~nf |2
(3.45)

Then, the axises of the camera coordinate system~i f and ~j f can be calculated.

Another axis~kf is estimated as the cross product~i f × ~j f . However, it does not

assure the orthogonality between~i f and ~j f . Then three axises are given in practice

by the following post-treatment with the SVD.

(
~i f ~j f ~kf

)
= UΣVt, then U



1

1

1

 Vt →
(
~i f ~j f ~kf

)
(3.46)

When it comes to the camera position~T f , we can obtain the next equation from

Eq.3.10, 3.15 and 3.16. 

~mf
t

~nf
t

~kf
t


~T f =



xf

yf

zf


(3.47)

~T f is easily calculated as the linear solution for the above system.

Under the assumption of the weak perspective projection model, by using

known values of (uf p, vf p) and f , we can obtain unknown parameters of~i f , ~j f , ~kf ,
~Sp and ~T f .

Finally, there is one further problem that we can’t ignore. It is an enantiomorph

problem. As a matter of fact, the weak perspective factorization gives two kinds of

solutions. If a certain shape,~Sp, is proper for the solution, the enentimorph is also

proper for the solution. This means, there is another solution in Eq.3.29

Ŵ = M̂Ŝ = (M̂A)(A−1Ŝ) =
(
M̂(−A)

) (
(−A)−1Ŝ

)
(3.48)
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The shape (−A)−1Ŝ is the enantimorph for the model (A)−1Ŝ. Thus, the weak

perspective factorization leaves the shape ambiguity. The only way to determine

which shape should be adopted as the correct one would be the choice by eye

observation. However our algorithm can select the proper shape automatically by

using deformed range data as mentioned in next section.

3.2.3 Extension to Full-Perspective Factorization

The above formulation is under the weak perspective projection model, which is a

linear approximation of the perspective model. Next, using an iterative framework,

we obtain approximate solutions under the non-linear, full perspective projection

model.

Under the perspective projection model, the projective equations between the

object point ~Sp in 3D world and the image coordinate (uf p, vf p) are written as

uf p = f
~i f

t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

(3.49)

vf p = f
~j f

t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

(3.50)

Replacingzf = − ~kf
t · ~T f , we obtain the following equations.

(λ f p + 1)uf p =
f

zf

~i f
t · ( ~Sp − ~T f ) (3.51)

(λ f p + 1)vf p =
f

zf

~j f
t · ( ~Sp − ~T f ) (3.52)

λ f p =
~kf

t · ~Sp

zf
(3.53)

Note that the right hand sides of Eq.3.51 and Eq.3.52 are the same form under

the weak-perspective model (see Eq.3.8). This means, multiplying a image coor-

dinate (uf p, vf p) by a real numberλ f p maps the coordinate in the full perspective

model space into the coordinate in the weak-perspective model space. Solving

for the value ofλ f p iteratively, we can obtain motion parameters and coordinates

of interest points under the full perspective projection model in the framework of

weak-perspective factorization.

The entire algorithm of the perspective factorization is as follows:

Input: An image sequence of F frames tracking P interest points.
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Output: The 3D positions of P interest points~Sp. The camera position~T f and

poses~i f , ~j f , ~kf at each frame f.

1. Givenλ f p = 0

2. Supposing the Equations 3.51 and 3.52, solve for~Sp, ~T f , ~i f , ~j f , ~kf andzf

through the weak perspective factorization.

3. Calculateλ f p by Equation 3.53.

4. Substituteλ f p into step 2 and repeat the above procedure.

Until: λ f p’s are close to ones at the previous iteration.

We must now return to the point which we postponed in the previous section,

the enantiomorph problem. In fact, the ambiguity of enantiomorph is removed in

our method. With respect toλ, if a point ~Sp is located on the reference plane, the

value ofλ f p = 0 because the value ofzf means the depth of the reference plane

for the cameraf , and the value of~kf
t · ~Sp means the depth of the point~Sp for the

cameraf . The value ofλ f p takes more than 0 for the point~Sp located further away

than the reference plane from the cameraf . Similarly,λ f p for the point closer than

the reference plane from the camera takes a negative value.

On the other hand, we measure the temporal relative position of each interest

points (see Section 4.3). Supposing the framefp in which the range sensor scans

the interest pointp, we can obtain~kf
t
( ~Sp − ~T fp), the depth of the interest pointp

at framefp as the observed value by a moving range sensor. But we can not obtain

the valueλ fp exactly because we do not have any information about the depth of

the reference plane at framefp.

Nevertheless, if the sensor does not move so widely along the optical axes

direction, we can roughly estimate theλ fp.

Roughly speaking we can regardzf as a constantzc at all frames in the case

of small sensor motion along to the optical axis. Thenλ f p is roughly calculated

as constant for each interest pointp, λ f p ' λp ' λ fp. Supposing that we observe

the depth values of interest pointp as Dp at frame fp from the distorted range

data of FLRS. Therefore, we can estimateλ fp from the range data based on the

approximation ofzc ' 1
P

∑
Dp.

Let us consider the enantiomorph with two arrays,{λA
1 +1, λA

2 +1, ·, λA
P +1} and

{λB
1 +1, λB

2 +1, ·, λB
P +1}. When we also obtain the array of{D1

zc
,
D2

zc
, · · · , DP

zc
} from
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the range data, we can select the proper shape model{λA} or {λB} by comparing the

correlations.

3.3 Tracking

As input stuff, we need P interest points at each frame whole a sequence, which

are tracked identified points in the 3D world. There are several methods to de-

rive interest points of images [Mor77] [SB97]. Among them, we adoptHarris

operator[HS88] andSIFT key[Low99] [Low04] for derivation of interest points.

Harris operator, a corner detector, is the most famous operator in the field of im-

age processing. While SIFT key was originally proposed for the purpose of object

recognition. This operator is robust for scale, rotation and affine transformation

changes. Many operators with robustness for these changes are recently proposed.

The main reasons why we adopt SIFT key are its stability of points derivation and

usefulness of the key, which has 128 dimensional elements and can be used for the

identification for each point.

3.3.1 Harris Operator

First, let us consider the spatial gradient of intensities, (Ex,Ey) = (
∂X
∂x
,
∂X
∂y

). Then

we define a matrixC at a pointp based on its neighborhood as follows,

C =


∑

Ex
2 ∑

ExEy∑
ExEy

∑
Ey

2

 (3.54)

The key for feature detection is the eigenvalue of matrixC and their geometric

meanings. MatrixC is a symmetric one and without any loss of generality it can

be diagonalize by a rotation of the two coordinate axes.

C 7→

λ1 0

0 λ2



λ1 andλ2 are the eigenvalues ofC (λ1 > λ2 > 0).

If the region around pointp in the image is perfectly even andEx = Ey = 0,

matrix C has eigenvaluesλ1 = λ2 = 0. If point p is located on a line or an edge

where is even along one direction and has a intensity gradient along the another,

we obtainλ1 > 0, λ2 = 0. In fact, the larger the intensity gradient, the larger

its corresponding eigenvalue. That is, the eigenvectors encode edge directions and

the eigenvalues encode the strengths of the edges. Then, if pointp is located on
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a corner which has gradients along the both directions, we obtainλ1 > λ2 > 0.

It means that pointp is located on a strong corner in the case of largeλ2. If the

smaller eigenvalue is larger than a threshold, the pointp is to be an interest point.

Instead of actual calculating the smaller eigenvalue, the next value is evaluated.

r = detC − κ(traceC)2 (3.55)

In the most studies with Harris operator,κ = 0.04 is used and we adopt it. Then the

interest points are detected if the valuesr at corresponding points are greater than

the threshold.

With respect to the inter-frame connections of each interest point, we adopt a

local window matching method.

Consequently, our tracking algorithm with Harris operator is as follows.

1. Given a image sequence of F frames.

2. Harris operator is applied to the all images and detectsPmax interest points

at each frame (Pmax> P).

3. Each interest point at framef is identified at the point as frame (f +1). Point

pi at framef and pointp j at the next framef + 1 is considered as the same

point if a similarity index is lower than a threshold. The similarity index is

defined as follows based on the window matching around the point.

∑

neighbor

(
I f (pi) − I f +1(p j)

)2
(3.56)

The traveling distance of each point is restricted inter neighboring frames

because of small image changes. The next constraint is also implied.

‖pi − p j‖ ≤ dthreshold (3.57)

4. The interest points tracked from start to finish in the sequence are recorded

and utilized in the factorization.

3.3.2 SIFT Operator

Recently, several detectors of interest points are proposed which are invariant with

respect to scale, image resolution and wide view point changes [SM97] [MS01]

[MS02] [MS04] [DSH04]. In addition there are many studies on the evaluations

for these detectors [SMB98] [MS03]. Among them, we adopt SIFT key [Low99].
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As mentioned above, SIFT key was proposed originally for object recognition.

The features detected by SIFT key are invariant to image scaling ans rotation, and

partially invariant to change in illumination and 3D camera viewpoint [Low04]. In

our research, we utilize it for tracking.

For the detection of interest points from an image, SIFT key searches them in

the 3D scale space. The scale space is a volumetric space of 2D images applied by

various Gaussian smoothening. Given an imageI (x, y), the scale spaceL(x, y, σ) is

defined as the following convolution,

L(x, y, σ) = G(x, y, σ) ∗ I (x, y) (3.58)

whereG(x, y, σ) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
is a Gaussian.

For an efficient detection of interest points, a method is proposed [Low99],

which searches the scale space peaks in the difference-of-Gaussian (DoF) function

convoluted with the image.

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I (x, y)

= L(x, y, kσ) − L(x, y, σ) (3.59)

This means the difference of two nearby scales separated by a constant factor

k (k > 1).

The interesting point detection corresponds to the detection of all local maxi-

mums and minimums inD(x, y, σ) as in Fig.3.6. We can not specify the number

of interest points in SIFT key since the detector picks up all these peaks1. For the

most efficient search,k =
√

2 is chosen.

For the accurate localizations of the interest points, they are estimated in sub-

pixel level. At the accurate positions of peaks, the derivatives ofD(x) = D(x, y, σ)

take 0. By Taylor expansion,

D(x) = D +

(
∂D
∂x

)t

x +
1
2

xt ∂
2D

∂x2
x (3.60)

Therefore, the peak positionsx̂ are calculated as

x̂ = −
(
∂2D

∂x2

)−1
∂D
∂x

(3.61)

Here,σ corresponds to the scale at the interest point, which makes this operator

scale-invariant.
1It is possible to specify the total number of the interest points in the Harris operator according to

the values of Eq.3.55, for example.
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Figure 3.6: The scale scape and the different-of-Gaussian space.

Besides the localizations of interest points, SIFT key detect the orientationsθ

and the local image descriptors~k around the points. The gradient magnitudem

and orientationθ at all pixels around each interest point is calculated by the local

Gaussian smoothed image.

m =

√
(Lx+1,y − Lx−1,y)2 + (Lx,y+1 − Lx,y−1)2 (3.62)

θ = tan−1 Lx,y+1 − Lx,y−1

Lx+1,y − Lx−1,y
(3.63)

Based on the gradient orientations around an interest point, an orientation his-

togram is formed. The orientation histogram has 36 bins for the 360◦ range. Then

the peak in the histogram corresponds to the dominant direction of the region,

which makes a rotation-invariant detector.

For the local description, the region around each interest point is normalized

in advance with respect to scaleσ and rotationθ . Then the gradient magnitude

and orientation are compared at each interest point. In the left figure in Fig.3.7, the

circle shows a Gaussian window. These samples are accumulated into orientation

histograms summarizing the contents over large region with the length each arrow

corresponding to the summation of the gradient magnitudes (the right figure in

Fig.3.7). In practice, a 4× 4 array of the sample regions with 8 orientation bins in

each region is used. Therefore, each SIFT key~k has 4× 4× 8 = 128 dimension.

The advantage of SIFT key in the tracking process is that we can use the 128-

dimensional vector~k for the inter-frame identification. Consequently, our tracking

algorithm with SIFT key is as follows.
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Figure 3.7: The local descriptor by SIFT key [Low04].

Figure 3.8: The results of the two detectors. In Harris detector, the total number of

interest points is set at 500. And 1623 points are detected by SIFT operator.

1. Given a image sequence of F frames.

2. SIFT key is applied and detects interest points at each frame.

3. Each interest point at framef is identified at the point as frame (f + 1). Just

like in the Harris operator, Eq.3.56 and 3.57 are applied. In addition, the next
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constraint is taken into account.

‖~kf (pi) − ~kf +1(p j)‖ < threshold (3.64)

4. The interest points tracked from start to finish in the sequence are recorded

and utilized in the factorization.

Then, we show the results of the interest point detection by two operators. The

top picture in Fig.3.8 is the original one and applied with the operators. The left

bottom image shows the result by Harris operator. In this example, the strongest

500 interest points are detected according to the values of Eq.3.55. The right bot-

tom image shows the result by SIFT key, which detects 1623 interest points. Many

part of them are detected in largeσ space, where the locations of interest points are

unstable. While SIFT key detects more points from an image than Harris operator,

there is not a large number of the interest points which can be tracked in the whole

sequence. Consequently, there are not large differences between the results by both

operators.

3.4 Demonstration

In this section, we demonstrate our algorithm by using two kinds of sequences. As

the first image sequence, we use an CG animation which means an ideal image

sequences taken by an ideal camera. As the second example, we use a real image

sequences taken by a digital camera in laboratory which shows that the method is

applicable to real data.

CG Sequence

We made an image sequence by 3ds maxR© [Aut]. In this sequence, CG pictures of

a textured box putted on the textured floor are taken by a virtual camera in a linear

uniform motion. It consists of 72 frames, which is the same frame number as the

data by the FLRS. Some examples of the sequence are shown in Fig.3.9.

Then, we extract the interest points by Harris operator, which are all observable

on the entire frames from start to finish. Consequently, 136 interest points are

extracted and an example picture is shown in Fig.3.10.

The history of the total residual errors defined as the next function is shown in
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Figure 3.9: The image sequence of ”BOX”. (top left→ top right→ bottom left→
bottom right)

Figure 3.10: The interest points of the ”BOX” sequence.

Fig.3.11.

F∑

f =1

P∑

p=1


(
(λ f p + 1)uf p − f

zf

~i f
t · ( ~Sp − ~T f )

)2

+

(
(λ f p + 1)vf p − f

zf

~j f
t · ( ~Sp − ~T f )

)2
(3.65)

We can see that the total error is decreasing with iteration smoothly and converges

within finite iterations adequately. The estimated shape by the full perspective fac-

torization after 50 iterations is shown in Fig.3.12. While the floor is not completely

flat nor the object is not a complete cube, it is considered that the result is practical

for estimation of the shape. One can safely state that the full perspective factoriza-



3.4. DEMONSTRATION 41

Figure 3.11: The histry of the error convergence in the ”BOX” sequence.

Figure 3.12: The estimated shape of the ”BOX” sequence by the full perspective

factorization.

tion is effective for shape estimation only from images.

Real Sequence

We apply the full perspective factorization to a real sequence. By using a commer-

cial digital camera and a miniature house model, we verify practical effectiveness

of our implementation.

Similarly, some examples of the sequence are shown in Fig.3.13. In this case,

the motion of the hand-held camera consists of arbitrary translation and rotation.

The number of tracked interest point, 40, is rather small because the camera

motion in this dataset is wide. An example picture of the interest points is shown

in Fig.3.14.

The similar history of the error convergence is shown in Fig.3.15, and we can

find that the error converges adequately.
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Figure 3.13: The real image sequence of ”Miniature House”.

Figure 3.14: The interest points of the ”Miniature House” sequence.

The recovered shape after 100 iterations is shown in Fig.3.16.

Figure 3.16 shows the full perspective factorization comes in very useful also

for practical operations.



3.4. DEMONSTRATION 43

Figure 3.15: The histry of the error convergence in the ”Miniature House” se-

quence.

Figure 3.16: The estimated shape of the ”Miniature House” sequence by the full

perspective factorization.





Chapter 4

Refinement

Without noise in the input, the factorization method leads to the excellent solution.

As a result, the rectified 3D shape through the estimated camera parameters is valid.

