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Abstract

Color appearance of an object is significantly influ-
enced by the color of the illumination. When the illumi-
nation color changes, the color appearance of the object
will change accordingly, causing its appearance to be in-
consistent. To arrive at color constancy, we have devel-
oped a physics-based method of estimating and removing
the illumination color. In this paper, we focus on the use
of this method to deal with outdoor scenes, since very few
physics-based methods have successfully handled outdoor
color constancy. Our method is principally based on shad-
owed and non-shadowed regions. Previously researchers
have discovered that shadowed regions are illuminated by
sky light, while non-shadowed regions are illuminated by a
combination of sky light and sunlight. Based on this dif-
ference of illumination, we estimate the illumination col-
ors (both the sunlight and the sky light) and then remove
them. To reliably estimate the illumination colors in out-
door scenes, we include the analysis of noise, since the
presence of noise is inevitable in natural images. As a re-
sult, compared to existing methods, the proposed method is
more effective and robust in handling outdoor scenes. In
addition, the proposed method requires only a single input
image, making it useful for many applications of computer
vision.

1. Introduction

Reflected light from an object is the product of surface
spectral reflectance and illumination spectral power distri-
bution. Consequently, illumination color significantly de-
termines the object’s color appearance. When the illumi-
nation color changes, the object color appearance changes
accordingly. This leads to many problems in algorithms of
computer vision. For example, Figure 1 shows that the il-
lumination change in creating a realistic model causes the
color appearance of an object to be inconsistent. Recov-
ering the surface’s actual color requires a method of color
constancy that discounts the inconsistencies caused by vari-
ations in illumination.

Color constancy is one important aspect of the field of
computer vision. Many algorithms in this field, such as
color-based object recognition, image retrieval, reflection
component separation, and real object rendering, require
recovery of the actual color of objects. Many methods
have been proposed for this recovery [3, 9, 18, 5, 7, 11,
15, 16, 10, 12, 17]. Based on their input, we can cate-
gorize these methods into dichromatic-based methods and

diffuse-based methods [17]. Dichromatic-based methods
[5, 7, 11, 15, 16, 10, 17] require the presence of highlight-
ing, while diffuse-based methods [3, 9, 18] require body-
only reflection.

Most diffuse-based methods use a single input image of
objects lit by a uniformly colored surface. Usually these
methods require strong constraints in surface colors do-
main, such as a prior surface color database, and cannot
accurately estimate images with few surface colors [18].
A few researchers alternatively introduce color constancy
methods based on varying or changing illumination color
[4, 8, 2]. They have found that, despite creating the prob-
lem of color constancy, the change of illuminations could
be a crucial constraint to solve the color constancy problem
itself. D’Zmura [4] proposed a method using approximated
linear basis functions to form a closed-form equation. One
drawback of the method is that it fails to provide robust es-
timations for real images. Finlayson et al. [8] introduced
a method that uses a single surface color illuminated by
two different illumination colors. Barnard et al. [2] utilized
the retinex algorithm [14] to automatically obtain a surface
color with different illumination colors, and then applied
the method of Finlayson et al. [8] to estimate varying illu-
mination colors in a scene.

In this paper, our goal is to estimate and to remove the
illumination color of outdoor scenes by using a single im-
age. To accomplish this goal, we utilize shadowed and
non-shadowed regions. Previously researchers (for exam-
ple, [7]) have discovered that shadowed regions are illu-
minated by sky light, while non-shadowed regions are il-
luminated by a combination of sky light and sunlight. Note
that sunlight is due to the direct rays from the sun, and sky
light is due to the scattered light rays from the atmosphere.
Based on this difference of illumination in shadowed and
non-shadowed regions, we have developed a method to es-
timate the illumination colors (both the sunlight and the sky
light) and then remove them. To reliably estimate the illu-
mination colors in outdoor scenes, we include the analysis
of noise, since the presence of noise is inevitable in natural
images, due to the sensors, the medium, or noise inherent in
the objects, such as dust and imperfect painting.

