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Abstract

For a large object, scanning from the air is one of the
most efficient methods of obtaining 3D data. But in the case
of large cultural heritage objects, there are some difficulties
in scanning with respect to safety and efficiency. To remedy
these problems, we have been developing a novel 3D mea-
surement system, the Floating Laser Range Sensor (FLRS),
in which a range sensor is suspended beneath a balloon.
The obtained data, however, have some distortion due to
movement during the scanning process. In this paper, we
propose a method to recover 3D range data obtained by a
moving laser range sensor. This method is applicable not
only to our FLRS, but also to a general moving range sen-
sor. Using image sequences from a video camera mounted
on the FLRS enables us to estimate the motion of the FLRS
without any physical sensors such as gyros or GPS. In the
first stage, the initial values of camera motion parameters
are estimated by full-perspective factorization. The next
stage refines camera motion parameters using the relation-
ships between camera images and range data distortion. Fi-
nally, by using the refined parameters, the distorted range
data are recovered. In addition, our method is applicable
with an uncalibrated video camera and range sensor sys-
tem. We applied this method to an actual scanning project,
and the results showed the effectiveness of our method.

1. Introduction

Recently there has been great progress in research on real
object modeling because of the availability of accurate ge-
ometric data from three-dimensional digitizers. The tech-
niques of real object modeling contribute to numerous ap-
plications in areas such as academic investigation, industrial
management, and entertainment.

Among them, one of the most important and compre-
hensive applications is modeling objects of valuable cultural
heritage. Modeling these objects has led to digital archiving
of their shapes and to restoration of the original shapes, even

if the objects have been destroyed due to natural weathering,
fire, disasters, and wars. We can provide images of these
objects through the Internet to people in their homes or in
their offices. Thus, the techniques of real object modeling
are available for many applications.

We have been conducting some projects to model large
cultural heritage objects such as great Buddhas, historical
buildings, and suburban landscapes[13][8]. To scan cultural
objects, a laser range finder is usually positioned on a tripod
placed on a stable location. When the object is very large,
however, some part of the object is not visible from the laser
range finder on the ground. To overcome this difficulty, we
have scanned large objects from scaffolds temporally con-
structed near the object. However, this scaffold method re-
quires costly, tedious construction time. In addition, it may
be impossible to scan some parts of the object due to the
limitation of available space for scaffold-building.

We are now conducting a project to model the Bayon
Temple in Cambodia. This temple is immense, measuring
about100 × 100 square meters. Scanning such a huge ob-
ject from several scaffolds is unrealistic. To overcome this
problem, several methods have been proposed. For exam-
ple, aerial 3D measurements can be obtained by using a
laser range sensor installed on a helicopter platform. High
frequency vibration of the platform, however, can interfere
with the accuracy of the results. And the use of heavy equip-
ment such as a crane should be eschewed when scanning a
cultural heritage object because of potential damage to the
object.

Based upon the above considerations, we proposed a
novel 3D measurement system, a Floating Laser Range Sen-
sor (FLRS)[7]. This system digitizes large objects from the
air while suspended from the underside of a balloon plat-
form (Fig.1). This platform is free from high frequency vi-
bration such as that of a helicopter engine. However, the
obtained range data are distorted because the laser range
sensor itself is moving during the scanning processes.

We could adopt three strategies to solve this problem:

• Window matching-based method[6]



Figure 1. The Floating Laser Range Sensor

• 3D registration-based method[12]

• Structure from motion-based method

In [6], under the assumption that translation of the balloon
is within a plane parallel to the image plane without any
rotation, we recover the correct shape by using a video se-
quence image and a correlation technique. This method is
very fast, but it restricts the balloon to a simple motion. In
[12], we apply an extended ICP algorithm to align the de-
formed model obtained by the FLRS to the correct model
obtained by a range sensor located on the ground. This
method does not require image sequences, but it requires
a wide overlapped region between the two models.

