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Abstract

Conventional registration algorithms are mostly con-
cerned with rigid-body transformation parameters between
a pair of 3D range images. Our proposed framework aims
to determine, in a unified manner, not only such rigid trans-
formation parameters but also various deformation parame-
ters, assuming that the deformation we handle here is strictly
defined by some parameterized fomulation derived from the
deformation mechanism. In this respect, our proposed frame-
work is different from the deformation researched in such
fields as medical imaging.

Like other conventional registration algorithms, our algo-
rithm is formulated as a minimization problem of the squared
sum of the distance between the corresponding points among
a pair of range images. While conventional registration al-
gorithms usually minimize this sum concerned about six pa-
rameters (three translation and three rotation parameters),
the evaluation function in our proposed algorithm includes
deformation parameters as well. Our proposed algorithm
can be applied to a wide range of areas of computer vision,
in particular, shape modeling and shape analysis. In this
paper, we describe how we formulated such an algorithm,
implemented it, and evaluated its performance.

1 Introduction

A 3D data registration algorithm determines the transla-
tion and rotation parameters between a pair of the corre-
sponding 3D range images. The algorithm solves the nonlin-
ear equation to minimize the distance between a pair of cor-
responding 3D range image with respect to the six unknown
parameters (three translation and three rotation parameters).

There are many uses for 3D data registration. In research
that requires modeling of objects in the real world, it is nec-
essary to have multiple observations of the object in order to
cover the whole surface of the object. Aligning these par-
tial 3D data using a registration algorithm is one of the cru-
cial steps to completing the 3D surface model of the object.
Registration algorithms are also used to compare differences

in shape between similar objects for industrial inspection of
manufacturing accuracy. And in archeological applications,
there is a need to observe shape deformation, such as the
process of deterioration over time. Due to these uses, many
registration algorithms have been proposed.

Some applications, however, require determining more
parameters than just the six translation and rotation param-
eters. As a simple example, when comparing 3D data of two
objects with the same shape but different size, we have to
determine the scaling parameter in addition to the six trans-
lation and rotation parameters. This is also the case when
aligning data for a deformable object. And when we replace
a part of the range data, as we must do for a cylinder, with a
CAD primitive model in order to reduce the amount of data
or refine its shape, the parameters of the CAD primitive shape
(the diameter and the height in the case of a cylinder) should
be determined from the measured data by fitting the primi-
tive to the range data. A conventional registration algorithm
cannot solve these problems because it formulates the regis-
tration only as a rigid-body transformation.

In this paper, we propose an extended framework of the
conventional registration algorithm to overcome these diffi-
culties. This kind of registration, namely, deformation regis-
tration, has been researched in such fields as medical imaging
[1] [2] [3] [4] [5], where the target object for registration is
mainly soft tissue. These researchers adopt similarity, affine,
quadric/superquadric, and displacement-field-based transfor-
mation so that their deformation works well for any kind of
target shape.

These methods can be generally adopted in shape model-
ing and fitting. However, if the deformation is strictly de-
fined by some parameterized formulation derived from the
deformation mechanism, the deformation is much more ac-
curate. The parameters obtained from this strict formulation
carry with them the origin of the deformation. So our frame-
work pays as much attention to the parameters obtained in
the deformation registration as to the resulting appearance of
the deformation. In this respect, our aim is different from
those of the researchers cited above. Assuming that changes
in shape are strictly represented by a mathematical formula
(including some variable parameters) that is known a priori,



we formulate an extended registration that allows the 3D data
to be deformed and determines deformation, translation, and
rotation parameters.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews conventional registration formulas in terms of
their robustness. Our proposed formulation need to be ro-
bust because our algorithm becomes sensitive to incorrect
matching correspondence due to parameter increases. Sec-
tion 3 describes the design and implementation of the robust
rigid-body transformation as a basis of our extended frame-
work. 4 presents how we extend the basic algorithm in order
to be able to handle the deformation parameters. Section 5
and 6 describe how to apply our proposed algorithm to actual
applications. In particular, we determine the shape parame-
ters of a plaster function model made in the 19th century for
mathematical education . Another example of our registra-
tion algorithm is to align two range images obtained from
a stably setting and floating laser range sensor, referred to
as a Floating Laser Range Sensor (FLRS). Due to the float-
ing characteristics, the second sensor causes data distortion.
Our algorithm can determine both rigid-body-transformation
(translation and rotation) and distortion parameters. We also
evaluate the accuracy of this algorithm. Finally, Section 7
summarizes this paper with a conclusion and ideas about fu-
ture work.