Real images, however, contain a bit of noise. Therefore, it is not sufficient to rectify

range data obtained by the FLRS only through the factorization. For the sake of

a more refined estimation of motion parameters, we impose three constraints: for

tracking, movement, and range data. The refined camera motion can be found

through the minimization of a global functional. To minimize the function, the

solution by the full perspective factorization is utilized as the initial value to avoid

local minimums.

4.1 Tracking Constraint

As the most fundamental constraint, any interest point~Sp must be projected at

the coordinates (uf p, vf p) on each image plane. This constraint is well known as

Bundle Adjustment [Bro76]. When the structure, motion and shape have been

roughly obtained in the meantime, this technique is utilized to refine them through

the image sequence. In our case, the constraint conducts the following function:

FA =

F∑

f =1

P∑

p=1

((
uf p − f

~i f
t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

)2

+
(
vf p − f

~j f
t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

)2
)

(4.1)

The minimization ofFA leads to the correct tracking of fixed interest points

by a moving camera. However, we can see that the presence of parameters we are

45
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trying to estimate in the denominator makes this equation a difficult one. We have

to seek the optimal solution via some non-linear minimization techniques. Then,

suppose that instead, we consider the following function:

F′A =

F∑

f =1

P∑

p=1

((
~kf

t · ( ~Sp − ~T f )uf p − f · ~i f
t · ( ~Sp − ~T f )

)2

+
(
~kf

t · ( ~Sp − ~T f )vf p − f · ~j f
t · ( ~Sp − ~T f )

)2
)

(4.2)

The term ~kf
t · ( ~Sp − ~T f ) means the depth, the distance between the optical

center of cameraf and a plane, which is parallel to the image plane and include

the point ~Sp. The cost functionFA is the summation of squared distances on the

image plane while the cost functionF′A is estimated on the plane of the point~Sp. It

is true that we can only observe the image points on the image sequence, therefore

the noise occurs on these images. However it is also true that the cost functionFA

does not assure that the reconstructed points are close to the correct ones in the real

3D world. In [BCS01], it has reported that these functions are likely to give good

results.

Based on the above consideration, we choose to minimize the cost functionF′A
for the facility of the differential calculation.

4.2 Smoothness Constraint

One of the most significant reasons for adopting a balloon platform is to be free

from the high frequency that occurs with a helicopter platform [HMK+04a]. A

balloon platform is only under the influence of low frequency: the balloon of our

FLRS is held with some wires swayed only by wind. This means that the movement

of the balloon is expected to be smooth. Certainly, the movement of the balloon is

free from rapid acceleration, rapid deceleration, or acute course changing. Taking

this fact into account, we consider the following function:

FB =

∫ (
w1

(∂2 ~T f

∂t2
)2

+ w2

(∂2q f

∂t2
)2)

dt (4.3)

Here, ~T f denotes the position of the camera;t is time; w1,w2 are weighted

coefficients; andq f is a unit quaternion (see Appendix B) that represents the cam-

era pose. The bases~i f , ~j f and ~kf are described by the quaternion immediately as

follows:
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q = ((s, )u, v,w) (4.4)

s2 + u2 + v2 + v2 = 1 (4.5)

~i f =



s2 + u2 − v2 − w2

2(uv− sw)

2(uw− sv)


(4.6)

~j f =



2(uv+ sw)

s2 − u2 + v2 − w2

2(vw− su)


(4.7)

~kf =



2(uw− sv)

2(vw+ su)

s2 − u2 − v2 + w2


(4.8)

The first term of the above integrand represents smoothness with respect to

the camera’s translation while the second represents smoothness with respect to

the camera’s rotation. When the motion of the camera is smooth, the functionFB

becomes a small value.

For a quaternion, there are three independent variables which we have to es-

timate. The parameters is, for example, calculated by other 3 parameters as√
1− u2 − v2 − w2. Therefore, we take account of onlyu, v andw with respect

to q.

We implement in practice the following discrete form:

F′B =

F∑

f =1

(
w1

(∂2 ~T f

∂t2
)2

+ w2

(∂2q f

∂t2
)2

)
(4.9)

As discrete approximation formulation for the 2nd-order partial derivatives

with respect to time (∆t = 1), we use the next forms [Ban96].

∂2Ft

∂t2
=



2Ft − 5Ft+1 + 4Ft+2 − Ft+3 (t = 0)

Ft−1 − 2Ft + Ft+1 (0 < t < T − 1)

2Ft − 5Ft−1 + 4Ft−2 − Ft−3 (t = T − 1)

(4.10)

4.3 Range Data Constraint

Taking a broad view of range data obtained by the FLRS, the data are distorted by

the swing of the sensor. We can find, however, that these data contain instanta-
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neous precise information locally; that information is utilized for refinement of the

camera motion.

The FLRS re-radiates laser beams in raster scan order. This means that we can

instantly obtain the time when each pixel in the range image is scanned because

the camera and the range sensor are calibrated (Fig.4.1). If the video camera is

synchronized with the range sensor, we can find the frame among the sequence

when the pixel is scanned. With the video camera calibrated with the range sensor,

we can also obtain the image coordinate of each interest point in the 3D world with

respect to the instantaneous local coordinate.

Figure 4.1: Finding the time when a pixel in the picture is scanned by the range

sensor.

Considering this constraint, we can compensate the camera motion.

At time t, suppose that the sensor position is~T(t) and the 3 bases~i f , ~j f , ~kf are

described as~i(t), ~j(t), ~k(t). At this moment, suppose that the range sensor output

~x(t)(in the local coordinate) as the measurement of the point~X, which is described

in the world coordinate.

Based on Fig.4.2, the following equation is obtained.

~X = x~i + y~j + z~k + ~T =
(
~i ~j ~k

)


x

y

z


+ ~T = R~x + ~T (4.11)

Then, based onRt = R−1 (becauseRtR = (~i ~j ~k)t(~i ~j ~k) = E), when the range

sensor scans interest point~Sp, we can conduct the third constraint to be minimized

as follows:
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Figure 4.2: The global position and its description in the local coordinates

FC =

P∑

p=1

∥∥∥ x f p − Rt( ~Sp − ~T f p)
∥∥∥2

(4.12)

Here, the indexf p denotes the frame number when the range sensor scans interest

point ~Sp. It is very significant to note thatx f p is the 3D coordinate values not

described in the sensor-oriented coordinate system but in the camera-oriented one,

which is rewritten based on the range data and camera-sensor calibration. In prac-

tice, we find sub-framef p by using a linear interpolating technique for the motion

of interest points between frames. The main purpose of the above constraint is to

adjust the absolute scale.

As x f p = (xf p, yf p, zf p), the above function can be rewritten as the stronger

constraint:

F′C =

P∑

p=1

((
xf p − ~i f p

t · ( ~Sp − ~T f p)
)2

+
(
yf p − ~j f p

t · ( ~Sp − ~T f p)
)2

+
(
zf p − ~kf p

t · ( ~Sp − ~T f p)
)2) (4.13)

4.4 The Global Cost Function

Based on the above considerations, it will be found that the next cost function

should be minimized. Consequently, the weighted sum

F = wAF′A + wBF′B + wCF′C (4.14)



50 CHAPTER 4. REFINEMENT

leads to a global function. The coefficientswA, wB andwC are determined experi-

mentally and we are going to discuss them later.

To minimize this function, we employ Fletcher-Reeves method or Polak-Ribiere

method [Pol71] [Jac77] [SR80], which are types of the conjugate gradient method

(in the next section, we explain the conjugate gradient method briefly). Then, we

use the golden section search to determine the magnitude of gradient directions.

For optimization, Levenberg-Marquardt method [Mar63] is generally employed to

minimize a functional value. Levenberg-Marquardt method is very effective to es-

timate function’s parameters, especially to fit a certain function. However in our

function, it is not a parameter fitting problem to minimize the value ofF′B. What

we only have to do is to decreaseF′B simply. Therefore we adopt the conjugate

gradient method.

As mentioned in the previous parts, we input the solution by the perspective

factorization as the initial value. Minimizing the functionF is basically quite dif-

ficult because this function has many local minimums. By employing the solution

of the factorization as a fairly good approximation, we try to avoid them.

4.5 Optimization

There are many methods to minimize a multi-dimensional function value. Their

strategies are, nevertheless, almost the same. First, an initial approximate solution

is located in the space, which is expected to be close to the correct answer(global

minimum). Then the approximate solution moves to search the global minimum

iteratively. The method to decide the directions for the search differs according to

the method.

The simplest method is a steepest descent method. To minimize a functionf (~x)

for example, it searches the next approximate solution along to the direction of

∇ f (~x). It is certainly effective to use the steepest descent method for minimization

of a simple function. In the case of a complex function, it is not always effective to

search along the differential direction.

Generally it is Newton method that can determine the search direction effec-

tively. To determine the direction, however, the method needs inversion of huge

Hessian matrices.

Then in this thesis, we apply a conjugate gradient method, which need not

inverse a huge matrix.
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4.5.1 Conjugate Gradient Method

As mentioned above, the steepest descent directions are not always the most suit-

able directions. In a conjugate gradient method, the conjugate direction direction

for the previous search direction is applied. There are two familiar methods in this

category, Fletcher-Reeves method and Polak-Ribiere method.

First, we defineAas an×npositive definite symmetric matrix,~g0 as an arbitrary

vector and~h0 = ~g0. Then two types of gradient vectors are defined as follows:

~gi+1 = ~gi − λiA · ~hi ~hi+1 = ~gi+1 + γi ~hi (4.15)

Two vectors~gi and~hi satisfy ~gi+1
t · ~gi and ~hi+1

t · A · ~hi . That means

λi =
~gi

t · ~gi

~gi
t · A · ~hi

γi = − ~gi+1
t · A · ~hi

~hi
t · A · ~hi

(4.16)

Consequently, the next equations are introduced in the case ofi , j.

~gi
t · ~g j = 0 ~hi

t · A · ~h j = 0 (4.17)

Above equations mean that~gi is orthogonal to~g j and that~hi is conjugate to~h j .

Figure 4.3: The search directions of the steepest descent and the conjugate gradient

method.

From Eq.4.15 and 4.17, we obtain the followings.
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γi =
~gi+1

t · ~gi+1

~gi
t · ~gi

=
( ~gi+1 − ~gi)t · ~gi+1

~gi
t · ~gi

(4.18)

λi =
~gi

t · ~hi

~hi
t · A · ~hi

(4.19)

Here,~gi is interrupted as the steepest descent direction ati − th step. Suppose

that the equation~gi = −∇ f (Pi) is satisfied at pointPi . Then searching along~hi ,

point Pi+1 is to be found where the functionf (Pi+1) takes the minimal value. A

theorem shows that vector−∇ f (Pi+1) coincides vector~gi+1 of Eq.4.15. Moreover,

by using Eq.4.15 and 4.18, we can find vector~hi without calculating matrixA (ma-

trix A corresponds to the Hessian). The conjugate gradient method is summarized

as follows.

Input: A cost functionf (~x) and the initial approximate solution~x0.

Output: The extremum̂x.

1. Given the initial approximate solution~x0

2. Calculate the deviation off at current point~x0.

3. Set~g0 = ~h0 = −∇ f ( ~x0).

4. Search for the minimal point,~x1 along ~h0.

(replace 1→ i)

5. Calculate~gi = −∇ f (~xi) (i = 1, 2, · · ·). Then also calculate~hi by using Eq.4.15

and 4.18.

6. Search for the next minimal point,~xi+1 along~hi .

7. Return to the step 5.

Until: ~xi are close to the previous step.

The point is that the essential techniques in this method are the calculations of
~hi and the minimization along the search line. For the line minimization we explain

in the next. For your information, Fletcher-Reeves method adopts the first equation

of Eq.4.18 as the definition ofγ and Polak-Ribiere method adopts the second one.
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4.5.2 Golden Section Search

We adopt Golden section search method as the line minimization technique, which

searches the minimal point along a line effectively and does not need any devia-

tions. Golden section search is based on an enclosure method.

Here, the underlying problem is to find ˆx which satisfies ˆx = arg min
x

f (x). The

strategy of Golden section search is as follows. First, to enclose the minimal point,

we suppose three pointsa, b andc (a < b < c). If f (b) is smaller than bothf (a)

and f (c), the minimal point ˆx does exist between (a, c). Then, we narrow down the

search range (a, c) iteratively to find out the minimal point ˆx.

When f (b) is smaller than bothf (a) and f (c), we consider another pointx

between (a,b) or (b, c). For example, let us consider the case ofa < x < b. If

f (x) > f (b), the minimal point should exist between (x, c). Then,x is relabeled asa

in the next step and then the minimal point is to exist between (a, c). If f (x) < f (b),

the point is between (a,b). For the next step, pointx andb are relabeled asb and

c respectively. The search region becomes narrower in this way. Repeating this

procedure, the search region is getting narrower and we can find out the minimal

point, x̂ numerically.

Figure 4.4: The Golden section search for line minimization.
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Then, where shall we set the pointx for an effective search? In Golden section

search method, the most effective position ofx is rigidly determined [PFTV88].

First, given the initial range of (a, c) (Fig.4.4), the first position ofb is locates so as

to

āb : b̄c = 0.38197 : 0.61803

Then,x is to be set in the wider region (b, c) so as tob̄x : x̄c = 0.38197 : 0.61803.

Comparing the values off (x) and f (b), the next step’s search region is determined

as mentioned above. The next pointx is located so that its fraction is 0.38197 into

the larger of the two intervals̄ab andb̄c. The ratio of 0.38197 : 0.61803 is called

the golden section ratio.

4.6 Shape Rectification

After the refinement, we possess the vector~T f and three bases~i f , ~j f and ~kf at

each frame. That means we know the position and pose of the camera at dis-

crete time. To rectify the deformed shape data by using these extrinsic parame-

ters quantized with respect to time, these parameters have to be interpolated. To

be more precise, we have to interpolate three components with respect to trans-

lation ~T f = (Tx f ,Ty f ,Tz f), and three components with respect to rotationq f =(
(sf , ) uf , vf ,wf

)
. Each parameter’s variation with respect to time is, therefore,

approximated by a polynomials. In this study, we adopt 7-order polynomials.

A range sensor outputs the temporal coordinate values~x(t) = (x(t), y(t), z(t))

in the temporal sensor-oriented coordinate system. That means, suppose the range

sensor with position~T(t) and three bases~i(t), ~j(t) and~k(t) outputs~xi when a point
~X = (X,Y,Z) in the world coordinate system is scanned.

Therefore, the next equation should be satisfied.

~X = x(t) ·~i(t) + y(t) · ~j(t) + z(t) · ~k(t) + ~T(t) (4.20)

Consequently, defining the matrixR(t) =
(
~i(t) ~j(t) ~k(t)

)
as the rotation matrix,

we can rectify the deformed range data as;

~X = R(t)~x(t) + ~T(t) (4.21)

Combining the initial estimation for camera parameters by the full perspective

factorization (Chapter 3) and the refinement method mentioned in this section, we

can estimate the more accurate motion parameters. Then, for parameter estimation
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of a moving sensor, we utilize not only image sequences but also distorted range

data.

In this method, we use a calibrated camera-sensor system as a precondition.

Then a robust method for the calibration is described in the next section. Moreover,

we show that this method is applicable for uncalibrated system too.





Chapter 5

Calibration and Reconstruction

The method described in the previous chapters is based on a calibrated system,

in which the relative positions are known between the range sensor-oriented co-

ordinate system and the camera-oriented one. In the first half of this chapter, we

describe how to calibrate two coordinate systems. In the second half, we apply

our method to an uncalibrated system, in which the configuration between the two

systems is unknown. We use ”Shape from Motion” techniques to calibrate thema

posteriori.

5.1 Calibration

Calibration is to obtain camera parameters. There are two kinds of camera param-

eters, intrinsic and extrinsic. The intrinsic parameters are proper to each camera

and the extrinsic parameters are in reference to position and pose of a camera. In

the FLRS system, we assume the intrinsic camera parameters are known in ad-

vance (weak calibrated camera). On the hand, the extrinsic camera parameters are

unknown. Moreover, on the FLRS, the sensor-oriented coordinate system differs

from the camera-oriented one. Therefore, we have to estimate the relative ori-

entation between the range sensor and the monitoring camera on the FLRS. For

the acquisition of the relative orientation, we use calibration techniques. Given a

known 3D geometry model by the range sensor and some 2D images by the mon-

itoring camera with known intrinsic parameters, we have to estimate the extrinsic

parameters. That means, calibration corresponds to 2D-3D registration.

