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Shape Estimation of Transparent Objects
by using Polarization Analyses
Daisuke Miyazaki and Katsushi Ikeuchi

Computer Science, Graduate School of
Information Science and Technology, The University of Tokyo

Abstract Today, techniques developed in the field of computer graphics and virtual reality are applied in
many scenes, resulting the method of measuring 3D shape of real objects to be more and more important.
However, less methods are proposed to measure 3D shape of transparent objects such as glasses and acrylics.
Inthis paper, | propose three kinds of method, which estimate the surface shape of transparent object by using
polarization analysis. The first method determines the surface shape of transparent object by also using the
knowledge established in the research field of thermodynamics. The second method determines the surface
shape of transparent object by also using the knowledge established in the research field of differential geom-
etry. The third method determines the true surface shape of transparent object by an iterative computation by
giving an initial value of the surface shape.

1. Introduction

In the field of computer vision, few methods have been
proposed for estimating the shape of transparent objects,
because of the difficulty of treating with the internal in-
terreflection(=internal reflection or interreflection), which
are the phenomena that the light not only reflects at the
surface of the transparent object but also transmits into
the object and causes multiple reflection and transmission
insideit. This paper presents three methods for estimating
the surface shape of transparent objects by analyzing the
polarization of transparent objects.

1.1. Related Work

Polarization is a phenomenon in which the light os-
cillates in one direction. Recently, research to estimate
the object shape by using polarization has increased.
Kosikawa and Shirai [1] proposed to use the degree of
polarization, employing circulary polarized light sources
to determine the surface normal of specular polyhedrons.
They used a method called Mueller calculus to calculate
the polarization state of the light. Wolff and Boult [2]
indicated that the surface normal of the object surfaceis
constrained by analyzing the polarization of the object,
and estimated the surface normal of a planer glass from



two views. Rahmann [3] estimated the orientation of a
flat object and the position of the light source by polariza-
tion analysis of single view. Rahmann also [4] addressed
the potential of recovering the shape of specular surfaces
from polarization. Later, Rahmann and Canterakis [5] es-
timated the shape of specular objects from two or more
views. Also, they proved that the quadratic shape of spec-
ular objects can be estimated from two views [6]. Dr-
bohlav and Sara [7] estimated the shape of diffuse objects
by combining the polarization analysis and the photomet-
ric stereo. Miyazaki et a. [8] estimated the shape and
reflectance of specular objects and the illuminant direc-
tion from one view. Saito et a. [9] employed the analy-
sis of the degree of polarization and developed a method
with which the surface of a transparent object could be
determined; however, the degree of polarization provided
two candidates of surface normal, and they did not solve
this ambiguity. Unfortunately, because these methods do
not consider internal interreflections, they do not provide
sufficient accuracy for estimating the shape of transparent
objects.

A little methods which estimate the 3D shape of trans-
parent objects have been proposed. Murase [10] estimated
the shape of water surface by analyzing the undulation of
the water surface. Hata et a. [11] estimated the surface
shape of transparent objects by analyzing the deformation
of the light projected onto the transparent objects. Ohara
et al. [12] estimated the depth of the edge of transparent
object by using shape-from-focus. Ben-Ezra and Nayar
[13] estimated the parameterized surface shape of trans-
parent objects by using structure-from-motion. These
methods, however, do not estimate arbitrary shapes of
transparent objects.

1.2. Overview

Saito et a. [9] employed the analysis of the degree of
polarization and developed a method with which to mea
sure the surface of a transparent object. Then, by mea
suring the DOP(=degree of polarization) of atransparent
object, they determined surface normals. Unfortunately,
however, the DOP provides two solutions corresponding
to one DOP.

In this paper, | propose to disambiguate these two so-
lutions by two methods. One is to introduce the DOP

of the thermal radiation, and the other is to introduce
the polarization analysis by considering the differential-
geometrical property of the object surface. Saito’s method
and these two methods do not consider the effect of in-
ternal interreflection, hence, | propose another method to
estimate the surface shape of transparent objects more pre-
cisely by considering both reflection and transmission.

The paper is organized as follows. In Section 2, |
present the background theory of polarization and then
devel op an underlying algorithm to determine surface nor-
mal up to two possibleincident angles, using the polariza-
tion. | describe thefirst method in Section 3: Thismethod,
using thermal radiation, solves the ambiguity problem of
Saito’s method and obtain an unique surface normal of
transparent object. | describe the second method in Sec-
tion 4: This method, using differential geometry, solves
the ambiguity problem of Saito’'s method and obtain an
unique surface normal of transparent object which is also
done in the first method. | describe the third method
in Section 5: This method, using polarization raytrac-
ing, solves the internal interreflection problem of Saito’'s
method, the first method, and the second method. In Sec-
tion 6, | describe the apparatus of these three methods and
the experimental results of them. Section 7 concludes the