2 Related Work

One of the most fundamental algorithms for 3D data reg-
istration is the Iterative Closest Point (ICP) algorithm pro-
posed by Besl and McKay [6] . This algorithm framework
reduces registration to the problem of minimizing the sum
of the distance between the corresponding data by iterative
calculation. Function minimization with respect to the trans-
formation parameters leads to the optimal ones that repre-
sents the plausible transformation between the data pieces
being aligned, for example, three translation and three ro-
tation parameters in the case of rigid-body transformation.
This framework is extended in various ways that we can clas-
sify as registration ordering, matching unit, and error metric.

2.1 Registration Odering

In the registration of multiple sets of 3D data, ordering
affects the convergence of the final result. Two types of or-
dering are considered here: sequential and simultaneous or-
dering. Sequential ordering selects a corresponding pair of
data pieces at each iteration for registration, and repeats this
process until all the data pieces are aligned [7] . Its computa-
tion cost is low because only two data pieces are handled at
each iteration. However, it is susceptible to registration fail-
ure since registration errors are locally accumulated, and this
causes inaccuracy of the registration result 1 ).

In contrast, simultaneous ordering aligns all the data to-
gether at each iteration. Although its computation cost is
higher, it enables more accurate registration because the reg-
istration error is distributed globally.

Alignment Failure!

Figure 1. Illustration of registration failure in
sequential strategy. The data are sequentially
aligned counterclockwise in order from the red
data and the black data, and the accumulated
error prevented the black and red data from the
correct registration.

2.2 Matching Unit

The matching unit of the ICP algorithm is of two kinds:
(1) the geometric feature points and (2) all the points in the
range images. Assuming that one-to-one correspondence is
taken among all the feature points, the feature point match-
ing doesn’t change its correspondence at any iteration [8] [9]
. So it cannot achieve accurate registration if the correspon-
dence cannot be taken precisely. All-points matching updates
the correspondence so that it can be more plausible as the it-
eration proceeds [10] [11] , and therefore can achieve more
accurate registration, as Rusinkiewicz et. al. reported [12] .

2.3 Error Metric

As the error metric, the point-to-point or point-to-plain
distance of the matching unit is mainly used [13] [14] . Some
other algorithms adopt such additional information as the re-
flectance (the reflection ratio of the laser ray) and color of the
captured point as the error metric [15] .

3 Robust Determination of Translation and
Rotation Parameters

Our basic registration algorithm is designed to robustly
determine translation and rotation parameters as accurately
as possible even though we are sacrificing convergence
speed. Accurate convergence is a more important factor than
rapid convergence because our final objective is to determine
deformation parameters in addition to translation and rota-
tion parameters.

The 3D data that is obtained by a laser range sensor has
considerable measurement noise. So a normal metric cannot
be estimated from the point cloud with acceptable reliability.
Therefore, the closest point-to-point distance should be em-
ployed as the error metric as described in [12] . To cope with
erroneous measurement, simultaneous ordering is adopted.

As explained earlier, our basic registration algorithm
aligns the closest points together with all data pieces simul-
taneously so as to minimize the sum of the point-to-point
distance. Minimization of the error function is represented



as follows:

E(p) =
1

N(M − 1)

N∑

i

M∑

j

ρ(zij(p)), (1)

where

p = (t,q), (2)

zij(p) = ||R(q)xi + t− yji||2, (3)

ρ(zij(p)) = log(1 +
1
2
zij(p)2), (4)

t : translation vector,
R(q) : rotation matrix corresponding to quaternionq,
xi : ith point in the data set of interest,
yji : the corresponding point ofxi,

: in thejth measured data,
N : the number of data points,
M : the number of measured data.