Our basic idea of using shadowed and non-shadowed re-
gions is similar to the idea of using varying illumination
[8, 2], and our method is principally based on a method pro-
posed by Finlayson et al. [8]. However, unlike the method
of Finlayson et al., we take into account the presence of
noise, which is inevitable in real images. Finlayson et al.
did not include noise in their analyses, which makes their
method unreliable for natural images, particularly outdoor
scenes. Moreover, instead of using a discrete illumination
model, we employ a continuous model that is computed



Figure 1. The texture of the Bayon Temple in Angkor, Cambodia. The color of the objects varies due to the use of
textures taken at different times.

from the Planck Formula.
To estimate the actual color of the surface successfully,

we made the following assumptions: (1) The illumina-
tion chromaticity forms a straight line in a two-dimensional
inverse-chromaticity space. (2) The camera sensitivity
function is narrowband and known. (3) The output of cam-
era response is linear to the flux of incoming light intensity.
The last two assumptions are common assumptions used in
many color constancy algorithms.

The rest of the paper is organized as follows: in Section
2, we describe image color formation and the definition of
chromaticity. In Section 3, we discuss constraints used in
our method. In Section 4, we introduce our approach to
make the estimation more robust and accurate. We provide
the implementation of our approach and experimental re-
sults for real images in Section 5. Finally, in Section 6, we
conclude our paper.

2 Reflection Model

Image Formation According to general image forma-
tion, an image of a diffuse object taken by a digital color
camera can be described as:

Ic =
∫

Ω

S(λ)E(λ)qc(λ)dλ (1)

where Ic is the sensor response (RGB pixel values), S(λ) is
the surface spectral reflectance and E(λ) is the illumination
spectral power distribution, qc is the three-element vector of
sensor sensitivity, and index c represents the type of sensors
(r, g and b). Integration is done over the visible spectrum
(Ω). In this model we ignore camera noise and gain. By as-
suming narrowband sensitivity that follows the Dirac delta
function, Equation (1) can be simply written as:

Ic = ScEc (2)

where Sc = S(λc) and Ec = E(λc). If camera sensi-
tivity cannot be approximated by the Dirac delta function
(narrowband sensor), we could apply camera sharpening al-
gorithms proposed by [6, 1].

Chromaticity Following Finlayson et al. [8], in this paper
we define chromaticity (or specifically image chromaticity)
as:

σc =
Ic

Ib
(3)

where index c = {r, g}. Equation (2) still holds in this
chromaticity space:

σc = scec (4)

where sc and ec correspond to the chromaticities of Sc and
Ec, which we call surface and illumination chromaticity,
respectively.

Planck Formula In this paper, as in many existing color
constancy methods, we assume that natural (outdoor) il-
lumination can be approximated by a blackbody radiator,
which is modeled by the Planck formula.

The Planck formula is expressed as:

M(λ) = c1λ
−5[exp(c2/λT ) − 1]−1 (5)

where c1 = 3.7418 × 10−16 Wm2, c2 = 1.4388 × 10−2

mK, λ is wavelength (m), and T is temperature in Kelvin.
By combining with known sensor sensitivity, we can obtain
a camera response of the Planck formula:

Ic =
∫

Ω

M(λ, T )qc(λ)dλ (6)

The last equation is the combination of image formation and
the Planck formula.

3 Estimating Surface Chromaticity

From Equation (4), the problem of color constancy can
be described as the problem of estimating the values of ec
and sc given the value of σc, where index is c = {r, g}.
However, to estimate four unknown values (er , eg, sr, sg)
from two known values (σr, σg) is mathematically ill-
posed. To solve the problem, we should add more con-
straints, which we do in this paper by increasing the number
of the image chromaticities: σ1

c and σ2
c that are taken from

the same surface chromaticity (sc) but different illumination
chromaticities (ec):

σ1
c = sce

1
c (7)

σ2
c = sce

2
c (8)

From the last two equations, we can have four knowns
(σ1

r , σ1
g, σ

2
r , σ

2
g), and six unknowns (sr , sg, e

1
r , e

1
g, e

2
r, e

2
g),

which is mathematically still ill-posed.
Fortunately, from Section 2, we know that natural (out-

door) illumination can be approximately modeled by the



Planck formula, implying that by using the formula we can
have the correlation of ei

r and ei
g , namely, ei

g = f(ei
r) where

f is a function derived from the Planck formula and in-
dex i = {1, 2}. As a result, we can have four unknowns:
(sr, sg , e1

r, e
2
r), and thus the problem has the possibility to

be well-posed. In the subsequent section, we will discuss
the correlation of eg and er , and then explain how we can
automatically have two image chromaticities with the same
surface chromaticity but different illumination chromaticity
(pixels from shadowed and non-shadowed regions).