paper.
2. Polarization Analysis

2.1. Fresndl Reflection

In this section, | present a brief overview of the ba
sic equation of reflection and refraction [14]. In Figure
1, let us consider the case in which a light hits the in-
terface surface between two materials, the refractive in-
dices of which are denoted as n; and ns, respectively.
One part of the light is reflected from the interface sur-
face, while another part penetrates the surface and is re-
fracted when it enters the second material. The plane in-
cluding the surface normal and the incident light ray is
called the POI(=plane of incidence). | identify the paral-
lel and perpendicular components to the POI as|| and L,
respectively. Theincident, reflecting, and transmitting an-
gles are defined as 64, 67, and 6, respectively, as shown
in Figure 1. Since | focus on optically smooth transparent
objects, the incident angle and the reflecting angle will be
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Fig. 1: Reflection, refraction, and transmission.

thesame ¢, = #7. 6, and 0 isrelated by Snell’s law,
nysinf; = nosin by . Q)

| define the parallel and perpendicular intensity reflectiv-
ities, ) and R, respectively, as
tan?(0; — 02)
tan?(0; + 02)
sin? (6, — 6,

- sin2E91 n 92; ' @
From the above equation, an incident angle to make )| =
0 can be obtained. Thisincident angleisreferred to asthe
Brewster angle, 6. The Brewster angle is obtained by
substituting 6, + 6, = 7/2 (namely, R, = 0) into Snell’s
equation as

Ry =

tanfpg = 2 (€©)]

ni

Once the reflecting angle and the POI angle are known,
| can determine the surface normal with respect to the
viewer, as shown in Figure 2. | will denote the POI an-
gle and the reflecting angle as » and ¢, respectively, and
determine these two angles by using the degree of polar-
ization of reflected light.

2.1.1. POI Angle

As shown in Equation (2), the intensity of the reflected
light varies depending on the direction of oscillation in
the plane of oscillation; therefore, a difference can be ob-
served when the polarization filter is rotated in front of a
CCD camera. The variance is described as a sinusoidal
function of rotation angles. | will denote the maximum
and minimum brightness in the observed intensities as

Surface
0 normal
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Obj ‘cyct Camera
coordinates

Object surface
Image plane

Fig. 2. Reflected and transmitted light observed by the
camera.

Tax and I, . Given that the sum of the maximum and
minimum brightnessisthe total brightness of the reflected
light Igpec,

Ry iy

Imax = 7Ispeca Inin = ———
R+ Ry R+ Ry

Ispec - (4)

By this equation, the direction paralel to the plane
of incidence provides the minimum brightness I, .
Namely, by measuring the angle where the minimum
brightness is observed, | can determine the POI angle
(0 < ¢ < 2x). POI angle is determined as the angle
between +z-axis and POI, from +z-axis to +y-axis, as
shown in Figure 2. There are two possible POI angles,
1,0 and g1, which are definable as vy = Y10 + m,
where 0 < ¢¥r0 < wand = < ¢y < 2. Surface normal
can be represented in polar coordinates with zenith angle
¢ and azimuth angle ¢. Azimuth angle ¢ equalsto 1,0 or
V1.

Since | assume that the object is a closed, smooth ob-
ject, 1 can determine the surface normal at the occlud-
ing boundary; the surface normal heads for the outside
of the shape of the projection of the object at the occlud-
ing boundary. By using the ¢ at the occluding bound-
ary as an initial condition, | propagate the constraint of ¢
throughout the surface and, finally, determine the value of
¢, Whether it is¢ = 1,0 Or ¢ = gy, Over the entire
surface, assuming that all local parts of the surface are not
concave toward the camera direction.

2.1.2. Incident Angle

The definition of the degree of polarization is,
Imax - Imin
N Imax + Imin . (5)
The degree of polarization is 0 when the light is unpolar-
ized, whereas it is 1 when the light is linearly polarized.
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theincident angle (n = 1.5).

Thelinearly polarized light is observed when the incident
angle and the reflecting angle are at the Brewster angle.

By substituting Equation (4) and (2) into Equation (5)
with Snell’slaw, | can represent the degree of polarization
pas

B 2 sin? 9\/712 —sin? 6 — n2sin? @ + sin* 0 ©)
B n? —sin?# —n2sin? 6 + 2sin @

The degree of polarization is a function of the refrac-
tive index n (= ns/ny) and the incident angle 6 (= 6,)
(0 < 6 < w/2). Threfore, by obtaining the degree of po-
larization from the data, | can determinethe incident angle
6, given the refractive index n.