The range images are aligned iteratively by moving (trans-
lating/rotating) the measured data according to the estimated
parameters. The movement is determined such that the to-
tal sum of the distance between the corresponding points is
minimized. As for the rotation matrix, we use the quaternion
representation of three degree of freedom. Finally, we solve
the six dimensional vectorp in order to minimize the sum of
zij(p) for all i, j.

In the direct square sum error function, considerable noise
leads to the imprecise registration of 3D data because the
exact correspondences between the noisy data in the initial
step are unavailable. The erroneous correspondences must be
removed before registration. In this algorithm, M-estimation
is used for noise elimination (Function 4 ) by considering the
probability distribution of the error. Lorentz function is used
here since it yields the best result as written in [16] .

On this error metricE(p) , we compute the parametersp
which fulfill the following equation:

popt = arg min
p

E(p). (5)

For the gradient-based solution of the non-linear optimiza-
tion, the descent gradient is computed as follows:

∂E

∂p
=

1
N(M − 1)

N∑

i

M∑

j

∂ρ(zij)
∂zij

· ∂zij

∂p

=
1

N(M − 1)

N∑

i

M∑

j

w(zij)zij
∂zij

∂p
, (6)

where w(zij) =
1

zij
· ∂ρ(zij)

∂zij
.

If we evaluate∂zij/∂p by identifying quaternionqI , we can
represent∂zij/∂p as

∂zij(p)
∂p

= 2(R(q)xi + t− yji)
∂(R(q)xi + t− yji)

∂p

∣∣∣∣
qI

=
[

2(xi + t− yji)
−4xi × (t− yji)

]
. (7)

4 Simultaneous Determination of Deforma-
tion Parameters

Our proposal assume that deformation can be represented
by some parameterised mathematical formula, and is known
a priori, but that its parameters are unknown.

Our goal is to simultaneously determine these deforma-
tion, translation, and rotation parameters by comparing the
target data to transform with its corresponding data. The
translation and rotation parameters are determined in a min-
imization paradigm described in the previous section. If we
fix these parameters, the determination of the deformation
parameters becomes a shape-matching problem at an itera-
tive minimization step. Thus, we can handle parameter de-
termination in a unified minimization framework.

We extend the parameter estimation of the registration for-
mulation to add the shape parameter by extending the error
function in Equation ( 3 ). Therefore,zij(p) in Equation ( 3
) is transformed into:

zij(p) =
∑

i,j

||R(q)g(xi,k) + t− yji||2, (8)

where p = (t,q,k),
g(xi,k) : deformation function of pointxi

with respect to parameterk.

And the gradient described in Equation ( 7 ) is extended as:

∂zij(p)

∂p
= 2(R(q)g(xi,k) + t− yji)

∂(R(q)g(xi,k) + t− yji)

∂p

����
qI

=




2(g(xi,k) + t− yji)
−4g(xi,k)× (t− yji)

2(g(xi,k) + t− yji)
∂(g(xi,k))

∂k


 (9)

This straightforward extension causes unstable convergence
of the deformation registration because the obtained trans-
lation, rotation, and deformation parameters overreaches its
optimum if every parameter is applied simultaneously to the
deformation, though each parameter can be estimated with
enough accuracy if it is applied independently. Every param-
eter interferes every other parameter.

In order to prevent this interference, we designed our ex-
tended formulation again to remove the translation and rota-
tion effect caused only by deformation. The basic idea is to
recover the position and posture that change due to the de-
formation. This is implemented by “preliminary” rigid-body
transformation, which determines only the deformation pa-
rameters. First, every parameter is acquired by Equation ( 6
) and ( 9 ) Then the preliminary rigid-body transformation is
determined only by the deformation parameter as follows:

g′(xi,k) = Rog(xi,k) + to, (10)

where
(Ro, to) = (R(qo), to),

such that

(qo, to) = arg min
q,t

N∑

i

||R(q)g(xi,k) + t− xi||2. (11)



Ro, to can be derived from the following equation:

∂
∑N

i ε2i
∂to

=
N∑

i

2εi · ∂εi

∂to
= 0, (12)

where
εi = g(xi,k) + to − xi

This is a conventional registration problem, but it is unneces-
sary to strictly solve the above equation. In fact,Ro doesn’t
affect stable convergence so much asto . If Ro is ignored,
to in Equation ( 12 ) is concretely derived as follows:

N∑

i

(g(xi,k) + t− xi) = 0

∴ to = −
∑N

i (g(xi,k)− xi)
N

. (13)

Finally, Equation ( 8 ) is replaced with:

zij(p) =
∑

i,j

||R(q){Rog(xi,k) + to}+ t− yji||2. (14)

In the ICP based registration algorithm, the acquisition of a
good initial parameter is significant for the optimal registra-
tion result. In our implementation, the initial transformation
parameter is set manually by GUI with accuracy enough to
reach the optimum. We investigate the registration behav-
ior according to the difference between the optimum and the
initial setting parameter in each experiment after this section.

5 Unknown Parameter Estimation
of Mathematical Model

As one of our experiments, we examined the manufactur-
ing accuracy of mathematical models made of plaster (Fig-
ure 2 -(1)). This model is a kind of cultural asset. It was
manufactured in Germany at the end of the 19th century for
educational purposes and has been exhibited in our univer-
sity museum. This model visually represents the following
mathematical formula:

X(u, v) = (lφ(v) cos u, lφ(v) sin u, lψ(v)), (15)

where 0 ≤ u ≤ 2π,

−a · sinh−1
(

a
b

) ≤ v ≤ a · sinh−1
(

a
b

)
,

φ(v) = b cosh
(

v
a

)
,

ψ(v) =
∫ v

0

√
1− b2

a2 sinh−1
(

t
a

)
dt.

This surface is generated by rotating a 2D catenary (Figure
2 -(2)) according to the related documentation. The surface
by revolution always has the azimuthal symmetry. Besides
scale parameter (l ), 2 parameters (a , b ) are involved in the
deformation of the revolutional surfaces. Because there was
no documentation to identify the three deformation param-
eters when manufacturing the model, our purpose here was
to estimate the deformation parameter by applying our pro-
posed framework to its range image and the data computed
from Equation ( 15 ), to evaluate the manufacturing accuracy

catenary

X

Y

Z

(1)

(3)

(2)

Figure 2. Mathematical model used in our ex-
periment.

of the plaster model under the estimated parameter, and to
remake an accurate model to satisfy the interest of historiana
and mathematicians in the manufacturer’s skill in those days.

We have to estimate these parameters in order to compare
the range image of the model and the computed data from
Equation ( 15 ) under the estimated parameters. In this case,
our proposed method can be applied by replacing the defor-
mation function like this:

g(xi,k) = (lφ(vi) cos ui, lφ(vi) sin ui, lψ(vi)),
where k = (l, a, b).

The descent gradient is in the following:

∂zij(p)
∂p

=




2(g(xi,k) + t− yji)
−4g(xi,k)× (t− yji)

2(g(xi,k) + t− yji)
∂g(xi,k)

∂k


 , (16)

where

∂(g(xi,k))
∂v

=




(
(l cos u)∂φ

∂a , (l sin u)∂φ
∂a , l ∂ψ

∂a

)T

(
(l cos u)∂φ

∂b , (l sin u)∂φ
∂b , l ∂ψ

∂b

)T

(φ(vi) cos ui, φ(vi) sin ui, ψ(vi))T


 .

(17)
Such that

∂φ

∂a
= − bv

a2
sinh

v

a
,

∂ψ

∂a
=

vb2

2a3

(
− 1

2a2
sinh−1 v

a
+

1√
v2 + a2

)
,

∂φ

∂b
= cosh

v

a
,

∂ψ

∂b
= − b

a2
sinh−1 v

a
.

5.1 Experiment

The 3D shape of the model was captured by the MI-
NOLTA VIVID 900. The data was initially aligned by the
manual process via GUI. The initial shape parameters were
also manually estimated. Figure 3 shows the registration pro-
cess. It indicates that the computed data is transformed to fit
the actual one. Estimated parameter is:a = 0.0568, b =
0.0237, l = 0.996.
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Figure 3. The registration process of the para-
metric data. (1)-(8) shows the convergence of
both the measured and computed data.