In this paper, we adopt the third strategy among the
methods listed above, and we propose a method to recover
accurate 3D range data obtained by a moving laser range
sensor without any physical sensors such as gyros or GPS.
This method is applicable to general motion and does not
require any other correct data obtained by other range sen-
sors. Moreover, this method is not limited to the case of our
FLRS, but it is also applicable to a general moving range
sensor that has smooth motion. We use distorted range data
obtained by using the range sensor and image sequences
obtained by using a video camera mounted on the FLRS.
Firstly, the motion of the FLRS is estimated by the obtained
images. Then we estimate the refined camera motion pa-
rameters imposing some constraints, which include infor-
mation derived from the distorted range data itself. In order
to solve the non-linear optimization problem, we utilize a
full-perspective factorization method as the initial value to
avoid local minimums. Finally, using the refined camera
motion parameter, the distorted range data are recovered.

This paper organized as follows. In the next section, a
review of related works is presented. In Section 3, we de-
scribe our method to estimate camera motion. At first, we
briefly explain the perspective factorization, which is uti-
lized as the initial value for the camera motion. Then we

describe our proposed algorithm for refinement of the pa-
rameters. In Section 4, we describe how we use this algo-
rithm to model and recover the shape of the Bayon Temple
in Cambodia. To evaluate our method, the recovered shapes
are compared with other data obtained by a range sensor on
the ground. In Section 5, we explain a method in the uncal-
ibrated system, in which the video camera is not calibrated
with the range sensor. Finally, we present our conclusions
and summarize our possible future work.

2. Previous Works

Estimations of the shape of an object or of camera mo-
tion by using images are called ”Shape from Motion” or
”Shape from Structure”, and are main research fields in
computer vision.

The factorization method proposed in [21] is one of
the most effective algorithms for simultaneously recover-
ing the shape of an object and the motion of the camera
from an image sequence. By using singular value decom-
position (SVD), the shape and motion are estimated from
the trajectories of interest points. At first, this method was
limited to the orthographic model. Then the factorization
was extended to several perspective approximations and
applications[2][14][16][4]. Among them, [16] based factor-
ization methods on the weak-perspective (or scaled ortho-
graphic projection) model are proposed, in which the scal-
ing effect of an object is accounted for as it moves toward
and away from the camera. At the same time, it is applied
under the para-perspective projection model, which is a bet-
ter approximation of the perspective model than that of the
weak-perspective model. In the para-perspective model, the
scaling effect as well as the different angles from which an
object is viewed are accounted for as the object moves in
a direction parallel to the image plane. In [16], they also
presented perspective refinement by using the solution un-
der the para-perspective factorization as the initial value. In
[4] a factorization method with a perspective camera model
is proposed. Using the weak-perspective projection model,
they iteratively estimated the shape and the camera mo-
tion under the perspective model. Besides the factoriza-
tions, many SFM algorithms have been developed in the
last decade. In [18], they reconstruct 3D surface from un-
calibrated image sequences.

Stereo vision is one of the most traditional methods for
recovering an object shape by using several images. In
stereo vision, knowledge of the parameters of camera posi-
tions and poses enables recovery of the shape. In [10], [22]
and [24], they estimated the rotation matrix and the transla-
tion vector from the essential matrix E. By using the eight-
point algorithm[5] and the five-point algorithm[15], the fun-
damental matrix F and the essential matrix E are estimated,
respectively, only through images. Ambiguity of scaling,



however, remains in these methods. Recently, many re-
searchers have used some sophisticated physical sensors,
including gyros and GPS, to obtain the absolute scaling.
In particular, when modeling large objects such as build-
ings and scenes, a great deal of research combining these
sensors (sensor fusion) has been undertaken. In [26], they
recovered camera poses and 3D structure of large objects
by image sequences from the air by using motion stereo.
Then the recovered shapes (3D point clouds) are registered
to other correct 3D data, and texture images are mapped
onto the 3D data.

3. Camera Motion Estimation

3.1. Full-Perspective Factorization

Given a sequence of F images, in which we have tracked
P interest points over all frames, each interest point p cor-
responds to a single point~sp on the object. In image coor-
dinates, the trajectories of each interest point are denoted as
{(ufp, vfp)|f = 1, ..., F, p = 1, ..., P 2F ≥ P}.