3.1 Illumination Constraints and Shadows

Illumination Constraints Based on Planck formula
(Equation (5)), Marchant et al. [19] derived the correlation
of eg and er as follows:

er = meA
g (9)

where: A =
(

1
λr

− 1
λb

)
/
(

1
λg

− 1
λb

)
, m = λ5A

g /λ5A
b

λ5
r/λ5

b

and

{er, eg} is the chromaticity of the illumination. A and m
are constant numbers characterizing the camera. λc (where
index c = {r, g, b}) is the center wavelength of the camera
sensitivity. If we plot this correlation into two-dimensional
chromaticity rg-space, we can find that all illumination col-
ors form a curved line, which is usually called a Planckian
locus.

We have mentioned in the beginning of this section
that by knowing the correlation of eg and er , we can
probably have a well-posed color constancy problem from
two different illuminations, since we have four knowns
(σ1

r , σ
1
g , σ2

r , σ
2
g) and four unknowns (sr , sg, e

1
r, e

2
r). Unfor-

tunately, by further derivation from Equation (7), (8) and
(9), we obtain the following equations:

σ1
r =

sr

(sg)A
(σ1

g)
A (10)

σ2
r =

sr

(sg)A
(σ2

g)
A (11)

The last two equations show that we cannot determine the
absolute values of sr and sg , since having the same surface
chromaticity means that (σ1

r/(σ1
g)A = σ2

r/(σ2
g)A). Thus, to

solve the problem, we should add more constraints, which
will be discussed further in Section 3.2.

Two Image Chromaticities with the Same Surface Chro-
maticity While Equation (10) shows that we cannot have
absolute values of sr and sg , the equation is useful to deter-
mine whether two or more image chromaticities (σc) have
the same surface chromaticity (sc) but different illumination
chromaticity (ec). The equation shows that (sr/(sg)A) can
be the same, implying the same sc, for different values of
image chromaticities (σc), implying different ec. Particu-
larly in outdoor scenes, the equation can be used to detect
whether the shadowed and non-shadowed regions are part
of the same surface color [19].

3.2 Straight-Line Constraint

In the previous section we have shown that solely in-
creasing the number of the inputs (σ1 and σ2) and having
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exponential correlation of eg and er described in Equation
(9) are not sufficient to solve the color constancy problem.
Following Finlayson et al. [8], we further assume that in
two-dimensional inverse-chromaticity (1/er, 1/eg) space,
the illumination can be approximated by a straight line:

1
eg

= m
1
er

+ c (12)

where in Finlayson et al.’s method the values of m and c are
constant (not equal to zero), and are computed beforehand.
Figure 2 shows a red line that represents the straight line
approximation. Based on Equation (12), we have that:

σi
r = sre

i
r (13)

σi
g = sg

1
m
ei

r
+ c

(14)

where i = {1, 2}. By deriving the last two equations fur-
ther, we can obtain the following linear correlation:

sg =
(
m

σi
g

σi
r

)
sr + σi

gc (15)

The last equation means that in chromaticity space, the im-
age chromaticity (σc) can form a straight line. This implies
that if we have two image chromaticities with the same sur-
face chromaticity (sc), then their straight lines will intersect
at a certain location that is identical to the value of sc.

Note that the straight line assumption prevails only for
the limited range of e1

c and e2
c . For instance, we cannot use

the assumption when the temperature of e1
c equals 2500K

and the temperature of e2
c equals 8000K, since, instead of

forming a straight line, the illumination chromaticity forms
a curved line as shown in Figure 2.