5.2 Evaluation

The estimation is affected by various kinds of errors: mea-
surement error; initial registration error; and error in an ini-
tially input parameter. So we investigated how the accuracy
of an estimated parameter depends on such errors by using
the synthesized data that was computed under the known pa-
rameters with Gaussian noise added for forming the noisy
data. The accuracy of the estimation could be evaluated as
the difference between the known parameter (ground truth)
and the obtained parameters. The deformation parameters
were set asa = 0.05 , b = 0.02 andl = 1.00 .

The first error to consider in the estimation was the mea-
surement error of the range sensor. We first investigated how
much noise was caused according to the pose of the actual
object by using the measured data of the white Lambertian
plane at different poses. The system is shown in Figure 4
. The white board was set on the turntable. The pose was
changed by rotating and translating the turntable. We de-
notel andθ by the distance from the white board to the laser
range finder and the angle between the normal of white board
to the ray of the laser, respectively. Five sets of data were
obtained at each pose. Principal component analysis (PCA)
was applied to estimate the most plausible plane composed
by the point cloud and to obtain the standard deviation of the
measurement error of the plane data. The standard deviation
changes of the plane data are shown in Figure 5 .

We investigated the influence of the measurement noise by
using the computed data from Equation ( 15 ) and its synthe-
sized data. Noise with different standard deviation was added
to its computed data. Standard deviations were set to 0.01,
0.1, 1.0, 10.0 in this experiment. Ten sets of synthesized data
were created for each standard deviation as the synthesized
data. The initial translation, rotation, and deformation pa-
rameters of the synthesized data were the same as those of
the computed data. The red line in Figure 6 show the range
of the maximum and minimum of estimated parametersa ,
b andl , respectively, the blue line shows the average of the
estimated parameters, and the green dotted line is the ground
truth.

Effects of the noise standard deviation to the estimated pa-
rameters were similar in all parameters: the larger the stan-
dard deviation was, the greater the difference was between
the estimated and the ground truth, and the larger the range
of the maximum and minimum parameters was. However,
noise added in this experiment was far higher than the ob-

served noise. Even though noise with a standard deviation
of 0.01 was added, the difference from the ground truth was
almost zero, and the parameters were stably estimated. The
maximum standard deviation of the measurement noise in
MINOLTA VIVID 900 was detected at less than 0.002, so
the result indicated the robustness of our estimation method
against the sensor noise.

The next error was the initial registration error of transla-
tion and rotation. In the same manner, we added the noise
to the computed data to create its corresponding synthesized
data. The standard deviation of the noise (σ ) was set
to 0.0004 according to the measurement error as observed
above. Each initial parameter was set to the same value as
the computed data. The coordinate of the model is shown in
Figure 2 -(3).

Effects of translation and rotation were investigated sepa-
rately. For the initial translation, synthesized data were trans-
lated0.01 , 0.02 and0.03 [m] along x or z axis, respectively.
For the initial rotation, three sets of synthesized data were
rotated10 , 20 and30 [degree] around x axis. Since revolu-
tional surface of catenary has the x, y and z symmetry, these
translation and rotation were sufficient for the evaluation.

The results of estimation were shown in Figure 7 . In
the figure, the left, middle and right graphs show the esti-
mation result in the case where the synthesized data is trans-
lated along x, z axis and rotated around x axis, respectively,
as the difference between the ground truth and the estimated
parameters. When the initial translation/rotation amount is
set as shown in the translation/rotation axis (0.01 x-t, 0.02
x-t, 0.03 x-t in the left graph), the difference between each
estimated parameter in the parameter axis (a, b, scale) and
its ground truth is shown in a vertical axis, (0.00,± 0.02,±
0.04 in the left graph).

Z axis for this surface is the direction of expand-
ing/contracting. The translation along the z axis results in the
ambiguity of the parameter estimation. In contrast, the trans-
lation along the x axis is not directly related to the expansion
and contraction. The translation along z axis simultaneously
affects the translation/rotation and deformation parameters.
In fact, more iteration was needed for good estimation in
case of the translation along the z axis than in case of the
translation along and rotation around the x axis.