There are many techniques for camera calibration by using 3D reference ob-

jects [Tsa86], 2D reference planes [SM99] [Zha99], [Zha00] and 1D lines [Zha04].

Most of the techniques using 3D reference objects estimate the lens distortions si-

57
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multaneously [Tsa87] [WCH92]. In [UT03], a method for simultaneous calibration

of multi cameras is proposed. By using more simple object(circles [WZHW04],

spheres [Agr03]), several methods are proposed to estimate only intrinsic parame-

ters. On the other hand, many calibration methods without any reference objects,

called ”Self calibration”, have been published recently [Hr96] [LF97] [PKG99]

[PG99].

Calibration algorithms require some kinds of information about the correspon-

dences between 2D features on images and 3D features in space (in most cases, the

features mean points). In order to find 2D-3D correspondences, in some cases, cal-

ibration boxes or checker boards which has prominent markers are utilized for cal-

ibration. In some methods, the correspondences are specified manually by users.

These methods work, but they are labor intensive. On the other hand, many re-

searchers are tying 2D-3D registration automation. In [Ohk03], they aligned 2D

images and a 3D model on the optimization framework, in which conventional

edges in a 2D image were aligned to edges in the rendered image by using the 3D

model.

There are many studies, textbooks and reviews on camera calibration [Hor86]

[Fau93] [Dav97] [Pol02] [UOS05], because it is one of the most difficult and im-

portant problems. The main reason of the difficulty is that the accuracy of parame-

ter estimation is very sensitive to noises. With severe errors and noises, incoherent

parameters are estimated. To overcome this difficulty, we adopt a robust estimation

of the intrinsic parameters that rejects the incoherent parameters.

Calibration, the process of estimating the intrinsic and extrinsic parameters of

a camera, is divided into 2 steps.

1. Estimate the 3× 4 projection matrix, which describes the direct mapping of

a 3D point onto the 2D image.

2. Divide the projection matrix into the intrinsic and extrinsic matrices.

We will explain the process and our robust estimation of the intrinsic parameters.

As mentioned in 3.1, a 3D point at (x, y, z) described in the camera coordinate

system is projected on to a 2D point at (u, v) according to Eq.5.1.



u = f
x
z

v = f
y
z

(5.1)
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Here, defining a real numberκ ≡ z, we can describe Eq.5.1 in a matrix form.

κm̃ = κ



u

v

1


=



f

f

1





x

y

z


(5.2)

Suppose that the camera is located at~T and has the bases~i, ~j and~k in the

world coordinate system. A 3D point~X described in the world coordinate system

is described as~x = (x, y, z) in the camera coordinate system as follows:


x =~i t · (~X − ~T)

y = ~j t · (~X − ~T)

z = ~k t · (~X − ~T)

(5.3)

Here,x is, for example, rewritten as follows:

x =~i t · (~X − ~T) =~i t · ~X −~i t · ~T =
(
~i t, −~i t · ~T

) 
~X

1

 (5.4)

Therefore, the system (Eq. 5.3) is described in a matrix form as,

~x =



x

y

z


=



~i t −~i t · ~T
~j t −~j t · ~T
~k t −~k t · ~T




~X

1

 =
(
Rt − Rt ~T

) 
~X

1

 (5.5)

Substituting Eq.5.5 into Eq.5.2,

κm̃ = κ



u

v

1


=



f

f

1


(
Rt − Rt ~T

) 
~X

1

 (5.6)

According to Eq.5.6, 3D point (X,Y,Z) described in the world coordinate sys-

tem is mapped onto point (u, v) in the image.

The coordinate valuesu andv are not described in the general coordinate sys-

tem utilized by many studies. In our method, the origin of the image coordinate

system (u, v) = (0,0) is located on the center of the image. Moreover, we have

assumed that the image on the image plane is the same picture that we can obtain

like as a photo. Generally, the origin of an image coordinate system is located on

the left top corner of the image, and we have to take into account a deformation

associated with the mapping from the image plane to the actual photo. That means,

an image (u, v) projected by Eq.5.1 is fairly ideal without any distortions. There-

fore we have to consider the mapping from the ideal image (u, v) to the actual photo

image (ua, va) with the left top origin.
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The coordinate system of the the ideal image is centered atc, the intersection of

the optical axis and the image plane. Pointc is mapped to the point at (u0, v0) in the

new coordinate system; pointc is called theprincipal point. Then we set one basis
~ia of the actual image coordinate parallel to the basis~i of the camera coordinate

system. For the angleθ between~ia and another basis~ja (ideally, θ =
π

4
), the

mapping is obeyed in the next equation.



ua

va

1


=



ku −ku cotθ u0

0
kv

sinθ
v0

0 0 1





u

v

1


(5.7)

where,ku andkv are scale factors with respect to~i and~j, respectively. For simplic-

ity, we setku = 1.

Consequently, the relationship between 3D point~X in the world coordinate

system and the corresponding 2D point (ua, va) in the observed image is described

as follows:

κm̃a = κ



ua

va

1


=



1 − cotθ u0

0
kv

sinθ
v0

0 0 1





f

f

1


(
Rt − Rt ~T

) 
~X

1



=



f − f cotθ u0

0 f
kv

sinθ
v0

0 0 1


(
Rt − Rt ~T

) 
~X

1

 (5.8)

The 3×4 matrix in the middle of Eq.5.8, (Rt −Rt ~T) consist of camera position
~T and poseR, and it is thus called theextrinsic matrix.

The first matrix in Eq.5.8 is rewritten:

A =



f − f cotθ u0

0 f
kv

sinθ
v0

0 0 1


=



f s u0

0 α f v0

0 0 1


(5.9)

wheres is theskewandα is theaspect ratio. The five parameters ( the focal length

f , the principal point (u0, v0), the skews and the aspect ratioα ) do not depend

on the position and orientation of the camera in space and differ from camera to

camera, or from lens to lens. They are, therefore, called theintrinsic parameters

and matrixA is called theintrinsic matrix. In fact, the skews and the aspect ratio

α have roots in the manufacturing accuracy of image pickup devices. Generally,
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the skew can be ignored and the aspect ratioα is almost 1.0 in the modern digital

camera. And often the principal point is also presumed on the center of the images.

In practice, besides the skew and the aspect ration, lens distortions also affect

the observed image deformation. They primarily consist of radial distortion and

tangential distortion, which are especially notable when the wide-angle lenses or

small handy cameras are used. Lens distortion can be estimated by various methods

[Bro66] [SN00] [STEY05]. We adopt the method in [Zha99] [Zha00] as described

later.

Equation 5.8 is rewritten as follows:

κm̃a = κ



ua

va

1


= A

(
Rt − Rt ~T

)
W̃ = PW̃ = P



X

Y

Z

1


= PW̃ (5.10)

The 3× 4 matrixP = A
(
Rt − Rt ~T

)
is called theprojective matrix, which directly

connects the 3D point in space and the corresponding 2D point in the image. To

estimate all extrinsic and intrinsic parameters, the first step is to estimate the com-

ponents ofP. Then, decomposingP, we can obtain the intrinsic matrixA and the

extrinsic parametersRand~T.

5.1.1 Solving for the Projective Matrix

In Eq.5.8, the number of unknown parameters seem to be 12+ 1. These are 12

elements of the 3× 4 matrix P andκ. We can’t determine the value ofκ, which

is called theprojective depthand differs from point to point. This means we can’t

determine the scale of an object only by watching its image. Therefore, we use the

following equation derived from Eq.5.8.

m̃a ∝ PW̃

. . . m̃a × PW̃ = ~0 (5.11)

Moreover, there is ambiguity in the scale ofP’s components. We can’t determine

the absolute value of the components. The number of unknown parameter is, there-

fore, only 11. It corresponds to the 5 intrinsic parameters and 6 extrinsic parameters

(3 in rotation and 3 in translation).

If we know the coordinate value of 3D point (X,Y,Z) and its corresponding 2D
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point (ua, va), we can derive two equations from Eq.5.11. For example, suppose

P =



P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12


(5.12)

then we obtain two equations as follows:


XP1 + YP2 + ZP3 + P4 − uaXP9 − uaYP10− uaZP11− uaP12 = 0

XP5 + YP6 + ZP7 + P8 − vaXP9 − vaYP10− vaZP11− vaP12 = 0
(5.13)

If we get more than six pairs of (X,Y,Z)-(ua, va) correspondences, we can solve

for the vector~P = (P1,P2, · · · ,P12) of unknown 12 parameters as a linear system

problem.

As mentioned above, we can’t determine the absolute length of~P because of

the ambiguity in scale. In our study, we fix|~P| = 1.

5.1.2 Solving for the Intrinsic Matrix

Let us consider the leftmost 3×3 part of the matrixP. From Eq.5.10, we can obtain

the next.

P′ =



P1 P2 P3

P5 P6 P7

P9 P10 P11


= ARt (5.14)

Here is a significant property with respect to the rotation matrixR.

RtR =



~it

~jt

~kt


(~i ~j ~k) =



1

1

1


= E (5.15)

Therefore,

P′(P′)t = (ARt)(ARt)t = ARtRAt = AAt (5.16)

The next task is the decomposition ofP′(P′)t into the upper triangle matrixA.

SinceP′(P′)t is a symmetric matrix, the above decomposition can be attained as

follows:

i f K =



k1 k2 k3

k2 k4 k5

k3 k5 1


= AAA
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then A=



√
k1 − k3

2 − (k2 − k3k5)2

k4 − k5
2

k2 − k3k5√
k4 − k5

2
k3

√
k4 − k5

2 k5

1



(5.17)

Consequently, we can estimate all intrinsic parameters.

5.1.3 Solving for the extrinsic parameters

Once having estimated the projective matrixP and the intrinsic matrixA, it is

simple to solve for the extrinsic parameters.

R = (P′)tA−t (5.18)

~T = −RA−1~p′ (5.19)

where~p′ = (P4,P8,P12)t.

Thus, given more than 6 pairs of 3D-2D corresponding points, we can estimate

5 intrinsic and 6 extrinsic parameters with scale ambiguity. The method mentioned

above is called a linear solver since it consists of only linear calculations.

In practice, we apply a non-linear solver after solving by above linear solver.

Suppose N (N ≥ 6) pairs of 3D-2D correspondences (Xi ,Yi ,Zi) − (ui , vi), we have

to minimize the following cost function:

F =

N∑

i


(
ui − ua(R, ~T,Xi ,Yi ,Zi)

)2

+

(
vi − va(R, ~T,Xi ,Yi ,Zi)

)2

=

N∑

i


(
ui − f x(R, ~T,Xi ,Yi ,Zi) + sy(R, ~T,Xi ,Yi ,Zi) + u0z(R, ~T,Xi ,Yi ,Zi)

z(R, ~T,Xi ,Yi ,Zi)

)2

+

(
vi − α f y(R, ~T,Xi ,Yi ,Zi) + v0z(R, ~T,Xi ,Yi ,Zi)

z(R, ~T,Xi ,Yi ,Zi)

)2 (5.20)

where the functionsx(R, ~T,Xi ,Yi ,Zi) etc. have been defined in Eq.5.3.

Therefore, refined parameters by the non-linear solver are estimated as

{ f , s, α, u0, v0,R, ~T} = arg min
f ,s,α,u0,v0,R,~T

F (5.21)

We adopt Levenberg-Marquardt method for the minimizationF.

Here, the procedure of solving for camera parameters is summarized as follow.
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Input: N(≥ 6) pairs of 3D-2D correspondences extracted manually.

Output: The intrinsic and extrinsic camera parameters.

1. Solve for the projective matrixP by using N pairs of Eq.5.13.

2. By using the left 3× 3 part ofP, solving for the intrinsic matrixA.

3. Solving for the rotation matrixR and the camera position~T by Eq.5.18 and

5.19, respectively.

4. Input these parameters into Eq.5.20 and refine them through the non-linear

minimization of the cost function.

Before we come to Levenberg-Marquardt method, let us return to the lens dis-

tortions. In our study, we consider only on the radial distortion, which is modeled

as


u′a = (ua − u0)
(
1 + k1r2 + k2r4

)
+ u0

v′a = (va − v0)
(
1 + k1r2 + k2r4

)
+ v0

(5.22)

where r2 = (ua − u0)2 + (va − v0)2

The parameterk1 and k2 represent the lens distortions. In order to remove the

distortions, the cost functionF which includes the parametersk1 andk2 based on

Eq.5.21 should be minimized.

5.1.4 Levenberg-Marquardt Method for Optimization

Levenberg-Marquardt [Mar63] method is a general non-linear optimization algo-

rithm for parameter fitting when the form and derivatives of the objective function

are known. It mixes a gradient descent and Newton method dynamically in each

iteration. In this subsection, we explain our implementation of the method briefly.

Let us consider the following situation, where given some observed values ˆx,

we want minimize a functionF(~p|x̂) with respect to unknown parameters~p. In

other words, we want to estimate the optimal parameters~pop.

~pop = arg min
~p

F(~p|~x) (5.23)

In the gradient descent method, a new candidate of the solution~pt+1 is esti-

mated by using the current solution~pt as follows:

~pt+1 = ~pt − λ∂F(~p|x̂)
∂~p

∣∣∣∣
~p=~pt

(5.24)
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whereλ is a positive real number.

The gradient descent method tries to bring the solution close to the global min-

imum along the direction of the steepest descent at each iteration. The direction

of the steepest descent, however, does not coincide with the direction toward the

global minimum in the multi-dimensional space.

Then, Newton method, which uses 2nd-order approximation ofF, was pro-

posed in order to bring the global minimum faster. We apply Taylor-expansion to

f (~p) around point~p0.

F(~p) = F(~p0) + (~p− ~p0)t ∂F(~p0)
∂~p

+
1
2

(~p− ~p0)tH(~p0)(~p− ~p0) + · · · (5.25)

whereH(~p) is called theHesse Matrixor theHessian. With N-dimensional vector

~p = (p1, p2, · · · , pN)t, the Hessian is defined as

H(~p) =



∂2F

∂p1
2

∂2F
∂p1∂p2

· · · ∂2F
∂p1∂pN

∂2F
∂p2∂p1

∂2F

∂p2
2

· · · ∂2F
∂p2∂pN

...
...

. . .
...

∂2F
∂pN∂p1

∂2F
∂pN∂p2

...
∂2F

∂pN
2



(5.26)

At the extremal point, the derivative off takes 0.

∂F
∂~p
' ∂F(~p0)

∂~p
+ H(~p0)(~p− ~p0) = 0

... ~p = ~p0 − H(~p0)−1∂F(~p0)
∂~p

(5.27)

Comparing Eq.5.24 to 5.27,λ is used in the steepest descent method andH(~p0)

in Newton method respectively as a coefficient of
∂F(~p0)
∂~p

. When the current ap-

proximate solution~pt is far from the extremum, the steepest descent method brings

the solution to it faster than Newton method. On the other hand, the convergence

of the steepest descent method becomes worse near the extremum and Newton

method becomes more effective.

Levenberg-Marquardt method adopts advantages of both methods. In Levenberg-

Marquardt method, the update formulation of the solution is set as follows:

~pt+1 = ~pt − (
λE + H(~pt)

)−1 ∂F(~pt)
∂~p

(5.28)
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Levenberg-Marquardt method modifies the value ofλ dynamically at each itera-

tion. Equation 5.28 allows the Levenberg-Marquardt method to smoothly switch

between the steepest descent method (largeλ) and Newton method (smallλ). In

practice, it starts with largeλ. Then,λ is reduced when the last iteration gives an

improved estimation, i.e.F(~pt+1) < F(~pt).