Each frame f is taken at camera position~tf in the world
coordinates. The camera pose is described by the orthonor-
mal unit vectors~if , ~jf and ~kf . The vectors~if and ~jf corre-
spond to the x and y axes of the camera coordinates, while
the vector~kf corresponds to the z axis along the direction
perpendicular to the image plane (Fig.2).

Figure 2. The Coordinate System: ~tf denotes
the position of the camera at time of frame f.
The camera pose is determined by three unit
basis vectors.

Under the pinhole camera model, the projective equation
between the object point~sp in 3D world and the image co-
ordinate(ufp, vfp) is written as

ufp = f
~if (~sp − ~tf )

~kf (~sp − ~tf )
(1)

vfp = f
~jf (~sp − ~tf )

~kf (~sp − ~tf )
(2)

displacingzf = − ~kf ~tf , we obtain the following equation.

λfpufp =
f

zf

~if (~sp − ~tf ) (3)

λfpvfp =
f

zf

~jf (~sp − ~tf ) (4)

λfp = 1 +
~kf · ~sp

zf
(5)

Note that the right hand sides of eq.(3) and (4) are the
same form under the weak-perspective model. This means,
multiplying a image coordinate(ufp, vfp) by a real num-
ber λfp changes coordinates under the perspective model
into coordinates under the weak-perspective model. Solv-
ing the value ofλfp iteratively, we can obtain motion pa-
rameters and coordinates of interest points under the per-
spective model in the framework of weak-perspective fac-
torization.

The entire algorithm of the perspective factorization is as
follows:

Input: An image sequence of F frames tracking P interest
points.

Output: The positions of P interest points~sp. The camera
position~tf and poses~if , ~jf , ~kf at each frame f.

1. givingλfp = 1

2. supposing the equations (3) and (4), solve~sp, ~tf , ~if ,
~jf , ~kf andzf using the weak perspective factorization.

3. calculateλfp by the equation (5).

4. substitutingλfp into step2; repeat the above procedure
until λfp’s are close to the previous iteration.

3.2. Refinement of Camera Motion

Without noise in the input, the above factorization
method leads to the excellent solution. As a result, the re-
covered 3D shape through the estimated camera parame-
ters is valid. Real images, however, contain a bit of noise.
Therefore, it is not sufficient to recover range data obtained
by the FLRS only through the factorization. For the sake of
a more refined estimation of camera parameters, we impose
three constraints: tracking, movement, and range data. Re-
fined camera motion can be found through the minimization
of a global functional. To minimize the function, the solu-
tion by the perspective factorization is utilized as the initial
value to avoid local minimums.



3.2.1 Tracking Constraint

As the most fundamental constraint, any interest point~sp

must be projected on each image plane at the coordinates
(ufp, vfp). This constraint conducts the following function
(Bundle adjustment):

FA =

F∑
f=1

P∑
p=1

((
ufp − f

~if (~sp − ~tf )

~kf (~sp − ~tf )

)2

+
(
vfp − f

~jf (~sp − ~tf )

~kf (~sp − ~tf )

)2

)
(6)

The minimization ofFA leads to the correct tracking of
fixed interest points by a moving camera. However, we can
see that the presence of parameters we are trying to esti-
mate in the denominator makes this equation a difficult one.
Then, suppose that instead, we consider the following func-
tion:

FA =

F∑
f=1

P∑
p=1

((
~kf (~sp − ~tf )ufp − f ~if (~sp − ~tf )

)2

+
(

~kf (~sp − ~tf )vfp − f ~jf (~sp − ~tf )
)2

)
(7)

3.2.2 Movement Constraint

One of the most significant reasons for adopting a balloon
platform is to be free from the high frequency that occurs
with a helicopter platform. A balloon platform is only un-
der the influence of low frequency: the balloon of our FLRS
is held with some wires swayed only by wind. This means
that the movement of the balloon is expected to be smooth.
Certainly, the movement of the balloon is free from rapid
acceleration, rapid deceleration, or acute course changing.
Taking this fact into account, we consider following func-
tion:

FB =
∫ (

w1

(∂2 ~tf
∂t2

)2

+ w2

(∂2qf

∂t2

)2
)

dt (8)

Here, ~tf denotes the position of the camera;t is time;
w1, w2 are weighted coefficients; andqf is a unit quater-
nion that represents the rotation of the camera pose. The
presentation by quaternion is obtained immediately by~if ,
~jf and ~kf . The first term of the above integrand represents
smoothness with respect to the camera’s translation while
the second represents smoothness with respect to the cam-
era’s rotation. When the motion of the camera is smooth,
the functionFB becomes a small value.

We implement in practice the following discrete form:

FB =
F∑

f=1

(
w1

(∂2 ~tf
∂t2

)2

+ w2

(∂2qf

∂t2

)2
)

(9)

3.2.3 Range Data Constraint

Taking a broad view of range data obtained by the FLRS,
the data are distorted by the swing of the camera. We can
find, however, that these data contain instantaneous precise
information locally; that information is utilized for refine-
ment of the camera motion.

The laser range sensor re-radiates laser beams in raster
scan order. This means that we can instantly obtain the time
when each pixel in the range image is scanned. If the video
camera coincides with the range sensor, we can find the ex-
act frame among the sequence when the pixel is scanned.
With the video camera calibrated with the range sensor, we
can also obtain the image coordinate of each interest point
in the 3D world, with the respect to the instantaneous local
coordinate.

Considering this constraint, we can compensate the cam-
era motion.

Then, we can conduct the third constraint to be mini-
mized as follows:

FC =
P∑

p=1

∥∥ xfp −RT (~sp − ~tfp)
∥∥2

(10)

Here, the indexfp denotes the frame number when the
range sensor scans the interest point p, and the measured
distance by the range sensor at this moment denotesxfp.

As xfp = (xfp, yfp, zfp), the above function can be
rewritten:

FC =

P∑
p=1

((
xfp − ~ifp(~sp − ~tfp)

)2

+
(
yfp − ~jfp(~sp − ~tfp)

)2
+

(
zfp − ~kfp(~sp − ~tfp)

)2
)

(11)

3.2.4 The Global Cost Function

The weighted sum

F = wAFA + wBFB + wCFC (12)

leads to a global function. To minimize this function, we
employ the Fletcher-Reeves method and the Polak-Ribiere
method[17][9][19], which are types of the conjugate gra-
dient method. Then, we use the golden section search to
determine the magnitude of gradient directions. As men-
tioned in the previous sections, we input the solution by the
perspective factorization as the initial value. Minimizing
the function F is basically quite difficult because this func-
tion has many local minimums. By employing the solution
of the factorization as a fairly good approximation, we try
to avoid them.



4. Experiments

We measured the Bayon temple in Cambodia by using
our balloon platform. Large parts of the temple that are vis-
ible from the ground were scanned by range sensors placed
on the ground. Some parts invisible from the ground, for ex-
ample, roofs and tops of towers, were scanned by our FLRS
system.

In our system, we obtain 72 frames at a single scan-
ning process. For interest point tracking, we use the SIFT
key[11], which is robust for scaling, that is, a movement
along the view direction. A simple 128-dimensional match-
ing in SIFT key traced the trajectory of each point through-
out all the frames. After this procedure, we can derive about
one hundred interest points from a sequence of 72 frames.

The result is shown in Fig.3. The model in Fig.3(a) is the
original data obtained from the FLRS. The motion of the
balloon was so wide that the model wass deformed widely.
In Fig.3(b), the recovered model by full-perspective factor-
ization is shown. With respect to motion parameters, the
ambiguity in scale is removed manually in this model. At
a glance, the factorization seems to recover the shape prop-
erly. In detail, however, the distortion in S shape is still left.
Especially, the shape of the entrance is skewed. On the other
hand, Fig.3(c) shows the recovered data by our method. It is
clear that the distortion in S shape is removed and the shape
of the entrance is correctly recovered into a rectangle.