4 Robust Framework for Outdoor Scenes

4.1 Problems

While Finlayson et al’s method elegantly solves the
problem of color constancy from varying illumination, we
discovered that it has at least two significant drawbacks.
The first drawback is that noise is ignored and the sec-
ond drawback is the assumption that the parameters of the
straight line (m and c in Equation (12)) are constant.



Noise We have investigated the effects of noise to estimate
surface chromaticity in Finlayson et al.’s method quantita-
tively. Assuming that we have image chromaticity σ1

r with
noise ∆σr, where ∆σr/σ1

r � 1, then the estimated surface
chromaticity will deviate from the correct value, described
as sc + ∆sc, with ∆sc representing the error of the estima-
tion. Mathematically, we found that the error ratio of the
estimated surface chromaticity can be expressed as by the
equation (see Appendix A for detailed derivation):

∆sr

sr
≈ ∆σr

σ1
r

1(
1 − e1

r/e1
g

e2
r/e2

g

) (16)

( As can be seen in the last equation, the error ratio of sur-
face chromaticity (∆sr/sr) will be large if the two illumina-
tion colors e1

c and e2
c are similar. The same analysis can also

be done for the green channel. To investigate this further,
we simulated the error ratio described in the last equation,
and we present the results in Figure 3. The y-axis of the fig-
ure represents the error ratio and the x-axis represents the
temperature of the second illumination in Kelvin. The first
simulation is shown in red pointswhen the temperature of
the first illumination is 3000K. As can be observed, when
the second illumination’s temperature near 3000K, the er-
ror becomes large. Other simulations using different tem-
peratures of σ1

c can be observed in the blue and green lines.
In this simulation we set ∆σr/σr = 0.01.

Thus, if we intend to have relatively accurate results by
using Finlayson et al.’s method, the difference between illu-
minations (e1

c and e2
c ) should be relatively large. However,

a large difference would violate the straight line assump-
tion explained in Section 3.2. We therefore conclude that
because of the presence of noise, and because Finlayson et
al.’s method is restricted to certain conditions of illumina-
tion, the method is unreliable in general conditions of out-
door illumination.

Constant Parameters Moreover, since in Finlayson et
al.’s method, m and c in Equation (12) are constants, which
are computed from a discrete illumination model proposed
by Judd et al’s daylight phase and CIE model, this could
lead to a wrong estimation for certain conditions of illu-
mination, for example, when the temperature of the first
illumination is 2500K and the temperature of the second
illumination is 4000K. As shown in Figure 2, the straight
line in Finlayson et al.’s method does not pass the inverse-
chromaticity value of illumination whose temperature is
2500K.

4.2 Basic Outline

In principle, to solve the problems in Finlayson et al.’s
method, our ideas are first, to reduce the effect of noise
∆σc as much as possible so that the final estimation has a
relatively small deviation from the ground truth, even if the
difference of illumination chromaticity is relatively small;
and second, to find the most appropriate values of m and c
(the parameters of the illumination straight-line) based on
the input chromaticity. The details of the first idea will be
discussed in this section, while the second idea will be dis-
cussed in Section 4.4.
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Figure 4. The outline of noise reduction and thus of
our robust framework.

Noise Reduction The outline of our noise reduction and
thus our robust framework is shown in Figure 4. First, from
two image chromaticities (σ1

c , σ2
c ), where σ1

c is taken from a
non-shadowed pixel and σ2

c is taken from a shadowed pixel,
we estimate the surface chromaticity (sc) by solving Equa-

Figure 5. Examples of the distance between the
two image chromaticities and the generated possible
image chromaticities based on the Planckian locus.



tion (15), as shown in the top rg-space in Figure 4.
Second, we generate all possible image chromaticities

based on the estimated surface chromaticity and all possi-
ble illuminatian chromaticities, and then plot them into the
rg-space. The curved dash-line in Figure 4 represents the
generated image chromaticities. Mathematically, generat-
ing the image chromaticities can be described as:

σplanck
c = sce

planck
c (17)

where eplanck
c is the chromaticity of Planckian locus, i.e.,

the colors of all natural illumination, sc is the estimated re-
sult, and σplanck

c is the generated image chromaticity.
Third, we examine the correctness of our estimated sur-

face chromaticity by the following rule: If the estimated
surface chromaticity is correct then the two image chro-
maticities (σ1

c , σ2
c ) must lie on the generated curved line;

otherwise, σ1
c , σ2

c do not lie on the curved line. Examples
of inputs that largely lie on the curved line and that do not
lie in the curved line are shown in Figure 5. Ex. 1 and Ex.
2 are examples of inputs that largely lie on the curved line,
and Ex. 3 and Ex. 4 are examples of inputs that do not lie
on the curved line.

Fourth, if the inputs largely lie on the curved line, then
the process terminates and we can have a relatively correct
result. Otherwise, we consider that one or two of the input
chromaticities have noise. To reduce this noise, we change
the position by adjusting the value of the image chromatic-
ity slightly. After the adjustment, we estimate the value of
sc once again and then detect whether the inputs largely lie
on the curved line. The process is done iteratively until the
inputs largely lie on the curved line. In practice we use Eu-
clidean distance to determine whether the inputs lie on the
curved line.

4.3 Image-chromaticity Adjustment

There are two issues in adjusting the values of image
chromaticity that has noise. First, from two image chro-
maticities (σ1

c and σ2
c ), we should choose which chromatic-

ity has more noise than the other. This becomes an issue be-
cause we intend to adjust one image chromaticity instead of
two. We found that if we adjust both image chromaticities,
ambiguity will result. Consider Equations (10) and (11) and
assume that both σ1

c and σ1
c have noise (∆σ1

c and ∆σ2
c ),

where at first their values are different (∆σ1
c �= ∆σ2

c ),
meaning the values of sr/(sg)A will be different. Then we
adjust both of them. This adjustment could lead to a certain
condition where the values of (sr/(sg)A) are the same, but
it does not guarantee that ∆σ1

c = ∆σ2
c = 0.

Therefore, we decided to choose only one of the inputs
to be modified to reduce the error. This constraint brings
us two benefits. First, the processing time becomes fast.
Second, we are sure that the processing always terminates.
In our implementation, we chose the pixel from a shadowed
region to be adjusted, since the darker pixels in general have
much noise than brighter pixels.

Second, upon choosing the image chromaticity to be ad-
justed, we have to decide in which direction the adjustment
has to be done. This issue is due to the random value of
noise, which could be positive and negative. To solve the
problem, first we adjust the input in either vertical direc-
tion (green-channel) or horizontal direction (red-channel),

which we determine by using following equation (see Ap-
pendix B for the detailed derivation):

(
σB

r − σA
r

)
(
σB

g − σA
g

) σA
r /σB

r

σA
g /σB

g

> 1 (18)

If the left side of the last equation is larger than 1, then
∆σg/σg has a greater effect on the estimation. Thus, we
move the image chromaticity in parallel with the green
channel (vertical direction). Second, to determine whether
the adjustment should be upward or downward (in the case
of vertical direction, or right or left in the case of horizontal
direction), we use the iteration procedure we have explained
in Section 4.2, namely, at first we apply positive adjustment.
If the distance between the adjusted image chromaticity and
the generated curved line is larger than that without adjust-
ment then we should apply negative adjustment, or vice-
versa.

4.4 Temperature Range

As we have mentioned, one of the main drawbacks of
Finlayson et al.’s method is that they set the values of m
and c constant, which could lead to violating the straight
line assumption. We solve this problem by having more
than single values for m and c. The value depends on the
range of illumination. For outdoor illumination, normally
we can have from 2500K to 10000K. Thus, we divide the
range into two ranges: 2500K-4000K and 4000K-10000K,
producing two pairs of m and c:{m1, c1} and {m2, c2}. For
indoor illumination, the range and thus the number of pairs
could be different.

In the computation, to choose the correct m and c, we use
a method similar to that for noise reduction: more correct m
and c will make the generated image chromaticity (σplanck

c )
closer to the input chromaticity (σ1

c and σ2
c ).