Here, it is a daunting task to calculate the Hessian (Eq.5.26). For simplicity,

instead of 2nd-order derivatives we approximate the Hessian by using 1st-order

derivatives as follows. Suppose the cost function is set as

F =

M∑

i

(
yi − f (~p|x̂i)

)2 (5.29)

wherex̂i andyi are observed values with indexi. A 1st-order derivatives is

∂F
∂pk

= −2
M∑

i

(
yi − f (~p|x̂i)

) ∂ f
∂pk

(5.30)

The 2nd-order derivative is therefore

∂2F
∂pk ∂pl

= 2
M∑

i

[
∂ f
∂pk

∂ f
∂kl
− (

yi − f (~p|x̂i)
) ∂ f 2

∂pk ∂kl

]
(5.31)

The second term of the above equation is interpreted as the summation of weighted

errors
(
yi − f (~p|x̂i)

)
. Assuming it is close to 0, we can approximate the 2nd-order

derivative as
∂2F

∂pk ∂pl
' 2

M∑

i

∂ f
∂pk

∂ f
∂kl

(5.32)

Thus, we can estimate the 2nd-order derivative as the summation of the products

of 1st-order derivatives.

5.1.5 Robust Estimation of Parameters

In practice, the linear solver mentioned so far is affected the influence of noises

strongly. If there are some noises in image or positions of interest points, they

affect the accuracy not only on the linear solution but also on the refined parameters

by non-linear minimization.

Let us take an object without any geometrical feature for example (see Fig.5.1).

The figurine of the cat in Fig.5.1 has a smooth shape and only a few geometric fea-

tures while there are several features with respect to texture. In the case of manual

detection of interest points from a smooth model, noise in inevitable. Figure 5.1
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Figure 5.1: Calibration with a known model.

shows 17 corresponding point pairs between the 3D model and its 2D picture. At a

glance, the 3D position on the model looks proper with respect to its 2D image. The

estimated intrinsic parameters by a conventional linear solver are, however, wrong.

The next intrinsic parameters are estimated through the above linear solver.

A =



4219.69 −694.37 −1806.50

4330.27 −1571.74

1



First of all, the principal point is located outside of the image1! Also the focal

length is very large and the value of the skew is incredible. Consequently, the

extrinsic parameters include huge errors.

The reason why the linear solver outputs incorrect parameters is considered

to be that there are outliers in the input. In the case of an object with smooth

surfaces, it is very difficult to specify the locations of interest points on the 3D

model. Therefore, we try to get rid of outliers from input data. It is, unfortunately,

not easy to make judgments as to which points include error only by watching the

input data.

Then we take particular note of the facts that the aspect ratio of the camera

intrinsic parameter is close to 1.0 and the skew nearly vanishes in modern digital

cameras. Moreover, almost all cameras locate their principal point at the center of

their images. That means, given input pairs that output the aspect ratio far from

1the image size is 640× 480.
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1.0, the skew far from 0.0 or the principal point far from the center of the image,

there must be errors in the input data.

Therefore, adopting the RANSAC (Random Sampling Consensus [FB81]) tech-

nique, we propose the following algorithm for the estimation of camera parameters.

Input: N(≥ 6) pairs of 3D-2D correspondences extracted manually.

Output: The intrinsic and extrinsic camera parameters.

1. Pick up 6 pairs from N pairs at random.

2. Solve for the projective matrixP and estimate the intrinsic parameters.

3. Calculate the next cost function,

G = f 2
(
(α − 1.0)2 + s2

)
+ w

[
(u0 −Cu)2 + (v0 −Cv)

2
]

(5.33)

Here, (Cu,Cv) is the center of the image andw is a weight2.

4. Repeat above procedure, and store the intrinsic parameter set with the min-

imum G. The intrinsic parameter set with the minimumG is considered as

the proper intrinsic matrix element.

5. By using 6 input data sets with the minimumG, the extrinsic parameters are

estimated.

6. Considering the above parameters as the initial solution, entire parameters

are refined through Eq.5.21 by using all N pairs.

By using this robust method, we estimate the parameters as follows from the

same data of Fig.5.1,

A =



832.44 18.36 284.99

800.98 102.08

1



While some noises seem still left in the intrinsic parameters, the above result is

better than the previous result achieved by the conventional method.

2We setw = 0.01.
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5.2 3D Reconstruction by Images

The method described in Chapters 3 and 4 is based on a calibrated system in which

the relative positions are known between the range sensor-oriented coordinate sys-

tem and the video camera-oriented one. In this section, we describe how we applied

our method to an uncalibrated system in which the configuration between the two

systems is unknown.

The strategy is as follows. First, we reconstruct the 3D scene with ambigu-

ity in scale from image sequences. In this process, camera positions with scale

ambiguity and camera poses are estimated. Then the reconstructed 3D data with

scale ambiguity are aligned to the roughly rectified 3D data obtained by the range

sensor, which are derived from translational parameters with scale ambiguity. This

alignment process removes the scale ambiguity and determines the relationship

between the camera and sensor coordinate systems. After obtaining the absolute

scale, we apply the refinement method mentioned in the previous section and rec-

tify the shape.

Before describing this process, we will pause here to look briefly at related

works on 3D reconstruction.

Three-dimensional reconstruction from images is one of the most significant

and interesting field in Computer Vision. Besides factorization, stereopsis is one

of the most traditional methods for reconstructing an object shape by using several

images. Generally, it is said that there are two problems in stereo vision;Corre-

spondenceandReconstruction.

Correspondence is determining which token in a image corresponds to another

token in other images. The interesting point detector mentioned in Section 3.3 is

one on the solutions for this problem. While the reconstructed model is sparse, it

can deal with wide view point change by affine invariant feature detectors [Bau00]

[PZ98] [STG03]. Besides the feature-based method, many area-based methods

have been recently proposed. In [TSR00], [TSR01], the scene is reconstructed

by using small patches segmented by color. In [RLSP03], affine patches are uti-

lized. Optical flow [PGPO94] [SG02a] [SG02b], [ADSW02] and Graph cut [IG98]

[SC98] [Roy99] [BVZ01] [KZ01] [KZ02] [SZS03] technique are also used dense

reconstruction of scenes.

The another problem, Reconstruction, is dealt with in this section. In stereo

vision, given the disparity between correspondence tokens, knowledge of the pa-

rameters of camera positions and poses enables reconstruction of the shape. If the

parameters of all cameras are known in advance (e.g. a parallel stereo), the shape
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will be easily reconstructed. When we do not know camera parameters, especially

extrinsic parameters, we have to estimate the camera configuration by images. In

[LH81], [TH84] and [WHA89], they estimated the rotation matrix and the transla-

tion vector from the essential matrixE. By using the eight-point algorithm [Har97]

and the five-point algorithm [Nis03], the fundamental matrixF and the essential

matrix E are estimated, respectively, only through images. Ambiguity of scaling,

however, remains in these methods. Recently, many researchers have used some

sophisticated physical sensors, including gyros and GPS, to obtain the absolute

scaling. In particular, for modeling large objects such as buildings and scenes,

a great deal of research combining these sensors (sensor fusion) has been under-

taken. In [ZNH04], they recovered camera poses and 3D structures of large objects

by image sequences from the air by using motion stereo. Then the reconstructed

shapes (3D point clouds) are registered to other correct 3D data, and texture images

are mapped onto the 3D data.

5.2.1 Increment of Track Points

According to our strategy in the uncalibrated system, we need to construct a 3D

model. However by using the factorization, only sparse 3D points can be recon-

structed because of using the points visible from the whole sequence. Unfortu-

nately, the number of estimated 3D points is small especially in the case of wide

camera motion. It is, therefore, difficult to align this sparse 3D model to the dense

model obtained by a range sensor. To overcome this problem, we increase the

number of tracked points and construct dense 3D model from images. In this sec-

tion, we use other points that are visible over a certain number of frames while we

utilize the points that are trackable over a sequence in the previous factorization.

After increasing the number of track points, we estimate their 3D coordinates. To

estimate these re-registered 3D points, we use a Maximum Likelihood (ML) esti-

mation method [DHS00].

5.2.2 3D Reconstruction by ML Estimation

Let us consider a situation that we are given images taken by a moving camera with

known parameter and that we are given a point on each image that corresponds to

the same 3D point. Here, we want to determine the 3D position of the point.

Theoretically, the position of the point is interpreted as the intersection of all rays

that connect optical centers and 2D points on image planes. However in practice,
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these rays do not intersect at a point because of noises and errors in measurements

(Fig.5.2).

Then, where is the most proper 3D position? Here we assume that all the rays

go through neat the true 3D point. In this case, the error corresponds to the distance

between the ray and the 3D point. In addition, we assume that the error distribution

follows a Gaussian function. If we denote the correct 3D point asx̂ and~xi as the

nearest point on each ray of framei, the distribution of error~xi − x̂ follows the

Gaussian. All vectors~xi andx̂ are described in the world coordinate system.

The error is estimated as follows in each image,

p(~xi | x̂) = p(~xi − x̂)

=
1

(2π)3/2|Λ|1/2 exp
[
− (~xi − x̂)t(~xi − x̂)

2Λi

]
(5.34)

Here, Λi is covariance with respect to framei. The probabilityp(~xi | x̂) is in-

terrupted as the conditional probability for the closest point~xi given the 3D point

x̂.

For 3D reconstruction, we must estimate thex̂ with the maximump(x̂ | ~xi). By

ML estimation, we maximize the probabilityp(~xi | x̂) instead ofp(x̂ | ~xi) since we

have no prior knowledge about the functionp(x̂ | ~xi).

For all frames, total probability is estimated as

p(X | x̂) =
∏

i

p(~xi − x̂) (5.35)

Therefore, the correct 3D point is estimated asx̂ML by maximizing the above

probability.

x̂ML = arg max
~xi

p(X | x̂)

= arg max
~xi

log
[
p(X | x̂)

]

= arg max
~xi

log
[∏

i

p(~xi − x̂)
]

= arg max
~xi

∑

i

[
− (~xi − x̂)t(~xi − x̂)

2Λi

]

= arg min
~xi

∑

i

(~xi − x̂)tΛi
−1(~xi − x̂) (5.36)

In each framei, ~Ti is the position of camerai and~ai is the unit ray of framei

described in the world system.

~xi = γi ~ai + ~Ti (5.37)
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Figure 5.2: The 3D reconstruction of a point.

Here,γ is the length between thei-th camera center and the 3D point, and

γi = ‖x̂ − ~Ti‖ = ~ai
t(x̂ − ~Ti) (5.38)

therefore, we obtain

~xi − x̂ = ~ai ~ai
t(x̂ − ~Ti) + ~Ti − x̂ (5.39)

For the minimization of Eq.5.36, the derivative takes 0.

dx̂ML

dx̂
=

d
dx̂

∑

i

(~xi − x̂)tΛi
−1(~xi − x̂)

=
∑

i

2Λi
−1(~xi − x̂)t d(~xi − x̂)

dx̂

= 2
∑

i

Λi
−1

(
~ai ~ai

t(x̂ − ~Ti) + ~Ti − x̂
)t

(~ai ~ai
t − E) (5.40)

= 0

where,E is the 3× 3 unit matrix.

Then, replacing~ai
t~ai = Ai ,

∑

i

Λi
−1

(
(Ai − E)x̂ − (Ai − E)~Ti

)t
(Ai − E) = 0 (5.41)

∑

i

Λi
−1(Ai − E)t(Ai − E)x̂ =

∑

i

Λi
−1(Ai − E)t(Ai − E)~Ti (5.42)

When we know all the camera parameters, all~ais are estimated. In this thesis,

we set asΛi = E. Therefore, we have now obtained a linear system in the general

form of Kx = y.



5.3. REFINEMENT BY LEVENBERG-MARQUARDT METHOD 73

Thus, given camera parameters and an interest point on each frame, we can

estimate the proper position of the corresponding 3D point in closed form. In

addition, we can construct a dense 3D model by this method.

Here, we apply this method to a sample sequence (the sequence of ”Case3” in

Chapter 7. For further details of the sequence, see Chapter 7). First, 140 interest

points are detected through the whole sequence (Fig.5.3). On the other hand, the

increment method detects 10,119 points, which are visible in over 30 continuous

frames.

Figure 5.3: Increment of interest points. (top : ground truth)

5.3 Refinement by Levenberg-Marquardt Method

The camera positions and poses, and 3D positions of interest points include some

amount of noise, so it is very useful to refine these parameters. In the case of 3D

reconstruction, it is effective to refine parameters by Levenberg-Marquardt method.

For the refinement, the minimization of the next cost function is required (Bundle

Adjustment) .

G =

F∑

f =1

P∑

p=1

O f p

((
uf p − f

~i f
t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

)2
+

(
vf p − f

~j f
t · ( ~Sp − ~T f )

~kf
t · ( ~Sp − ~T f )

)2
)

=

F∑

f =1

P∑

p=1

O f p

(
g2

f p + h2
f p

)
(5.43)
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Here,O f p takes 1 if pointp is observable in thef -th frame: otherwise it takes

0. Note that the above equation has the same form as Eq.4.1 in Chapter 4 and

(uf p, vf p) is described in the principal point-origin coordinate system.

There are two kinds of parameters to be solved; camera position and pose (6

degree of freedom per frame) and the 3D position of interest points. In the case

of F frames and P interest points, the total number of parameters are 6F + 3P.

Describing the unknown parameter vector as~θ, we divide it into two parts,~θcamera

of camera motion and~θshapeof 3D point.

~θ = [ ~T1,q1, ~T2, q2, · · · , ~S1, ~S2, · · ·] = [~θcamera, ~θshape] (5.44)

Then, let us consider the Hessian. The Hessian is a huge matrix because it has

(6F + 3P)× (6F + 3P) elements. In this case, however, the Hessian is a very sparse

matrix. For convenience, we divide the Hessian into 4 blocks as Fig.??.

First, we shall focus on the top left block, 6F×6F matrixU. Based on Eq.5.32,

(i − j) element ofU is calculated as

[U] i, j =
∂2G
∂θi ∂θ j

= 2
F∑

f =1

P∑

p=1

O f p

(
∂gf p

∂θi

∂gf p

∂θ j
+
∂hf p

∂θi

∂hf p

∂θ j

)
(5.45)

here, 1≤ i, j,≤ 6F.

For camera motion parameters, each parameter affects only the other param-

eters in the same frame. Therefore, it is found thatU has a diagonal structure of

6× 6 sub-matrices and

[U] i, j = 2
P∑

p=1

O f p

(
∂gf p

∂θi

∂gf p

∂θ j
+
∂hf p

∂θi

∂hf p

∂θ j

)
(5.46)

Similarly, it is found thatV has a diagonal structure of 3× 3 sub-matrices

because each shape parameter affects only other parameters of the same point.

Therefore,

[V] i, j = 2
F∑

f =1

O f p

(
∂gf p

∂θi

∂gf p

∂θ j
+
∂hf p

∂θi

∂hf p

∂θ j

)
(5.47)

where 1≤ i, j ≤ 3P.

Finally,

[W] i, j = 2O f p

(
∂gf p

∂θi

∂gf p

∂θ j
+
∂hf p

∂θi

∂hf p

∂θ j

)
(5.48)

where 1≤ i ≤ 6F, 1 ≤ j ≤ 3P.
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From Eq.5.28,

∆~θ = ~θt+1 − ~θt = − (λE + H)−1 ∂G

∂~θ

. . . (λE + H) ∆~θ = −∂G
∂~θ

(5.49)

SinceλE has only diagonal elements, the following displacement does not lose

generality.

λE + H =


λE + U W

Wt λE + V

 7−→


U W

Wt V

 (5.50)

After the replacement, multiply Eq.5.49 by matrix


E −WV−1

0 E

 from the

left side, then


E −WV−1

0 E




U W

Wt V

 ∆~θ =


U −WV−1Wt 0

Wt V

 ∆~θ =


E −WV−1

0 E


∂G

∂~θ
(5.51)

This transformation can divide whole system into two groups of equations.

First,

∆~θcamera=
(
U −WV−1Wt

)−1
(

∂G

∂~θcamera

−WV−1 ∂G

∂~θshape

)
(5.52)

Then,∆~θcameracan be used to solve the next

∆~θshape= V−1
(

∂G

∂~θshape

−Wt∆~θcamera

)
(5.53)

The computation of inverseV is very effective sinceV has a diagonal structure

of 3 × 3 sub-matrices. These transformations result in fast calculation of updated

parameters.