The final error we examined was the result of the initial
deformation parameter. The synthesized data were made in
the same manner, and the standard deviation of the noise (σ
) was set to0.0004 . The initial pose and position of the syn-
thesized data were set to the same as those for the computed
data. Effects of each initial deformation parameter was inves-
tigated, and each initial parameter was changed incrementaly
from the ground truth.

The results of estimation are shown in Figure 8 . In the
figure, the left, middle and right graph shows the estimation
result in the case where thea , b andl are set to each value
shown in the horizontal axis of the graph, respectively, as
the difference between the ground truth and the estimated
parameters. When the initial deformation parameter is set
as shown in the registration axis (for example,0.07 , 0.06
, 0.04 , 0.03 in the left graph), the difference between each
estimated parameter in the parameter axis (a, b, scale) and
its ground truth is shown in the vertical axis (for example,
0.000 , ±0.005 , ..., in the left graph). Figure 8 indicates
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Figure 4. System to evaluate measurement er-
ror. In this system, the surface normal and
the distance from the white board to the laser
range sensor are changeable.
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Figure 5. The relationship between surface
normal and standard deviation. Each curve
showed the data at different distance from
white board to the finder.

that the effect of incorrect initial value on each parameter
was different. It is difficult to recognize the accuracy of our
algorithm via the numerical result, but the registration result
is visually almost the same as shown in Figure 3 .

6 Inter-and-Intra Scanning Registration

In order to measure large objects effectively, we have de-
veloped a novel 3D measurement system: the Floating Laser
Range Sensor (FLRS). FLRS digitizes objects from the air
while being suspended beneath a balloon platform.

Several conventional aerial measurement systems have
been proposed in the past. For example, aerial 3D measure-
ments have been achieved with a laser range sensor installed
on a helicopter platform [17] [18] . High frequency vibration
of the platform, however, must be considered in obtaining
highly accurate results. Another technique is aerial stereo
photography with a digital camera that is attached to a bal-
loon [19] ; however, this stereo method cannot achieve a sat-
isfactory level of precision in the restored data.

To overcome these difficulties, we designed FLRS. It is
free from high frequency vibration such as that of a heli-
copter engine; there still remains low frequency movement
due to the floating balloon, causing distortion in obtained
data. This movement is generated by

• Initial velocity
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Figure 6. The maximum and the minimum of
estimated parameter.
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Figure 7. Estimation result in each case of ini-
tial translation and rotation error.

• Initial angular velocity

• Acceleration generated by external force

• Angular acceleration generated by external moment

We can ignore the influence of translation and angular accel-
eration because FLRS needs only one second to scan each
frame. And insignificant rotation can be approximated to
translation movement. Hence we consider only constant ve-
locity movement. Under this assumption, we set up the de-
formation equation in Equation ( 8 ).

In this case, the geometrical functiong(xi,k) is repre-
sented only by constant velocity vectorv of FLRS move-
ment, and Equation ( 8 ) is replaced with:

g(xi,v) = xi − τiv, (18)

whereτi is i th point’s captured time passed since the start of
the scanning. The descent gradient is represented in this case
as follows.

∂zij(p)
∂p

=




2(g(xi,v) + t− yji)
−4g(xi,v)× (t− yji)

2(g(xi,v) + t− yji)
∂g(xi,v)

∂v


 , (19)

where p = (t,q,v),

∂g(xi,v)
∂v =




(τi 0 0)T

(0 τi 0)T

(0 0 τi)T


 .

While translation and rotation registration are due to the sen-
sor movement among multiple views, the shape deformation
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Figure 8. Estimation result in each case of an
initially set deformation parameter.

Figure 9. Range images before and after our
registration process: The left image shows
the data under the initially set translation, ro-
tation, and deformation parameters. A range
image of FLRS (yellow) is aligned and fitted
onto the corresponding range image of Cyrax
2500 (purple) simultaneously as shown in the
right image. These range images are the par-
tial shape of the Bayon temple in Cambodia.

registration is due to the sensor movement during one scan.
Thus, we refer to this registration as “inter-and-intra scan-
ning registration”.