5 Implementation and Experimental Results

5.1 Implementation

The implementation of our method is as follows. First,
from an input image that has shadows (as an example see
Figure 6.a), we compute its image chromaticity by using
Equation (3). Then, we find pixels from a shadowed re-
gion and a non-shadowed region that have the same surface
chromaticity or the same value of (sr/(sg)A). Figure 6.b
shows an image representing the values of (sr/(sg)A). If
we plot this value in chromaticity space, then we can ob-
tain clustered points, as shown in Figure 7.a. The blue line
represents the same value of (sr/(sg)A), implying the same
value of surface chromaticity.

Upon knowing the values of (sr/(sg)A), we can obtain
two or more pixels that have the same value of (sr/(sg)A)
but different values of image chromaticity (σc), namely,
pixels from shadowed and non-shadowed regions, by an-
alyzing the points that lie on the blue line shown in Figure
7.a. If we compute the histogram of points lying on the blue
line, we will obtain a distribution shown in Figure 7.b (the
red lines). As shown in the figure, we have two peaks. The
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Figure 6. Result of indoor experiment, by using
artificial lights.
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left peak represents the first illumination chromaticity (non-
shadowed region), and the right peak represents the second
illumination chromaticity (shadowed region). By finding
the two peaks, we can have pixels representing different il-
lumination chromaticity but the same surface chromaticity.
From those pixels, we can use the algorithm explained in
Section 4 to estimate the illumination chromaticities.

Then, having estimated the illumination chromaticities,
we intend to obtain the surface chromaticities of all pixels
in the input image. To do this we use a simple approach.
From Figure 7.b, we can have two peaks representing the
shadowed and non-shadowed regions. If we cluster the
pixels according to the peaks, we can have all pixels rep-
resenting the shadowed region and all pixels representing
the non-shadowed region. The result can be seen in Fig-
ure 6.c, where blue pixels represent the shadowed region
and red pixels represent the non-shadowed region. Then,
we can compute the surface chromaticity simply by divid-
ing the image chromaticity by the estimated illumination
chromaticity. The result of removing one of the illumina-
tion colors can be seen in the distribution of the green lines
in 7.b. Unlike the red lines, the green lines only have one
peak.

5.2 Experimental Result

Conditions We conducted several experiments on real
images, taken using SONY DXC-9000 and Nikon-D1 pro-
gressive 3 CCD digital cameras, by setting their gamma cor-

Table 1. Comparison of estimated illumination
chromaticities resulting from our method and from
Finlayson et al.’s method.

Average Maximum
Error Error

Our Estimation 0.063 0.16
Finlayson et al.’s Estimation 0.11 0.32

rection off. To ensure that the outputs of the cameras were
linear to the flux of incident light, we used the Macbeth
color chart. We used planar and convex objects to avoid
inter-reflection, and excluded saturated pixels and pixels be-
low the camera dark from the computation. For evaluation,
we compared the results with the average values of image
chromaticity of a white reference image (Photo Research
Reflectance Standard model SRS-3), captured by the same
cameras.

Evaluation We have conducted a number of experiments
using the Macbeth color chart in outdoor illumination. One
of the experiments was done by using a green surface
taken under cloudy daylight conditions at 16:30 and 17:30.
The illumination chromaticity taken from the white ref-
erence were (0.403,0.310) and (0.456,0.305). Using Fin-
layson et al.’s method, the estimations were (0.525,0.288)
and (0.533,0.285), while using our method, the estimations
were (0.401,0.324) and (0.409,0.322). We also calculated
the average error and the maximum error of our method
compared with Finlayson et al.’s method, as shown in Ta-
ble 1. The total number of images in our experiments was
30. As shown in Table, our method produced more accu-
rate and robust results. The error in the table was computed
based on chromaticity defined by standard CIE.