5.4 Alignment-based Calibration

Next, we estimate the configuration between the camera-oriented coordinate sys-

tem and the range sensor-oriented system. Using the refined camera parameters in

the previous subsection, camera rotation matrixR with respect to time f is repre-

sented as

Rf =
(~i f ~j f ~kf

)
(5.54)

Here, the configuration between the video camera and the range sensor is de-

scribed by rotation matrixRintra and translation vector~Tintra. Solving forRintra and
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~Tintra is calibration. Using scale factors, the minimization of the next function

(Eq.5.55 uses M-estimator, which is explained in the next chapter in detail) leads

to the estimation of the relation between two coordinates.

arg min
Rintra,~Tintra,s

P∑

p=1

log
(
1 +

z2
f p

2σ2

)
(5.55)

zf p = Rintra(Rf ~x + s~T f ) + ~Tintra − s~Sp (5.56)

There is scale ambiguity in~T f and ~Sp, which are derived only from images.

The scale factors is, therefore, multiplied by these parameters. The above function

takes a small value when the shape of a clouds~Sp is aligned to the rectified range

dataRf ~x + s~T f . After the estimation ofs, Rintra and ~Tintra, we can use the same

method described in Chapter 4.

Figure 5.4: The result of alignment with scale factor in translation

Here, Fig.5.4 shows the result of the alignment in the sample sequence. The

top left figure shows the initial solution by manual operations. The top right figure

shows the result by Eq.5.55. It is found that the rectified range data (blue model)

are well-fitted to the point clouds constructed by images (red points).

Incidentally, we build a software of this algorithm and it makes calibration easy

(Fig.5.5).
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Figure 5.5: The GUI of the alignment based calibration method.





Chapter 6

Shape Rectification without

Images

The method mentioned so far does not need another range data set. We can rectify

distorted range data by using only a single range image and an image sequence.

In actual cases, however, there should be some available range data sets taken

by another range sensor fixed on the ground. Our FLRS is originally devised to

complement the measurement for the region that is invisible from the ground.

Some parts of a range image taken by the FLRS are also taken by another

range sensor fixed on the ground. Based on these overlapping regions, we propose

another algorithm which rectifies the distorted range data obtained from the FLRS.

In this method, we do not use any image sequences.

6.1 Basic Idea

Originally ICP(Iterative Closest Point) algorithm [BM92] [CM92] was developed

to align two shapes. In a range image, coordinates of 3D points are described in the

sensor-oriented coordinate system. Two range images from different viewpoints,

therefore, have different coordinate systems. To unify two shapes, two data sets

have to be described in the unified system. In order to do that, we apply a co-

ordinate conversion to one data set. When there are some overlapping regions in

the two data sets, we apply a transformation of the coordinate system in order to

coincide them.

To simplify the transform procedure, we assume that one shape is fixed and

another can move. We call the fixed shape the ”model shape” and the movable one
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the ”data shape”. Rotating and translating the data shape aligns two shapes. In

overlapping region, a point on the model shape has a corresponding point on the

data shape. Which point is the corresponding point, however, is usually unknown.

We resolve this correspondence problem by an iterative method. Initially a tempo-

ral corresponding point is assumed. A movement is determined so as to minimize

an objective function, which is defined by distances between the corresponding

points. The temporal correspondences are changed after the movement. Then a

new movement is determined under the new temporal correspondence. This pro-

cedure is repeated until the total distance converges. The objective function, which

should be minimized for the alignment, is defined as

f
(
R, ~T

)
= f

(
q, ~T

)
=

∑

i

‖ R(q)~xi + ~T − ~yi ‖2 (6.1)

This objective function indicates the summation of distances between all pairs

of corresponding points. Initially the function takes high values because there are

a lot of wrong relationships of correspondences. As iterating calculations, wrong

correspondences are improved and the function takes a converged value. If two

shapes coincide, the function takes a low value. When the function converges

under a threshold, we decide two shapes are similar.

There are many variations of ICP algorithms [RL01]. For example, while we

estimate the cost function as the total distances of point-to-point pairwise [BM92]

[Zha94], some methods adopt the distance between a point and its mate’s tangent

plane [CM92] [Neu97].

For corresponding points, there are several methods to determine them. Some

methods search the corresponding point along the ray [BL95]. In this thesis,

we adopt the nearest neighbor points as the corresponding points. We speed up

searches for the nearest neighbor point by using KD-tree [FBF77] [Whe96] [Nis01]

[Mas03].

We use quaternion to minimize the objective functionf . By substituting quater-

nionq to rotate matrixR, motion vector~T can be found as follows.

{q, ~T, } = arg min
q,~T

f
(
q, ~T

)
=

∑

i

‖ R(q)~xi + ~T − ~yi ‖2 (6.2)

In the conventional ICP algorithm mentioned above, it is assumed that both

shapes are obtained by fixed range sensors. On the other hand, in our situation, the

model shape is obtained by a fixed range sensor while the data shape is measured

by a moving sensor. Therefore we have to take account into the motion of the range

sensor.
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The motion of the sensor is expected to be smooth, as mentioned in the previous

chapter. It is, therefore, proper that the traces of the motion parameters are approx-

imated by some polynomials with respect to time. Consequently, we approximate

six parameter, three translational elements and three elements of the quaternion, by

following polynomials.

~T(t) = ~T0 + t ~T1 + t2 ~T2 + · · · =
∑

n=0

tn ~Tn (6.3)

q(t) = q0 + tq1 + t2q2 + · · · =
∑

n=0

tnqn (6.4)

where{ ~T0, ~T1, · · · , ~TN,q0,q1, · · · , qN} are the parameters that describe the sensor

motion. Then we formulate a new cost function including the above forms.

6.2 Extended ICP Algorithm

Instead of Eq.6.1, we have to set up a new cost function.

First, we will change the index of points of data shape,~xi . Our sensor measure

the distance to a point in the raster scan order. Therefore, all points on the data

shape, which are measured by the moving sensor, are distinguishable by timet.

According to the time factor, the corresponding points on the model shape~yi , which

are obtained by a fixed sensor, are described as functions~y
(
~x(t)

)
.

Then, the cost function for the extended ICP algorithm is described as follows:

f
(
~T0, ~T1, · · · , ~TN,q0,q1, · · · , qN

)
=

∑

t

‖ R(q(t)) ~x(t) + ~T(t) − ~y(~x(t)) ‖2 (6.5)

We take a summation form with respect to timet in spite of the continuity of

time. Since it is only necessary to pick up the moments when the point on the data

shape is actually scanned.

To minimize the above function, the parameters of the sensor motions are esti-

mated.

{ ~T0, ~T1, · · · , ~TN, q0, q1, · · · ,qN} =

arg min
~T0, ~T1,···, ~TN,q0,q1,···,qN

f
(
~T0, ~T1, · · · , ~TN,q0, q1, · · · , qN

)
(6.6)
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If we assumeN-order polynomials, the number of unknown valuables is 6(N +

1).

We minimize the cost function through the steepest descent method and Golden

section search. The reason why we adopt them is that the many corresponding

pairs change at every iteration and the contours in Fig.4.3 change on each iteration.

There is no advantage to applying Levenberg-Marquardt nor the conjugate gradient

method, which can search the next approximate solution effectively in the fixed

contours.

Furthermore we adopt a robust estimation to reject outliers in the minimization.

6.2.1 M-Estimator

In the original ICP algorithm, the rigid transformation parametersRand~T are esti-

mated by minimizing the cost function. In fact, however, there are many situations

in which the solutions do not result in conformation of the data shape to the model

data because both data sets are contaminated by noise. Moreover, since two data

sets are measured from different viewpoints, some parts of the data shape have no

corresponding points on the model shape. In the above method, the nearest neigh-

bor points are use as the corresponding points. There are, therefore, many wrong

pairs in the correspondences of~x⇔ ~y(~x).

Figure 6.1: Alignment of two shapes with an outlier. left: least-square method.

right: an expected fitting with outliers

Because of the above reasons, there are many disadvantages to minimize Eq.6.5

of a simple least-square form. For example, suppose two models on the right side

of Fig.6.1, which contains outliers in the data shape. The minimization of a simple

least-square leads to the solution on the left side of Fig.6.1.
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At the next step, we have to reject outliers robustly and estimate valid parame-

ters. Following are several types of methods that estimate the solution in the case

of noisy data sets. Among them, we adopt a technique of M-estimator [PFTV88]

[GMW81] [WP97]. In M-estimation, the cost function has the general form as

follows:

E(z) =
∑

i

ρ(z) (6.7)

whereρ(z) is an arbitrary function of the errorszi in the data set. When we adopt

the ρ(z) asρ(z) = z2, it is a simple least-square method. That is, a least-square

method is one of the branches in M-estimations. In our implementation, we adopt

Lorentzian function as the M-estimator.

ρ(z) = log

(
1 +

1
2σ2

z2
)

(6.8)

This function is introduced as follows: Suppose that the probability distribution

of outliers is in this form;

P =
∏

i

exp
[−ρ(zi)

]
(6.9)

For example, when the probability distribution has a Gaussian form,ρ(z) =
1
2

z2,

we define the deviation ofρ(z) asψ(z).

ψ(z) ≡ ∂ρ(z)
∂z

(6.10)

Here, we want to minimize the probability P of Eq.6.9. The errors means the

differences between the observed values and the theoretical figures with parameter

a. Minimizing P equals minimizing logP. Therefore by taking the deviation of

logP with respect toa as 0,

∂ logP
∂a

= −
∑

i

∂ρ

∂zi

∂zi

∂a
= −

∑

i

ψ(zi)
∂zi

∂a
= 0 (6.11)

As can be seen in Eq.6.11, a functionψ(z) can serve as a weight for each data

setszi , and M-estimator can be interpreted as a weighted-least-square method.

In the conventional least-square method,ψ(z) = z is applied, in which the

greater errorsz, the greater value takesψ(z).

ψ(z) =
∂ρ(z)
∂z

= z

. . . ρ(z) =
1
2

z2
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Figure 6.2: Several types ofψ(z). σ = 1.0 in the Lorentzian function and the

threshold is set at 1.5

Consequently some data sets with huge errors prevent the proper estimation of

parameters.

In this thesis, we adopt Lorentzian function as M-estimator as follows;

ψ(z) =
z

1 +
1

2σ2
z2

(6.12)

In Lorentzian function, the weightψ(z) is increasing as the errorz increases within a

certain range. As the error increases more than it, the weight is decreased (Fig.6.2).

Consequently perfect outliers have less influence on the estimation of the parame-

ters. Integrating Eq.6.12 with respect toz leads to Eq.6.8. Andσ is interpreted as a

parameter that determines the weight for the outliers. The largerσ, the heavier the

weight for the outliers. As seen as Eq.6.12, in the case ofσ → ∞, M-estimation

corresponds to the least-square method.

6.2.2 Minimization with M-Estimator

Based on the above considerations, the cost function Eq.6.5 is rewritten as follows:

arg min
~T0, ~T1,···, ~TN,q0,q1,···,qN

∑

t

log

(
1 +

1
2σ2

zt
2
)

(6.13)
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where zt = R(q(t))~x(t) + ~T(t) − ~y(~x(t))

~T(t) = ~T0 + t ~T1 + t2 ~T2 + · · · =
∑

n=0

tn ~Tn

q(t) = q0 + tq1 + t2q2 + · · · =
∑

n=0

tnqn

Replacing Eq.6.13 asF, a derivative with respect to~Ti is

∂F

∂~Ti

=
∑

t

2zt

2σ2 + z2

∂zi

∂~Ti

=
∑

t

2zt

2σ2 + z2
ti (6.14)

Similarly, a derivative with respect toqi is

∂F
∂qi

=
∑

t

2zt

2σ2 + z2

∂zi

∂qi

=
∑

t

2zt

2σ2 + z2

∂R
∂qi

~x(t)

=
∑

t

2zt

2σ2 + z2

∂R
∂q

ti ~x(t) (6.15)

We can easily build a graphic user interface (GUI) onto this method and a

practical software (Fig. 6.3).
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Figure 6.3: The GUI of the extended ICP algorithm



Chapter 7

Evaluation

In this Chapter, we evaluate our algorithms by using known CAD models. Con-

structing a virtual FLRS using a PC, we estimate the accuracy and the limitation of

our methods objectively.

7.1 Benchmark Shapes

To evaluate our rectification algorithms quantitatively, the most efficient method is

to check them for given models in advance.

In order to do that, we construct a virtual FLRS system on a PC and obtain the

distorted range data and the image sequences for known model. Motion parameters

are know completely. Also, we rectify the distorted range data through our two

proposed methods.

The rectified shape data are, eventually, compared with the correct shape data,

and the results are evaluated numerically.

We use the following CAD models as a benchmark for the evaluation (Fig.7.1).

The benchmark has a large depth, which has a strong perspective effect. For refer-

ence, the height of the pyramid is 0.6, that of the side wall is 0.78 and the thickness

of the side wall is 0.2. The equation of the back plane isz = 0 and that of the floor

is y = 0.

Then, we map textured pictures onto the surfaces of the benchmark shapes

to detect many interest points for tracking. In this chapter, we do not intend to

evaluate the performance of the interest point detectors. All we are interested in is

to evaluate the performance of rectification and the accuracy of the rectified shapes.

After that, we provide three sensor motions for virtual measurements (Fig.7.2).
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Figure 7.1: The benchmark shape for the evaluation.

1. Pure translation along thex direction (parallel to the image plane).

2. Pure translation along the−zdirection (perpendicular to the image plane).

3. Translation and rotation around they axis.

7.2 Evaluation of Our Algorithm with Images

First, let us evaluate the method mentioned in Chapters 3 and 4, which uses image

sequences for initial estimation of the shape and motion parameters. This method
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Figure 7.2: The sensor path for the evaluation.

is based on ”Structure from Motion” techniques. In the nature of things, we pre-

suppose that the motion of the sensor has translational components. If the motion

has only rotational components and does not have any translational ones, it is im-

possible to reconstruct 3D shapes or motions by using image sequences only. In

this section, it is also assumed that the virtual FLRS use a calibrated camera for the

sensor-oriented coordinate system because we are not interested in the accuracy of

calibration in this step.

Coefficients(w1,w2,w3) in the Cost Function

In this thesis, we determine the coefficientsw1, w2, andw3 in Eq.4.14 as follows:

First, let us approximate the values ofF′A, F′B andF′C, respectively.

The function value ofFA in Eq.4.1 originally means the total distances between

the interest points and the re-projected points through the whole sequence. We can

expect the distance of each pair in a frame as 10−1 pixel order,O(10−1). Then the

number of the interest points is at mostO(102) and that of the frames is almost

O(102). The order of~Sp − ~T f is considered asO(101) since the size of the target

for the real FLRS isO(101) [m]. Therefore, the value ofF′A is expected asO(104).

The function value ofF′B is the squared summation of total velocity and quater-

nion accelerations. While it depends upon the case, it is expected to be of a small

order. We approximate the order ofF′B asO(10−3) based on several measurements
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by the real FLRS.

The value of the third constraintF′C means the total errors with respect to 3D

positions of the interest points. They depend on the accuracy of the range sensor.

For our FLRS, it is expected asO(10−2) [m]. Therefore, we approximate the value

of F′C asO(10−2).

Based on the above considerations, the values of the three functions are consid-

ered asO(104), O(10−3) andO(10−2) respectively. Then we set three coefficients

asw1 : w2 : w3 = 1 : 107 : 106 so that all constraints have the same weight, which

is fixed in all cases.

Case 1:

In this case, the FLRS simply moves during the measurement process toward the

horizontal direction with respect to the camera-oriented coordinate system. The

motion path is parallel to the image plane and the back plane of the benchmark

model.

Some example images of the sequence are shown in Fig.7.3. These images

look like pictures obtained by simple parallel stereo vision since there are not any

rotational elements in Case 1.

Figure 7.3: Some sample images of the sequence Case 1. (top left→ top right→
bottom left→ bottom right)

The distorted shape which is obtained by the virtual FLRS is shown in the left
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of Fig.7.4. Especially, it is found that the top region of the side wall is skewed to

the right side. On the other hand, in the right shape, which is the rectified shape by

our algorithm, the side wall stands perpendicular to the ground. For the time being,

the shape seems to be rectified properly by our method. The numerical evaluation

for the rectified shape is show at the end of this section.

Figure 7.4: The original and rectified model of Case 1.

Figure 7.5 indicates the estimatedx position and the ground truth. In Case

1, we set a uniform straightly-line motion and the result shows it. The difference

between the estimated velocity and the ground truth is only 6.4%.