6.1 Experiment

As an experiment on an actual case, we executed our al-
gorithm against the data of the Bayon temple. In this exper-
iment, we aligned the corresponding data captured by FLRS
and Cyrax 2500. The latter data was scanned from stable
ground, so there was no movement during scanning, and we
assume that it is sufficiently reliable. The result is shown in
Figure 9 . This figure shows that our algorithm aligned and
fitted the FLRS’s data well onto the Cyrax2500’s data.

6.2 Evaluation

To evaluate the accuracy of the algorithm, we aligned the
original and synthesized data through our algorithm. The
synthesized data translates, rotates, and distorts the original
data with known parameters. The optimal deformation regis-
tration parameters between the original and synthesized data
are the known parameters. We investigated how close the
parameter obtained through our algorithm was to the known

(a) (b)

Figure 10. Sample range images for evaluation
experiments.

Table 1. The setting difference between the
original and the transformed in each parameter
for the accuracy evaluation of the deformation
registration.

parameter setting difference
R(q) 3 [deg] around X axis

t 0.1 [m] along X axis

v
0.00-3.00 [m/s] along X axis
(every 0.01 [m/s] increment)

parameter. The synthesized data are created from a range im-
age by removing points randomly to make them sparser and
to prevent the same points from being included in both sets
of data, in order to simulate actual conditions in the regis-
tration of the images at different sites. As with conventional
registration, each initial parameter was set via GUI, and then
our algorithm was executed.

We investigated the difference between the parameter ob-
tained by our algorithm and the known parameter according
to the change ofv in the condition shown in Table 1 . The
deformation registration was executed five times at each set-
ting parameter ofv in order to remove the outlier, and the
difference was calculated as the average. The result is shown
in Figure 11.

The difference is stably constant in each parameter in the
condition where the setting velocity is within1.6[m/s] , but
is drastically oscillated otherwise. This result led us to con-
clude that our algorithm can obtain an accurate deformation
parameter for distortion correction as long as the sensor ve-
locity is within 1.6[m/s] .

Next, we focused on the estimation accuracy of the ob-
tained parameter under1.6[m/s] of the sensor velocity. The
average difference oft , R , andv is 0.005[m] , 0.1[deg] ,
and0.008[m/s] respectively. Note that sizes of faces in the
images are over 1 meter.
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7 Conclusion and Future Work

We proposed an extended registration framework which
allows 3D data to be deformed. Our proposed method as-
sumes that the deformation is strictly defined by some pa-
rameterized fomulation derived from the deformation mech-
anism. Deformation registration can be reduced to a prob-
lem of minimizing the error function, which is the squaered
sum of the distance between the corresponding points in the
data. While conventional registration methods minimize this
error function concerned about six parameters (three trans-
lation parameters and three rotation parameters for rotation),
the error function in our proposed framework includes the
deformation parameters as well.

We introduced two applications in this paper. One is shape
parameter estimation, and the other is shape rectification. In
the first application, accurate shape parameters for the math-
ematical model could be estimated. The other application
rectified the distorted data obtained from the Floating Laser
Range Sensor (FLRS) which was suspended under a balloon
platform. And the estimation accuracy was also shown in
each application. The deformation parameter estimation is
the mean of the 3D data fitting. The objective was also to
understand the cause and origination of the deformation, so
these can be used for system feedback.

Our applications are only a few of the possible applica-
tions, and we are trying to develop an application to gener-
ate the CAD primitives under the shape parameter estimated
from range images. This application will convert the range
images into the properly approximated CAD data. The ben-
efit of this application is to be able to compress the range
images, which usually consist of numerous 3D points and
polygons. We intend to apply our framework widely to vari-
ous class of problem in the future. This work was supported
in part by Japan Science and Technology Cooperation (JST)
under the CREST program. Scanning the Bayon temple was
conducted jointly with Japanese Government Team for Safe-
guarding Angkor (JSA), the University of Tokyo and JST.
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