Outdoor Scenes The input of our experiment is shown in
Figure 8.a, and the image chromaticity of the input is shown
in Figure 8.b. Figure 8.c shows the values of (sr/(sg)A).
The same values of (sr/(sg)A) represent the same surface
chromaticity. From the input chromaticity (Figure 8.b.) and
Figure 8.c, we determine pixels that correspond to shad-
owed regions and non-shadowed regions of the same sur-
face chromaticity. Figure 8.d shows the shadowed region
(blue pixels) and non-shadowed region (red pixels). Note
that, in this paper, we do not intend to detect or segment
the shadowed region; the red and blue pixels only represent
two image chromaticities we used for color constancy (thus
we do not need to precisely cluster the pixels). Figure 8.e
shows the result of color constancy, and Figure 8.f shows
its image chromaticity. Notice that compared with Figure
8.b which has different image chromaticity in the shadowed
area, Figure 8.f shows that there is no longer any difference
of illumination color.

Besides using shadows from a single image to evaluate
the robustness of our method, we also conducted experi-
ments by using two images taken at different times, and thus
having different colors of illumination. Figure 9.a and 9.b
show the input images. By using 3D geometrical data (pro-
vided by a laser range sensor), we obtained the correspond-
ing location of each surface point. For the two different
pixels taken from the same point, we estimated the illumi-
nation and then removed the illumination color. Figure 9.c
shows our estimated surface color, while Figure 9.d shows



the result by using the white reference.

6 Conclusion

We have proposed a method to estimate surface color
from shadows. Our main contribution is to develop a
method that is robust and accurate even for outdoor objects,
where conditions are less controllable compared with con-
ditions for indoor objects. The underlying idea of our ap-
proach is to reduce noise and to find the most appropriate
parameters of the straight-line assumption. The experimen-
tal results on outdoor scene show the effectiveness of our
method.
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Appendix A

The surface chromaticity sr can be derived as:

sr =
σ1

rσ2
r (σ2

g − σ1
g)

σ2
rσ1

g − σ1
rσ2

g

c

m
(19)

If input σ1
r has noise ∆σ1

r , then the estimated surface chromaticity
becomes sr + ∆srr:

sr + ∆srr =
(σ1

r + ∆σ1
r )σ2

r(σ2
g − σ1

g)

σ2
rσ1

g − (σ1
r + ∆σ1

r )σ2
g

c

m
(20)

Thus, the error ratio ∆srr/sr can be calculated as:

∆srr

sr
=

∆σ1
r

σ1
r

1

1− σ1
r/σ1

g

σ2
r/σ2

g
− ∆σ1

r

σ1
r

σ1
r/σ1

g

σ2
r/σ2

g

(21)

Since we assume ∆σ1
r/σ1

r � 1, the equation becomes:

∆srr

sr
≈ ∆σ1

r

σ1
r

1

1 − σ1
r/σ1

g

σ2
r/σ2

g

(22)

Appendix B

Using the same derivation in Appendix A, when σ1
g has noise

∆σ1
g , then the error ratio of estimated surface chromaticity be-

comes:

∆srg

sr
≈ −∆σ1

g

σ1
g

1

1− σ1
r/σ1

g

σ2
r/σ2

g

(
σ2

r − σ1
r

)
σ1

r/σ2
r

(σ2
g − σ1

g)σ1
g/σ2

g
(23)

≈ ∆srr

sr

(
σ2

r − σ1
r

)
σ1

r/σ2
r

(σ2
g − σ1

g)σ1
g/σ2

g
(24)

This shows that even the error ratio of σ1
r and σ1

g are the same,
the effect on the estimation error ratio depends on the factor
(σ2

r−σ1
r)σ1

r/σ2
r

(σ2
g−σ1

g)σ1
g/σ2

g
.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Results of outdoor experiment: (a) input
image (b) input chromaticity (c) the image of the val-
ues of (sr/(sg)A) (d) the shadowed (blue) and non-
shadowed (red) pixels of the same surface chromatic-
ity (e) the result of color constancy (f) the result in
chromaticity.



(a) (b)

(c) (d)

Figure 9. (a) One of the two input scenes, illuminated by cloudy daylight at 18:00. (b) The other input, illuminated by
cloudy daylight at 18:00 on another day. (c) The estimated scene’s actual color of the image shown in (a) computed
using our proposed method. (d) The estimated scene’s actual color using the standard white reference.
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