To verify the accuracy of our shape recovery algorithm,
we compared the recovered shape with other data that were
obtained by a range finder, the Cyrax2500, positioned on
the ground. Aligning two data sets by using the ICP
algorithm[1][25], we analyzed the overlapped area. The re-
sult is shown in Fig.4. Fig.4(a) shows a photo picture of
the scanned area. In Fig.4(b), the dense fine data is non-
distorted data(the correct data) obtained by the Cyrax2500.
The coarse data, colored pink, indicates the data recovered
by our method. One can easily see that the recovered 3D
shape fits well onto the Cyrax2500’s data. This aligned
models shows that our algorithm is effective.

Figure 5 also shows the effectiveness of the method. The
figure indicates the point-to-point distances in the ICP algo-
rithm between the Cyrax2500’s data and the recovered data.
Fig.5(a) shows a comparison between the Cyrax2500’s and
the original distorted data, Fig.5(b) shows a comparison
between the Cyrax2500’s and the recovered data by full-
perspective factorization, and Fig.5(c) shows a comparison
between the Cyrax2500’s data and the data recovered by our
method. The region where the distances between them are
less than 6.0 cm is colored green, indicating a correct math-
ematical correspondence. The area where the distances are
farther than 6.0 cm is displayed in blue. One can see that
the green region is clearly expanded by our recovery algo-
rithm, indicating that the method can recover the 3D shape

Figure 4. (a):A photo of the measured area.
(b):The correct range data obtained by the
Cyrax 2500 on the ground and the recovered
FLRS data by our method, which are alligned
by an ICP algorithm.

correctly.
Figure 6(a) shows the trace of camera’s translation

obtained by full-perspective factorization, while Fig.6(b)
shows the results after the refinement. The convergence
in the factorization was not good, therefore, the curves in
Fig.6(a) has jagged shapes, which are not acceptable for the
balloon’s motion. On the other hand, the curves in Fig.6(b)
are smooth and acceptable. This result shows that our re-
finement is effective in lessening the camera motion and
leads to the correct motion estimation.

Figure 6. The trace of the camera transla-
tion: The curves show the parameters(x, y
in the world coordinate) estimated by the
perspective factorization(a), and by our pro-
posed method(b). In (b), the camera motion
becomes smooth and valid.

5. Uncalibrated System

The method described above is based on a calibrated
system, in which the relative positions are known between
the range sensor-oriented coordinate system and the video



Figure 3. (a):The original distorted range data obtained by the FLRS. (b):The recoverd range data
by the full-perspective factorization without ambiguity in scale. (c) The recoverd range data by our
method.

Figure 5. The comparisons between the Cyrax2500’s data(the correct data) and (a) the original dis-
torted data, (b) the initial recoverd data by the factorization and (c) the recoverd data by our proposed
method: Each pair is alligned by an ICP algorithm. The green region indicates where the distance
of corresponding point pair is less than the threshold(in this case 6.0 cm), that is, the match region.
Note that the green region is expanded after the refinement in (c).

camera-oriented one. In this section, we describe how we
applied our method to an uncalibrated system, in which the
configuration between the two systems is unknown. At first,
we reconstructed 3D scene with the ambiguity in scale from
image sequences. Then we reconstructed 3D data deformed
according to the estimated camera motion. The deformed
3D data with scale ambiguity are aligned to the 3D data
obtained by the range sensor. This process removes the am-
biguity, and determines the relationship between two coor-
dinate systems. Finally, we applied the refinement method
mentioned in the previous section and recovered the shape.

5.1 Increment of Track Points

At first, using the points visible from the whole se-
quence, sparse 3D points and camera motion parameters are
estimated by the full-perspective factorization. In the uncal-

ibrated system, we can’t impose theRange Data Constraint
in this stage. The estimated parameters are, therefore, re-
fined only by theTracking Constraintsand theMovement
Constraintwith ambiguity in scale.

The number of estimated 3D points is, unfortunately,
small in the case of wide camera motion. It is difficult to
align this sparse 3D model to the dense model obtained by
a range sensor. To overcome this problem, we increase the
number of tracked points. In the factorization, we utilize the
points that are trackable over a sequence. In this process,
we use other points that are visible over a certain number of
frames. To estimate these re-registered 3D points, we use a
Maximum Likelihood (ML) Estimation method.