Figure 7.5: The camera path and the ground truth in Case 1.

All parameters, three components of translation and three components of cam-

era pose, through the scanning period are shown in Fig.7.6. As the translational

components, the position atf = 0 is set as the origin. The left figure shows that the

FLRS moved only along thex direction, which corresponds to the ground truth. In

addition, the right figure shows that the motion did not have any rotational compo-

nent, which also corresponds to the ground truth.
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Figure 7.6: The all camera parameters in Case 1.

Case 2:

In this case, the FLRS moves along the optical axis, which is perpendicular to

the image plane. Figure 7.7 shows several images of the sequence. Compared to

Case 1 we set a larger moving distance in this case. It is found that the scene is

dynamically closing.

Figure 7.7: Some sample images of the sequence Case 2.

The distorted shape which is obtained by the virtual FLRS is shown in the left

of Fig.7.8. When the virtual FLRS scans the top region of the scene it is located

far from the scene. Then the closer the FLRS moves, the lower region it scans.
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Therefore, the obtained shape seems as though it is skewed backward. As with

Case 1, the right side of the figure shows the rectified shape, which looks like the

proper shape.

Figure 7.8: The original and rectified model of Case 2.

Figure 7.9 indicates the estimatedz position and the ground truth. The differ-

ence between the estimated velocity and the ground truth is 13.4 %. While the

estimated error is larger than that of Case 1, the motion of Case 2 is wider than that

of Case 1. The virtual FLRS’s speed in Case 2 corresponds to about 3.0m/s in

terms of the real FLRS scale. It is thought that the our algorithm can rectified the

distorted shape in spite of the wide motion.

Figure 7.9: The camera path and the ground truth in Case 2.

All motion parameters are shown in Fig.7.10. The left figure which shows the

translational components shows that the FLRS moved only along thez direction.

And the right figure shows that the FLRS was keeping the same pose during the

scanning process. These figures indicate that the parameters are estimated properly.
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Figure 7.10: The all camera parameters in Case 2.

Case 3:

In this case, the virtual FLRS motion has two translational components,x andz. In

addition, the FLRS rotates 3◦ around they axis during the scanning process. Figure

7.21 shows several images of the sequence.

Figure 7.11: Some sample images of the sequence Case 3.

The distorted shape obtained by the virtual FLRS is shown in the left side of

Fig.7.12. As in Case 1, it is found that the top region of the side wall is skewed to

the right side. The right side of the figure shows the rectified shape, which looks

like proper shape.
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Figure 7.12: The original and rectified model of Case 3.

Figure 7.13 indicates the estimated parameters and the ground truths. In Fig.7.13,

three parameters,x position (a),z position (b) and rotational component aroundy

axis are shown. The difference between the estimated velocity and the ground truth

is 13.8 % with respect tox and 15.0 % with respect toz. But the difference with

respect to the rotational angle is within 5.6 %.

Figure 7.13: The camera path and the ground truth in Case 3. (a)x position (b)z

position (c) Rotational component aroundy axis
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All motion parameters are shown in Fig.7.14. These figures show that our

algorithm works well on a case with several motion components.

Figure 7.14: The all camera parameters in Case 3.

Finally, Table 7.1 shows the errors in all cases. These values are mean errors

by point-to-patch distance. The errors in ”Before Rectification” row are the mean

errors between the distorted shapes and the ground truth, which are aligned by ICP

algorithm [BM92] [CM92]. On the other hand, the values in ”After Rectification”

row are the mean errors between the rectified shapes and the ground truth. It is

found that our method could decrease the errors in all cases. In the case of the real

25m FLRS, the maximum distance for scan is at most 25 meters while the distance

to the backplane in the benchmark shapes is about 3.5 in the CAD model. There-

fore, multiplying the values of Table 7.1 by at most 7 gives the estimated errors

in practical measurement. In almost data sets in the Bayon Temple, we measure

objects at a distance of 15∼ 18 meters. For example, the estimated accuracy in

Case 2 will be about 3 cm in practice.

Table 7.1: The mean errors of the method with images.
case1 case2 case3

Before Rectification 0.0134202 0.066315 0.0310331

After Rectification 0.00499022 0.00637914 0.00426805
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7.3 Evaluation of Our Algorithm without Images

Next, we evaluate the method mentioned in Chapter 6, which uses correct shapes

obtained by other fixed laser sensors without any image sequences. In this section,

the data sets are the same as in the previous section. Besides these, Case 4 is added,

in which the motion of the sensor contains only rotation without any translational

components. In fact, the method with images failed in Case 4 since any disparities

could not be detected in images.

Case 1:

In Case1, the sensor simply moves toward the horizontal direction.

Figure 7.15 shows the rectified model and the ground truth (the original dis-

torted model is shown in Fig.7.11). At a glance, we see that the method could

rectified the distorted model properly.

Figure 7.15: The ground truth and rectified model of Case 1.

The following figures show all motion parameters. All translational parameters

change in time although the ground truth setting moves the sensor only along the

x axis. In addition, the estimated velocity is not constant. Comparing it to Fig.7.6,

it is found that the graphs, especially in the left figure, differ from those using the

method with images.

In spite of these graphs, we can safely state that our method is effective. This

method places more emphasis on the minimization of the geometrical error and

less on the proper estimation of sensor motion. For example, when the FLRS scans

a simple plane, many patterns of motion can be right. Therefore, we consider that



98 CHAPTER 7. EVALUATION

our method could rectify the deformed shape properly.

The table of errors in all cases is shown at the end of this section.

Figure 7.16: The all camera parameters in Case 1.

Case 2:

In this case, the sensor moves along the optical axis at a fast speed. Figure 7.17

shows the rectified model in Case 2. There are some mismatched parts, especially

at the top of the side wall. We consider the high speed motion would cause the

mismatches.

Figure 7.17: The ground truth and rectified model of Case 2.

Figure 7.18 shows the all motion parameters. Under the ground truth configu-

ration, only thex translational parameter is supposed to change. In Fig.7.18, it is

easily found that almost all parameters fluctuate.
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Figure 7.18: The all camera parameters in Case 2.

Case 3:

In this case, the sensor motion moves within a plane parallel toy = 0 and rotates

3◦ around they axis. Figure 7.19 shows the rectified model in Case 3. The rectified

model looks like proper because of a relatively moderate sensor motion.

Figure 7.19: The ground truth and rectified model of Case 3.

Figure 7.20 shows the all motion parameters. Comparing it to Fig.7.14, the

graphs in Fig.7.20 have similar properties. The translational graphs are, however,

curved and they component, which is supposed to be fixed, is moving.
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Figure 7.20: The all camera parameters in Case 3.

Additional Case (Case 4):

In this case, while the position of the sensor does not change, it rotates 3◦ around

they axis. As mentioned in the previous section, the method with images can not

rectify the distorted model because it is impossible to reconstruct the 3D model

from images without disparity (Fig.7.21).

Figure 7.21: Some sample images of the sequence Case 4.

The left side of the figure in Fig.7.22 is a comparison between the ground truth

and the original distorted model while the right side of the figure is a comparison

between the ground truth and the rectified model. It is found that the method with-
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out images can properly rectify distorted models that are obtained from a sensor

only with rotation. Thus, this is the strong advantage for this method.

Figure 7.22: The ground truth and rectified model of Case 4.

Figure 7.23 indicates the estimated rotational angle and the ground truth. The

difference between the estimated angular speed and the ground truth is 15.4 %.

Figure 7.23: The camera path and the ground truth in Case 4.

Figure 7.24 shows the all motion parameters. It is found that the estimated posi-

tion is moving, especially with respect to thex component, although all parameters

are supposed not to change.

Table 7.1 shows the errors by the method without images in all cases. These

values are also mean errors by point-to-patch distance. Overall, the method with

images is superior to the method without images in accuracy. This table shows

the worst result is obtained in Case 2, which has a rapid sensor motion, and the

accuracy in the practical case is about 10 cm. On the other hand, the accuracy of

other test case results, especially in Case 1 and 4, are the same level as those by the



102 CHAPTER 7. EVALUATION

Figure 7.24: The all camera parameters in Case 4.

method with images. This means that the method without images is effective in the

case of the sensor motion only with rotation.

Table 7.2: The mean errors of the method without images.
case1 case2 case3 case4

Before Rectification 0.0134202 0.066315 0.0310331 0.0458285

After Rectification 0.00556148 0.014278 0.00889398 0.00508361

Finally, we have used the complete model as the ground truth in this section.

In practical cases, it is expected that a correct shape will have many missing parts

and that we have to rectify the distorted shape based on an incomplete reference.

We are going to demonstrate such cases in the following chapter.



Chapter 8

Experiments

We have been conducting the ”Digital Bayon Project”, in which the geometric and

photometric information on the Bayon Temple is preserved in digital form. With

respect to the acquisition of the geometric data, large parts of the temple visible

from the ground are scanned by range sensors placed on the ground. On the other

hand, some parts invisible from the ground, for example, roofs and tops of towers,

are scanned by our FLRS system.

8.1 Shape Rectification with Images

Case1:

Figure 8.1 shows a sample image of the sequence of Case1.

Figure 8.1: A sample shot of the image sequence
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Figure 8.2: The original distorted shape (left) and the rectified shape (right).

Figure 8.3: Range data before and after the rectification process: the upper figure

shows the original distorted shape by the FLRS (white) and the correct shape ob-

tained by the Cyrax-2500 fixed on the ground (blue). The lower figure shows the

rectified shape (pink) fitted onto the correct one.

In Fig.8.2, the left figure shows the original shape obtained by the FLRS while

the right figure shows the rectified shape by our method.
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To evaluate the accuracy of our shape rectification algorithm, we compare the

rectified shape with other data, which are obtained by a range finder, the Cyrax-

2500 [Lei] 1, positioned on the ground. Aligning two data sets by using the con-

ventional ICP algorithm [BM92] [CM92], we analyze the overlapping area.

The result is shown in Figure 8.3. The fine blue shape in both images is a

non-distorted data (the correct data) obtained by the Cyrax-2500. The coarse white

shape in the upper figure indicates the original distorted shape obtained by the

FLRS, while the pink shape in the lower figure indicates the one rectified by our

method. One can easily find that the rectified 3D shape is well-fitted onto the

correct shape. In particular, taking notice of the area of ellipses in the upper figure,

makes it obvious that our algorithm is effective.

The cross-section, cut off at the forehead of the statue, also shows the effective-

ness (8.4).

Figure 8.4: The figure shows the cross section at the forehead of the statue.

Figure 8.5 also shows the effectiveness of the method. The figures indicate the

point-to-point distances between the correct data and the rectified data. The left

image shows a comparison between the correct and the original distorted shapes,

while the right shows a comparison between the correct and the rectified shape.

The region where the distances between them are less than 6.0 cm is colored green
2. The area where the distances are further than 6.0 cm is displayed in blue. At a

glance, the green region is clearly expanded by the rectification algorithm. Some

parts of the rectified shape are colored blue because of the lack of corresponding

1Now, Cyrax-2500 scanner is re-labeled as HDS2500 in Leica Geosystems
2In the previous chapter, we have approximated the accuracy in the practical case as 3.0cm.

Therefore, we set the threshold as 6.0cm, twice of the estimated error.
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points. Taking account of the fact the correct shape could not measure the parts

invisible from the ground, the method could rectify the 3D shape correctly.

Figure 8.5: The comparison between the Cyrax-2500’s (the correct data) and the

original distorted data (left), and that between the Cyrax-2500’s and the rectified

data (right): the green region indicates where the distance of two shapes is less than

6.0 cm.

Figure 8.6: The trace of the camera translation: The curves in the upper graph

show the parameters (x, y in the world coordinates) obtained by the perspective

factorization. The lower graph shows the result of the refinement, in which the

camera motion becomes smooth.

Here, to verify the effect of the refinement, we show the trajectory of camera
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motion parameters. The upper graph of Figure 8.6 shows the trace of the camera’s

translation obtained by the perspective factorization, while the lower graph shows

the results after the refinement.

The curves in the upper graph appear to be globally probable for a camera

movement. However, one can see that the they are not smooth locally, and therefore

are unacceptable for the motion of a balloon. On the other hand, the curves in the

lower graph are smooth and acceptable for the balloon motion.

Case2:

Figure 8.7 shows a sample image of the sequence of Case2.

Figure 8.7: A sample shot of the image sequence

Figure 8.8 shows a photo picture of the scanned area. On the right side of

Fig.8.8, the dense fine model is the correct shape obtained by the Cyrax-2500 fixed

on the ground.

The result is shown in Fig.8.9. The upper shape in Fig.8.9 is the original one

obtained from the FLRS. It is found that the shape is widely deformed. In the

middle of Fig.8.9, the rectified shape by full-perspective factorization is shown.

With respect to motion parameters, the ambiguity in scale is removed manually. At

a glance, the factorization seems to rectify the shape properly. In detail, however,

the distortion in S shape is still left. Especially, the shape of the entrance is skewed.

On the other hand, the lower shape is rectified correctly by our method. It is clear

that the distortion in S shape is removed and the shape of the entrance is correctly

recovered into a rectangle.
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Figure 8.8: A scene for Case 2

Figure 8.10 indicates the point-to-point distances in the ICP algorithm, similar

to Case 1. The upper figure shows the comparison between the correct shape and

the original distorted one obtained by the FLRS. The middle one shows the rectified

shape by the full-perspective factorization without ambiguity in scale. The lower

shows the rectified shape by our method. Note that the green region (match region)

is expanded by our method.

The upper graphs of Fig.8.11 shows the trace of camera’s translation obtained

by full-perspective factorization, while the middle one in Fig.8.11(b) shows the re-

sults after the refinement. The convergence in the factorization was not very good,

therefore, the curves in the upper graph of Fig.8.11 have jagged shapes, which are

not acceptable for the balloon’s motion. On the other hand, the curves in the middle

graph are smooth and acceptable. This result shows that our refinement is effec-

tive in lessening the camera motion and leads to the correct motion estimation. The

lower graph of Fig.8.11 shows the estimated path by an accelerometer for reference
3.

Figure 8.12 shows several samples of the method with images.

3The output of the accelerometer does not possess so higher reliability.
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Figure 8.9: The upper figure shows the original distorted shape obtained by the

FLRS. The middle one shows the rectified shape by the full-perspective factor-

ization without ambiguity in scale. The lower shows the rectified shape by our

method.
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Figure 8.10: The upper figure shows the comparison between the correct shape and

the original distorted one obtained by the FLRS. The middle one shows the rectified

shape by the full-perspective factorization without ambiguity in scale. The lower

shows the rectified shape by our method.
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Figure 8.11: The trace of the camera translation: The curves show the parame-

ters(x, y in the world coordinate) estimated by the perspective factorization(a), and

by our proposed method(b). In (b), the camera motion becomes smooth and valid.
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Figure 8.12: The original distorted data sets (left) and the rectified sets (right)
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8.2 Shape Rectification without Images

We also applied the method without images to the real data set. As the reference

shape, we utilize the shape obtained by the Cyrax-2500. There are some blank parts

in the reference shape because there are no data set on the part that is invisible from

the ground.

Figure 8.13: A sample shot in this case.

In Fig. 8.14, the left figure shows the original shape obtained by the FLRS

while the right one shows the rectified shape by our method.

Figure 8.14: The original distorted shape (left) and the rectified shape (right).

Figure 8.15 shows the comparison between the reference shape. The upper

figure shows the original distorted shape by the FLRS (white) and the reference

shape (blue). The lower figure shows the recovered shape in the lower figure (pink)
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and the reference one. It is found that the rectified 3D shape is well-fitted onto the

reference one, particularly the area of ellipses in the upper figure, in spite of the

blanks on the reference shape.

Similarly, we show the trajectory of camera motion parameters. The upper

graph of Figure 8.16 shows the trace of the translation parameters, while the lower

graph shows the trace of three elements (u, v andw) of the quaternion which rep-

resents the camera’s pose.