~sML = max
~s

p(U |θ,~s) (13)

According to ML-Estimation, observed image pointsU
have the maximum probability under the camera motion pa-



rametersθ and 3D points~s. In our implementation, the
Gaussian function is adopted as the noise model. We uti-
lize these 3D points~sML as the initial value for the next
refinement.

5.2 Refinement

Next, we estimate the configuration between the camera-
oriented coordinate system and the range sensor’s system.
Using the initial values of camera parameters in the previ-
ous subsection, the camera rotation matrixR with respect
to time f is represented as

Rf =
(
~if ~jf

~kf

)
(14)

Here, the configuration between the video camera and
the range sensor is described by a rotation matrixRintra

and a translation vector~tintra. Using scale factors, the
minimization of the next function (in the robust estimation
framework[3]) leads to the estimation of the relation be-
tween two coordinates.

min

P∑
p=1

log
(
1 +

z2
fp

2σ2

)
(15)

zfp =
∥∥ sRf

T (~sp − ~tf )−Rintra~x− ~tintra

∥∥2
(16)

The first term in eq.(16) is the point cloud deformed ac-
cording to the camera motion. The above function assumes
a small value when the shape of a deformed cloud is aligned
to the original range data~x obtained from a moving range
sensor. After the estimation ofs, Rintra and~tintra, we can
utilize theRange Data Constraintin 3.2.3.

5.3 Experiment

Figure 7 shows a sample image from a sequence
(Fig.7(a)) and the original distorted range data with un-
calibrated system. We can easily find that the 3D shape
(Fig.7(b)) is distorted widely. In this case, the movement
of the camera is too radical to track a sufficient number
of points. Only 18 interest points are visible in whole
sequence. The procedure of track point increment, how-
ever, increased the number and re-registered a total of 2431
points. After estimating the relation between the video cam-
era and the range sensor, we estimate the refined motion
parameters by the method mentioned in 3.2.

Figure 8(a) shows the recovered shape by our method.
Some distorted parts are left in detail on this model. The
overall shape, however, is proper compared with Fig.7(b).
The recovered shape is aligned with the correct data ob-
tained by another sensor fixed on the ground. The result is
shown in Fig.8(b). It is found that the recovered shape is
fitted to the correct data. Thus, in an uncalibrated system,
our method can recover the shape.

Figure 7. (a):An example image from a se-
quence. (b):The original distorted range data.
In this case, the camera motion was so wide
that the range data were distorted widely.

Figure 8. (a):The recovered shape. (b):The re-
covered data alligned with Cyrax 2500’s data.

6. Conclusions

We have presented a method for estimating camera mo-
tion in conjunction with our efforts to estimate the shape
of a large object. Correct motion estimation is essential
to recover the object shape since, in our FLRS system, a
range sensor swings during the measurement process. Us-
ing a video sequence on the FLRS and the distorted range
data, we have estimated the camera motion. First, the full-
perspective factorization derived the initial value for the es-
timation. Next, we solved a non-linear optimal problem un-
der three constraints. In this process, we utilized distorted
data which had been formerly sloughed. Finally, by us-
ing estimated camera motion parameters, we recovered the
shapes. This method can be generally applied to a frame-
work in which a range sensor moves during the scanning
process, and is not limited to our FLRS because we impose
only the smooth movement constraint.

Our method is applicable to both calibrated and uncali-
brated systems. Testing the method in an uncalibrated sys-
tem by aligning distorted reconstructed 3D data from an
image sequence with the range data obtained by a mov-



ing range sensor, we determined the relationship between
the camera’s coordinate and the range sensor’s coordinate.
Then we applied our method to a calibrated system.

We achieved a certain level of accuracy for recovering
the distorted range data, and our FLRS is expected to be
effective for measurement of large objects. What remains
to be done is to improve the precision obtained by this al-
gorithm. Then we are going to extend our method to more
general framework and more applications.
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