Finally, Figure 8.17 shows several samples of the method without images.
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Figure 8.15: Range data before and after the rectification method without images:

the upper figure shows the original distorted shape by the FLRS (white) and the

reference shape obtained by the Cyrax-2500 fixed on the ground(blue). The lower

figure shows the recovered shape in the lower figure (pink) fitted onto the correct

one.
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Figure 8.16: The trace of the camera translations and poses: the curves in the

upper graph show the translational parameters(x, y and z in the world coordinate),

those in the lower graph show the 3 components of the quaternion estimated by the

method without images.
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Figure 8.17: The original distorted data sets (left) and the rectified sets (right)





Chapter 9

Conclusions

9.1 Conclusions

In this thesis, we have described FLRS system and two proposed methods to rectify

3D range data obtained by a moving laser range sensor.

We described how an outstanding measurement system FLRS was built to scan

large objects from the air. This system allowed us to measure the large cultural

heritage objects by using a balloon. To rectify the distorted shapes obtained from

the FLRS, we proposed two methods:

• The rectification method based on the ”Structure from Motion” techniques

by using image sequences

• The rectification method based on the extended ICP algorithm by using an-

other data set

In the first case, we described a method based on ”Structure from Motion”.

We utilized distorted range data obtained by a moving range sensor and image se-

quences obtained by a video camera mounted on the FLRS. First, the motion of the

FLRS was estimated through full perspective factorization only by the obtained

image sequences. Then the more refined parameters were estimated based on an

optimization imposing three constraints: the tracking, smoothness and range data

constraints. Finally, refined camera motion parameters rectified the distorted range

data. For this method, while the calibrated range sensor and camera system was

originally assumed, we indicated that the method is also applicable to the uncali-

brated system.
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In the second case, we proposed an extended ICP algorithm without using any

images. Assuming that the motions of the sensor are smooth, we applied them to

polynomials. Then, we rectified the distorted range data based on the correct model

obtained by other sensors fixed on the ground.

Both methods have shown proper performance and practical utilities. The ex-

periments have shown that the distorted shapes can be rectified with the utmost

precision when the images are available. On the other hand, we found that the

second method has properly rectified the dataset of only rotation, which cannot be

rectified by the first method.

These methods can be generally applied to a framework in which a range sensor

moves during the scanning process, and is not limited to our FLRS because we

impose only the smooth movement constraint.

9.2 Future Works

We have mentioned some methods which rectify distorted range data obtained by

a moving range sensor. Originally, we developed these methods in the process of

digital archiving of cultural heritage objects.

We point up some future works based on two aspects: hardware and software.

Hardware

For hardware, there are some improvements we have to make. One of them is

the reduction in size and weight of the system. The current weight of the FLRS is

about 50kgand we need to lighten it. The weight makes the practical measurement

massive. We will attempt to lighten the FLRS so that we can easily scan large

objects. In the future, we would also like to utilize some handy device instead of a

balloon. We aspire to a hand-held measurement system as our ultimate goal.

Software

Also, there are a lot of works to do in the future on the software in our system.

First, we have to improve the accuracy of rectified shapes by our algorithm. The

burning issue is the improvement of the accuracy of the method without images.

We want to boost it to the same level as that of using the method with images.

Besides accuracy, there are a few challenging problems in the rectification al-

gorithm without images. Currently, we use a single distorted shape and a single
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correct shape. As the next step, we are trying to rectify several distorted shapes

at the same time by using a single correct shape. Moreover, we plan to rectify

and register multi-distorted shapes simultaneously without any correct shapes. We

envision a rectification method that utilizes both images and the correct models.

The framework of a moving range sensor during the scanning process is just

beginning to be applied to practical missions. We have several scanning missions

and many problems in practical scenes. However, we fully expect to overcome

these difficulties with ”task-oriented vision”.

Figure 9.1: The Overview of the ”Digital Bayon”.





Appendix A

Solving for the Symmetric Matrix

T in the Factorization

We have introduces the cost function (3.40) to estimate the symmetric matrixT.

G =

F∑

f =1

( ( | ~mf |2 − | ~nf |2 )2
+ w

(
~mf

t · ~nf
)2 )

=

F∑

f =1

( ( ~m′f
t
T ~m′f − ~n′f

t
T ~n′f

)2
+ w

( ~m′f
t
T ~n′f )

2
)

(A.1)

In this section, we show a method for solvingT.

First, all elements ofT are set as follows:

T =



T1 T2 T3

T2 T4 T5

T3 T5 T6


(A.2)

Supposing~m′f = (m′f x,m
′
f y,m

′
f z)

t and ~n′f = (n′f x,n
′
f y, n

′
f z)

t, we obtain

~m′f
t
T ~m′f = (m′f x)

2T1 + 2m′f xm
′
f yT2 + 2m′f xm

′
f zT3

+(m′f y)
2T4 + 2m′f ym

′
f zT5 + (m′f z)

2T6 (A.3)

~n′f
t
T ~n′f = (n′f x)

2T1 + 2n′f xn
′
f yT2 + 2n′f xn

′
f zT3

+(n′f y)
2T4 + 2n′f yn

′
f zT5 + (n′f z)

2T6 (A.4)

~m′f
t
T ~n′f = m′f xn

′
f xT1 + (m′f xn

′
f y + m′f yn

′
f x)T2

+(m′f xn
′
f z + m′f zn

′
f x)T3 + m′f yn

′
f yT4

+(m′f yn
′
f z + m′f zn

′
f y)T5 + m′f zn

′
f zT6 (A.5)
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Then the function (A.1) is rewritten as

G =

F∑

f =1

[{(
(m′f x)

2 − (n′f x)
2
)
T1 + 2

(
m′f xm

′
f y − n′f xn

′
f y

)
T2

+2
(
m′f xm

′
f z− n′f xn

′
f z

)
T3 +

(
(m′f y)

2 − (n′f y)
2
)
T4

+2
(
m′f ym

′
f z− n′f yn

′
f z

)
T5 +

(
(m′f z)

2 − (n′f z)
2
)
T6

}2

+w
{
m′f xn

′
f xT1 + (m′f xn

′
f y + m′f yn

′
f x)T2

+(m′f xn
′
f z + m′f zn

′
f x)T3 + m′f yn

′
f yT4

+(m′f yn
′
f z + m′f zn

′
f y)T5 + m′f zn

′
f zT6

}2]
(A.6)

The above function can be simplified by some replacements.

G =

F∑

f =1

{(
C1 f T1 + C2 f T2 + · · · + C6 f T6

)2

+w
(
D1 f T1 + D2 f T2 + · · · + D6 f T6

)2} (A.7)

To minimize the functionG, we can derive the next 6 constraints.

∂ G
∂ T1

=

F∑

f =1

{
2C1 f

(
C1 f T1 + C2 f T2 + · · · + C6 f T6

)

+2w D1 f
(
D1 f T1 + D2 f T2 + · · · + D6 f T6

)}

= 2
F∑

f =1

{
C1 f

(
Ck fTk

)
+ w D1 f

(
Dk fTk

)}
= 0

∂ G
∂ T2

= 0

...
∂ G
∂ T6

= 0

They are summarized in a matrix form as follows (divided by 2):



F∑

f =1

[Ci f C j f + wDi f D j f ] i j





T1

T2

T3

T4

T5

T6



=



0

0

0

0

0

0



(A.8)
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Therefore, the unknown vector~T = (T1,T2,T3,T4,T5,T6)t is calculated as the

null space of the 6× 6 matrixCD =

( F∑

f =1

[Ci f C j f + wDi f D j f ] i j

)
. ~T corresponds to

the eigenvector with the minimal eigenvalue of the matrix (CD)t(CD).

Referring to the replacements,



C1 f = (m′f x)
2 − (n′f x)

2

C2 f = 2
(
m′f xm

′
f y − n′f xn

′
f y

)

C3 f = 2
(
m′f xm

′
f z− n′f xn

′
f z

)

C4 f = (m′f y)
2 − (n′f y)

2

C5 f = 2
(
m′f ym

′
f z− n′f yn

′
f z

)

C6 f = (m′f z)
2 − (n′f z)

2

D1 f = m′f xn
′
f x

D2 f = m′f xn
′
f y + m′f yn

′
f x

D3 f = m′f xn
′
f z + m′f zn

′
f x

D4 f = m′f yn
′
f y

D5 f = m′f yn
′
f z + m′f zn

′
f y

D6 f = m′f zn
′
f z

(A.9)





Appendix B

Quaternion

In this thesis, we represent a rotational matrix with a unit quaternion and we have

to calculate the derivative with respect to its parameters. We explain quaternion

in this section, which can describe rotation and its derivative with respect to the

quaternion parameters.

Quaternion has the following parameters:

q = (s, u, v,w) (B.1)

Geometrically, when an object is rotatedθ around axis~u, these parameters have

the following meaning.

s = cos
θ

2
(B.2)



u

v

w


= sin

θ

2
~u (B.3)

therefore,

s2 + u2 + v2 + w2 = cos2
θ

2
+ sin2 θ

2
‖~u‖2 = cos2

θ

2
+ sin2 θ

2
= 1 (B.4)

Thus, quaternion is interpreted as a combination of a scalar and a 3-dimensional

vector. Here, we explain basis operations of a quaternion. Suppose 2 quaternion as

p = (a, ~ut)t andq = (b, ~vt)t.

Addition (subtraction) of quaternions is defined as

p + q =


a + b

~u + ~v

 (B.5)
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And the product is

pq =


ab− ~ut · ~v

a~v + b~u + ~u × ~v

 (B.6)

In addition, the norm of a quaternion is defined as

|p| =
√

a2 + ~u2 (B.7)

Conjugate and inverse quaternion ofq is defined as follows, respectively

p∗ =


a

−~u

 (B.8)

p−1 =
p∗

|p|2 (B.9)

In the case of the rotation of angleθ around axis~u, the rotated vector of~x is

generally described by using the quaternionp as


0

~x′

 = p


0

~x

 p−1 (B.10)

here,~x′ is the destination vector of~x.

In the case of the same rotation~x′ = R~x, the rotational matrixR is described by

using these parameters as follow.

R =



s2 + u2 − v2 − w2 2(uv+ sw) 2(uw− sv)

2(uv− sw) s2 − u2 + v2 − w2 2(vw+ su)

2(uw+ sv) 2(vw− su) s2 − u2 − v2 + w2


(B.11)

While quaternion has 4 components, it is adequate to consider only 3 compo-

nents since there are 3 independent variables. Based on Eq. B.4, we are to deal

with the parameteru, v and w. The parameters is an induced variable ofu, v

andw, that meanss = s(u, v,w). Then, let us consider the first- and second-order

derivatives ofswith respect to other parameters.

∂s
∂u

=
∂

∂u

(
1− u2 − v2 − v2

) 1
2 =

1
2

(−2u)
(
1− u2 − v2 − v2

)− 1
2

= − u√
1− u2 − v2 − v2

= −u
s

(B.12)

∂s2

∂u
=

∂

∂u

(
1− u2 − v2 − v2

)
= −2u (B.13)
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similarly,

∂s
∂v

= −v
s

(B.14)

∂s2

∂u
= −2v (B.15)

∂s
∂w

= −w
s

(B.16)

∂s2

∂u
= −2w (B.17)

Here, it is found that the derivatives of the rotational matrixR with respect to

u, v andw are written as follows:

∂R
∂u

=



0 2(v− uw
s

) 2(w +
uv
s

)

2(v +
uw
s

) −4u 2(s− u2

s
)

2(w− uv
s

) 2(
u2

s
− s) −4u


(B.18)

∂R
∂v

=



−4v 2(u− vw
s

) 2(
v2

s
− s)

2(u +
vw
s

) 0 2(w− uv
s

)

2(s− v2

s
) 2(w +

uv
s

) −4v


(B.19)

∂R
∂w

=



−4w 2(s− w2

s
) 2(u +

vw
s

)

2(
w2

s
− s) −4w 2(v− uw

s
)

2(u− vw
s

) 2(v +
uw
s

) 0


(B.20)





Appendix C

Removal of Specular with EPI

This appendix describes methods that removes specularities from image sequences

taken by a video camera in a uniform straightly-line motion. Specular components,

especially strong highlights, raise some problems in object recognition. We pro-

pose two methods to remove specular component based on spatio-temporal image

analysis and to reconstruct original texture on the body as diffuse components. In

the first method, analyzing the motion of specular components in EPIs (Epipo-

lar Plane Images), we can distinguish specularities from ordinary texture. In the

second method, by using a segmentation technique with Markov Random Field

(MRF), we remove specular components. Some experiments have been conducted

using our methods, and the results show the effectiveness of the method in remov-

ing specularities from image sequences. Even if the texture on a body is hidden by

strong highlights, these methods recover the original texture.

C.1 EPI (Epipolar Plane Image)

Image sequence is a collection of images taken at certain sampling interval. A box

that consists of these images accumulating in time is a ”spatio-temporal volume”

(Fig.C.1). When the sampling interval is enough dense or when the motion of

the camera or the photogenic objects is slow, the spatio-temporal volume forms

images with strong correlations on the cross-sections. The motion of the camera or

the photogenic objects is detected by analyzing the cross-sections.

In this appendix, we suppose the situation where the camera moves in a uniform

straight line to the direction parallel to the optical axis taking stationary objects

(Fig.C.2).

Let us consider the horizontal cross-sections of a spatio-temporal volume. This
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Figure C.1: The spatio-temporal volume and EPI.

Figure C.2: EPI as temporal stereo vision

type of image is called an EPI (Epipolar Plane Image) [BBM87]. In an EPI, we

can observe an interest point in space as a continuous trajectory. In our situation

a camera in a uniform straightly line motion, the trajectory of a stationary point

in space forms a line. In addition, a moving camera that is interrupted forms a

stereopsis configuration with time difference. Therefore, the following relation

exists between the depth of the 3D point and the slope of the trajectory in EPI:

∆u
∆t

= f
V
Z

(C.1)
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Here, f is the confocal length of the camera,V is the velocity of the camera and

Z is the depth of the interest 3D point. From the above equation, it is easily found

that the further the 3D point, the steeper the slope, and that the nearer the point, the

gentler the slope in the constant velocity.

C.2 Characteristics of specularity

A dichromatic reflection model is generally utilized for the description of an ap-

pearance by our visual perception. In dichromatic reflection, the model consists

of two components: specular and diffuse component. While many reflection mod-

els based on the dichromatic model, such as Phone [Pho75] and Torrance-Sparrow

[TS67] etc., have been proposed, they assume the next two points.

• The strength of the diffuse component is determined only by the incident

angle, the angle between the normal vector of the object surface and the

vector towards the light source (Fig. C.3). That means the strength of the

diffuse component does not depend on the view position.

• The strength of the specular component is greatest when the incident angle

equals the reflection angle. That means the strength of the specular compo-

nent depends on the view position.

Figure C.3: Two reflectance components.

Based on the above considerations, we assume the situation where the objective

scene and the light source remain stationary and the camera (view position) moves.

Watching a certain point on the surface, we find that what changes during obser-

vation is the specular component. Therefore, when the view position is far away
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from the region of mirror reflection and the specular component is negligible, we

observe only diffuse components.

C.3 Removal of specular

C.3.1 Removal by Line Search

In [SI94], they decomposed two components by observing each RGB values of

each on the surface. Based on a similar consideration, in [SKS+02], they proposed

a method to detect and remove strong highlight.

Strong highlight is interpreted as reflection of the light source on the object

surface. Therefore, the observation of the highlight means the observation of the

imaginary light source on the opposite side of the camera (Fig. C.4). That means

the object is near and the imaginary light source is far from the camera. Conse-

quently, an EPI shows that the trajectory of the object is steep and that the trajectory

of the highlight is gentle. Generally, the trajectory of a far object is fragmented by

that of a near object because of occlusions. The trajectory of highlight of a far

object is, however, not fragmented. That is, the object far from the camera is not

occluded by a near object. Thus, the EPI with specularity has inconsistency and

we can determine that the slope without consistency is the trajectory of specularity.

Figure C.4: Observing the specular components means observing the imaginary

light source.

Based on the above considerations, specularity can be removed by the follow-

ing procedure (Fig.C.5).

1. Derive EPIs at all cross sections from the spatio-temporal volume.
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2. Extract the gentlest slope from at each EPI by using Canny operator and

Hough transform. Then an affine transform rectifies the EPI by which the

slop becomes vertical. In the rectified image, a vertical line means the tra-

jectory of a certain point on the object surface.

3. Derive the minimum RGB values along a vertical line. The RGB values on

a vertical point consist of specularity and constant diffuse component. The

specular component is added to by viewpoint change. Therefore, without

specular component, the RGB values equal the diffuse component. Then,

we assume the minimum RGB values as the diffuse component in study.

4. Replace all RGB values along a vertical line with the minimum RGB values

on the line. The inverse affine transformation unkinks the rectified image

into the original shape.

C.3.2 Removal by Image Segmentation

In EPIs, the edges of specularity regions are blurred and it is difficult to segment

the specular regions by a region grow method. This means that a specular region

is taken a part in the diffusion region. Then representing the minimum GRB in

each segment leads to the specularity removal. Taking account of this property, we

propose the next procedure.

1. Noise removal by using anisotropic diffusion.

2. Segmentation of color region by a region growing method.

3. Complement by using Markov Random Field (MRF).

First, the input EPIs are smoothened by an anisotropic diffusion over the color

images [PM90] which preserves edges. Then the region growing method maps all

pixels into the color space proposed in [OKS80].



I1 =
R+ G + B

3

I2 =
R− B

2

I3 =
2G − R− B

4

(C.2)
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Figure C.5: Flowchart of the removal by EPI.

If the Euclidean distance in the color space between the adjacent pixels is less

than a threshold, these two pixels are classified into the same label.

The minimum RGB values of each segment are representative of the labeled

region. If the area of a segment is less than a threshold, the label is stripped because

it might be noise. Large parts of pixels of EPIs are labeled and large parts of

specularity are removed at this step. For the unlabeled regions, we complement

them to label by using Markov Random Field [GG84] [Muk02].

Markov Random Field gives unlabeled pixels labels at random in order to min-

imize a local energy taking account into the adjacent pixels. Supposing there is an

unlabeled pixel ”p” and the MRF gives it label ”1”, the local energy around the
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pixel is defined as follows based on the adjacent pixels ”q”.

U l
p = α

∑

q

ρ(µl , µΘ(q)) + β ρ(µl , I (p)) (C.3)

Here,µl represents the point of label ”l” at the color space andρ(µl , µk) is the

Euclidean distance between label ”l” and label ”k” in the color space.Θ(q) means

the label of the adjacent pixel q andI (p) equals the original color of p.α andβ are

parameters.

The Gibbs distribution of whole labeling configurationω with temperature T

is defined as follows:

π(ω) =
1
Z

exp

(
−U(ω)

T

)
(C.4)

When the local energy of each unlabeled pixel is decreased, the property of

the whole configuration of labels is increase. In our algorithm, we use a simulated

annealing technique to decrease the temperature T avoiding local minimums.

The entire algorithm of the complement by using MRF is as follows:

1. Given a high temperatureT.

2. Select an unlabeled pixel p at random and assume label ”l”. (l ∈ Θ(q) : ”l”

is the label of a adjacent pixel q)

3. Calculate the local energyU l
p around the pixel p.

4. If U l
p decreases, the pixel p is given label ”l”. On the other hand, ifU p

l

increases, the pixel p is given label ”l” with a probability of exp


−∆U l

p

T

.

5. Repeat step 2∼ 4 with a certain number iteration.

6. Decrease the temperatureT and repeat the above procedure untilT < Tsmall.

There would be some unlabeled pixels in spite of the complement by using

Markov Random Field. The original RGB values are given to these unlabeled

pixels.

C.4 Experiments

First, we show a result of a CG image(Fig.C.6). In the original image (the upper

of Fig.C.6), we can find the reflection of the circular cylinder in the picture. By
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observing EPIs, the specular components are easily detected (the middle image)

since the slope of the specular component differs from that of the diffuse compo-

nents. Then, the specular-free image is obtained by line search for the minimum

RGB (the lower).

Figure C.6: Reults of a CG images by EPI.

We apply the line search method to real images. The left side images of Fig.C.7

are taken from a video camera on a moving car. There are some strong highlights

on the surfaces of parked cars. We assume that the strong highlight exists on the

nearest surface in pictures. The results are shown on the right side of Fig.C.7. As

in the CG images, it is found that the specular components are removed in the case

of real images. The textured surface which is occluded by the strong highlight

(especially the letters on the surface of the taxi) is recovered.
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Figure C.7: Reults of real images by EPI.

Finally, we apply the method by image segmentation to CG images. Figure

C.8 shows the results of segmentation at each step. Some specular components

are found in the top left image of an original EPI. The right figure shows the EPI

applied the anisotropic diffusion smoothing and the region growing segmentation.

It is found that almost all specularities are removed, and there are many unlabeled

pixels. The bottom left figure is the EPI after the complement by Markov Random

Field; a great number of unlabeled pixels are given labels.

The results of specular removal are shown in Fig.C.9. The highlights on the

pyramid and on the map are removed while some edges are blurred. It is confirmed

that the recovered color of the pyramid corresponds to the ground truth.
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Figure C.8: Specular removal in EPI by segmentation.

Figure C.9: Results of a CG image by Markov Random Field.

C.5 Conclusions

We describe two methods which remove the specular component from image se-

quences taken by a video camera in uniform straightly-line motion. Both methods

utilize EPIs to detect the diffuse components. In the first method, assuming that

the specular components exist on the nearest surface to the camera, we derive the

diffuse components along the gentlest slope in the EPIs. The results shows that

our method has removed the specular components. Moreover it has recovered the

original texture on the surface, which was occluded by the strong highlights. In

the second method, based on the fact that the edges of the specularities are blurred,
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we remove the specular components by using image segmentation. The greatest

advantage of the second method is that the method does not require the assumption

of a camera in uniform straightly-line motion. We are, therefore, planning to apply

this method to an image sequence taken by a camera in general motion. Moreover

we intend to apply it to more complex scenes in the future.





Appendix D

3D Identification of Fired Bullets

D.1 Introduction

Many striation and impression marks caused by various ordinary tools, such as a

screwdriver, a crowbar and a hummer, are left at crime scenes. These marks are

significant evidences. In particular, striation marks on a fired bullet are important

for identifying the suspicious firearm(Fig.D.1). Forensic scientists identify these

striations mainly by using optical tools such as comparison microscopes, CCD

cameras and photos. The surfaces of striation have three-dimensional roughness

intrinsically. By using optical devices, we compare reflectance images instead of

3D shapes. Appearances of striations through these devices, however, depend on

location of light and viewpoint [Leo97]. In other words, it is possible that the same

striation has will look different under different lighting conditions. Besides these

appearance-based methods [HL03], we are also able to exploit 3D geometric data

of striations. That is model-based methods. The measurement of small elevations

on a striation had been difficult in aspect of hard ware. However many sophisticated

3D measurement devices are developed recently and we can easily obtain fine 3D

maps of striation surfaces. The shape of striation surface is expected to be printed

intrinsic shapes of the tool that caused the striation marks. Moreover, 3D data are

independent of lighting condition.

In addition, there is another difficulty in identifying striations. That is, a perfect

correspondence of two striation patterns is rarely encountered, even if the two are

on non-deformed bullets and have been fired from the same firearm(Fig.D.2). We,

therefore, need an algorithm which is robust with respect to minute changes of

patterns.

Although there are some researches on 3D surfaces of bullets and tool marks
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Figure D.1: A bullet and a striation mark

Figure D.2: An image by a comparison microscope. The correspondence of two

striations is ”pretty” good.

[GZH+01] [KB99], they had not led to shape comparisons by using 3D surface

data directly. In the field of Japanese archaeology, Masuda et al. [MIF+02] have

analyzed shape difference of ancient bronze mirrors with a method of computer

vision. In this study, we apply this method to identification of bullets, especially

landmark impressions. Moreover, by using neural networks, we have developed

a robust identification algorithm [BMI04]. Neural networks [RM86] are modeled

after the structure of the human brain, and the human brain has an advantage over

a computer in terms of pattern recognition [KC92]. In this study, neural networks

have appeared to overcome minute changes of striation patterns.

At first, we acquired 3D data of striations surfaces and compared global 3D

shapes numerically. The distance of two surfaces is calculated for the evaluation

of global shape matching. Then neural networks compare local elevation patterns.

This two-stage method enabled us to construct a robust identification algorithm of

striation patterns.
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D.2 Global shape comparison

D.2.1 Alignment of 3D data

We obtained 3D data of striations surfaces by a confocal microscope. To compare

two shapes, we must move one shape in order to coincide two surfaces better. If the

two striations are derived from the same origin, the shapes will be similar. Further-

more, if we could calculate the distance of the two shapes’ difference, similarity of

two shapes would be estimated according to the distance.

Figure D.3: A real striation mark and it 3-D model.

We adopted the alignment method [NI02], which is a kind of ICP method[BM92]

for shape matching. If two shapes have the same origin, a point on one shape has

the corresponding point on the other shape. The location of the corresponding

point, however, is usually unknown. Then, we resolve this correspondence prob-

lem by iterative method. The objective function, which should be minimized for

the alignment, is defined as:

f
(
R,~t

)
=

∑

i, j

‖ R~xi + ~t − ~yi j ‖2 (D.1)

R is a Rotation matrix,~t is a translation vector,~xi is thei-th point in one data and

~yi j is the correspondingj-th point in the another data for~xi .

This objective function indicates the summation of distances between all pairs

of corresponding points. When the function converges under a threshold, we decide

two shapes are similar [Ban04].

We use quaternion to minimize the objective function. By substituting quater-

nionq to rotate matrixR, motion vectorp can be found as follows.

q = arg min
R, ~t

f
(
R,~t

)
= arg min

q, ~t
f
(
q,~t

)
(D.2)



146 APPENDIX D. 3D IDENTIFICATION OF FIRED BULLETS

Motion vectorp, that isq and~t, is solved by the conjugate gradient method

and line minimization with golden section search. The solutions are the ones that

minimize the objective function Eq.(D.1).

D.2.2 Shape difference

Above alignment determines the relationship of corresponding points. Therefore,

the distance between each pair of corresponding points can be calculated. We

regard these distances between the corresponding points will be a cue of shape

matching. If the distance of a pair is less than a threshold, the correspondence is

regarded as right. Otherwise, the pair does not have correspondence, namely two

shapes do not match at this part.

In terms of shape matching of two surfaces, wide region of non-matching indi-

cates that two shapes are different.

D.3 Local shape comparison

D.3.1 Character extraction

The shape of a striation is usually uniform along the direction of the scratch. To

input into neural networks, elevations on the surface should be converted into a

binary signal. The method of binarization is simple(Fig.D.4); at first, gradients

of all patches are calculated. Then, shapes of striation are converted into binary

images by a threshold for these gradients. Finally, we derive a binary signal from

a binary image by using morphological processings.

Figure D.4: The binarization method, which converts a surface shape into a binary

signal.
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D.3.2 Neural network model

In this study, a multi-layer network that contains three layers is used(Fig.D.5).

There are 96 neurons in the input layer, 15 neurons in the middle layer and only

1 neuron in the output layer. The neurons in the input layer are divided into two

blocks: input blocks A and B. Each input block contains 48 neurons. There are

two patterns to be compared in terms of their similarity. Two patterns are inputted

into the two input blocks A and B separately.

Figure D.5: The structure of the three-layer network model with two input block.

D.3.3 Learning

Two training patterns to be compared are inputted into each block, which contains

48 neurons. The training patterns are binary signals with a 48-bit length. Each

signal consists of only one element with a value of ”1” and forty-seven elements

with a value of ”0”. Namely, in the learning process, only one neuron in each block

has an input value of ”1” (this neuron is referred to as an ”excited neuron”), and

the other 47 neurons in each block have an input value of ”0”. Supposing thei-th

neuron of a block and thej-th neuron of the another block are excited, the teaching

signal is given in the following form.

T(i, j) = exp

(
− (i − j)2

σ 2

)
(D.3)

That is, if two patterns are the same, the output value of this network is ”1”. In

addition, the closer together two positions of the excited neurons are, the closer to

”1” the output value will be. On the other hand, the further apart the two positions

are, the closer to ”0” is the value.
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D.4 Experiments

D.4.1 Shape difference

The shape difference is visualized according to the distances of corresponding

pairs(Fig.D.6). If the distances are within a threshold (in this study, it is 0.015mm),

the area is displayed in pink region. While the distances are further than it, the area

is colored blue. In the left side of Fig.D.6, almost all part of overlapped region is

colored pink. It indicates that the two shapes are matched well because two images

in the left side are results of comparisons that compare two pairs from the same

origins.

On the other hand, a result, which compares two shapes in different origin, is

shown in the right side. Blue region are wider than in the left side. It indicates the

number of corresponding pairs is fewer even in overlapped region. In addition, the

shape of non-coincide region spreads out along the direction of the scratch (a blue

region sandwiched between pink regions). This is an obvious feature when two

shapes have different origins.

Figure D.6: Shape differences of landmark impressions. The left side pairs are

comparisons of impressions by the same landmarks, and the right side pairs are by

different ones.
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D.4.2 Simulation by neural networks

The neural network was used to identify 300 artificial patterns produced at random.

These patterns are stored as a database. Unidentified patterns are slightly deformed

database patterns. The deformed patterns are compared with the database. Accord-

ing to the output score, the Neural Network determines the ranking of all patterns in

the database. A deformed pattern resembles the original. Therefore, if the original

pattern ranks high, this simulation is proved successful.

The deformed patterns are produced on the following 4 systems;

(A) All elements transfer to 3-element.

(B) Elements on a certain part(=20%) disappear.

(C) Elements tend to gather around the center.

(D) Elements transfer on a sine wave.

The results of the simulation are also shown in Fig.D.7. In deformed systems

(A), (C) and (D), over 91% of the original patterns were ranked within the top

5. Over 96% of the patterns were ranked within the top 10. The percentage of

the patterns that failed within the top 20 was only 2%. This indicates that if an

examiner searches at least 20 striations in the 300 database striations, we should

be able to find the answer with a probability of more than 98%. On the other hand,

the accuracy was worse for the deformed system (B) than for the others. Only 85%

of the original patterns were ranked within the top 10 and 7% patterns failed to

be included in the top 20. In many cases, many excited neurons corresponding to

failure patterns are located in the erased part.

Figure D.7: The 4 deformation systems and the result of query simulation with 300

artificial patterns.
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D.4.3 Two-stage evaluation

Finally, we want to calculate a combined evaluation that contains both global and

local shape similarities. We then introduce a combined score. When two data

Z1(database striation shape) andZ2(unidentified striation shape) are given, a score

that presents two striation shapes have the same origin is defined as follow,

S(Z1,Z2) = Slocal(Z1,Z2) · Sglobal(Z1,Z2) (D.4)

The similarity score about global shape matchingSglobal is represented as the

area ratio defined by

Sglobal = α
areao f pinkreagion

overlappedare
(D.5)

Here,α is a coefficient that takes a low value (in this study 0.5) when there are

any non-coincide regions spreading out along the direction of the scratch. Other-

wise, it takes 1.

On the other hand, we regard the local shape similarity scoreSlocal as the score

by the neural networks. The scoreSlocal is the averaged score evaluated in eight

local regions chosen among the whole surface at random.

We have compared 100 pairs of real striations on fired bullets. Figure D.8

shows the results. Ten pairs of them have the same origins and others have different

ones. This 2-stage method shows a good performance, since the result clearly

shows the difference between by the same origins and by different origins. All

pairs of same origins have scores over 0.4, while pairs of different ones have under

0.3. We could consider that a value of a threshold for identification is between 0.3

and 0.4.

Figure D.8: Experimental results
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D.5 Conclusions

In this study, we presented a 2-stage algorithm for a shape comparison of impres-

sions on bullets, by using 3D shape data. Firstly, we measured surface topography

and compared the global shapes of two impressions. Neural networks were used

for similarity evaluation of local elevations.

Our goal is to propose a 3-Dimensional identification method. To extend this

method into rigid bullet identification, we have to compare numerous pairs of bul-

lets to determine the rigid parameters. This is one of the most important future

works about this method. We used striations on fired bullets mainly. It is not to say

that this algorithm can be applied to other tool marks and other shapes.

At present, we compared two shapes by global curvatures and by local small

elevations. Since elevations on striations of bullets are very small, it takes much

time to measure striations. Moreover, it takes huge memory to store many striation

shape data. As the future works, we are going to compress huge 3D data and build

a practical system for tool mark identification.
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