Figure 3 shows the relationship between the degree of
polarization and the incident angle. Here, the horizontal
and vertical axes denote the incident angle and the degree
of polarization, respectively. | can obtain the incident an-
gle from the observed degree of polarization even if | do
not know the intensity of the light source. The function
has an extremum at the Brewster angle. From this func-
tion, an observed degree of polarization provides two pos-
sible incident angles, except at the Brewster angle. It is
necessary to have a method to resolve this ambiguity. In
this paper, | propose to solve this problem by two meth-
ods, one by considering the polarization of far infrared
light (Section 3), and the other by comparing two polar-
ization data through rotating the object (Section 4).

2.2. Polarization Raytracing
2.2.1. Mueller Calculus

A conventional raytracing method renders a 2D image
from 3D geometrical shape data of transparent objects or

other kind of objects. In this paper, | call the raytracing
method which considers the polarization effect the polar-
ization raytracing method. The algorithm of the polariza-
tion raytracing method can be divided into two parts. For
the first part, the calculation of the propagation of the ray,
| employ the same algorithm used in the conventional ray-
tracing method. For the second part, the calculation of
the polarization state of the light, the direct implementa-
tion of Section 2.1 is possible, however, there are more
effective methods to calculate the polarization: Mueller
calculus [15], Jones calculus [15], and the method which
uses the coherence matrix [14]. In this paper, | employ
Mueller calculus, because of its simplicity of description,
along with its ease of understanding and implementation.
These three methods have almost identical functions; thus,
all discussions presented in this paper are also applicable
to other calculi. | will present a brief overview of Mueller
calculus in the following pages; however, | will leave the
details to the literature [15].

In Mueller calculus, the polarization state of the light
is represented as Stokes vector s = (s, 51, 52, s3)7 . The
Stokes vector is a 4D vector. Its first component sg rep-
resents the intensity of the light; its second component
s1 represents the horizontal power of the linear polariza-
tion; its third component s» represents the +45°-oblique
power of the linear polarization; and its fourth component
s3 represents the power of the right circular polarization.
The Mueller matrix M, which is4 x 4 matrix, represents
how the object changes the polarization state of the light.
The operation of Mueller calculusis alinear operation.

2.2.2. Mu€ller Matrix

First, | introduce a method for calculating the polariza-
tion state of the reflected light and the transmitted light
when the POl angleis 0°; after that, | introduce a method
for the case when the POI angleis not 0°.

Mueller Matrices of reflection R, and transmission T
when the POl angleis0° are represented as follows:

(Ry+ R1)/2 (Ry—Ry)/2 0 0
R | (Bi— RU/2 (By+R)/2 0 0
|0 0 VRERL 0

0 0 0

VEAIRL



(T +T)/2 (T =Tu)/2 0 0
_| @ =To/2 (T +Tu)/2 0 0
= 0 0 VIIL 0 -
0 0 0 VTTL

Therefore, if | have alight ray with the Stokes vector s
impinged on an object, then the Stokes vector of reflected
light will be Rs, when the POI angle is 0°. The same
thing can also be said of the transmitted light.

Figure 2 illustrates the case when the POI angle is .
Figure 4 explains how to calculate the reflected light for
this case. The reflection matrix R. is always multiplied to
the Stokes vector whose POI angle is transformed to 0°.
So, | first rotate theincident Stokes vector s with the angle
—p. After that, R is multiplied to the transformed Stokes
vector. Finally, the Stokes vector is rotated again with the
angle + in order to restore the original coordinates. The
resulting Stokes vector s’ is as follows:

s' = C(¢)RC(~v)s | ®)
where rotation matrix C isgiven as:
1 0 0 0
Cly) = 0 C?S 2¢p —sin2¢ 0 )
0 sin2¢ cos2¢y 0
0 0 0 1

As for the case in Figure 2, observed light is a compo-

sition of reflected light and transmitted light. Therefore,
the Stokes vector s’ of the observed light is calculated as
follows:

s' = C(Y)RC(—v)s, + C(¢)TC(—¥)s: , (10)
where Stokes vectors of the incident light are represented
as s, and s;, and where s, and s, represent the lights

which are set in the origin of the reflection and transmis-
sion, respectively.

2.2.3. Phase Shift

If anincident angleislarger than the critical angle, then
the light does not transmit and totally reflects. This phe-
nomenon is caled tota reflection and occurs when the
light is inside the object. Critical angle is defined in fol-

lowing equation:
sinfe = 22 (11)
ni
Here, n; and n, are the refractive indices of two materi-

als, where n; > n»; for example, ny and n, might be the
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(b)Example for Mueller calculus

Fig. 4: Calculation example of rotation Mueller matrix for
reflection.

refractive indices of the object and the air, respectively.
Phase of the reflected light shifts when the total reflection
occurs. Therefore, for the total reflection, the following
matrix D is used instead of the reflection Mueller matrix
R:

0 0 0
1 0 0
0 cosd sind
0

—sind cosd

D) = . @

o o O =

where § is the amount of the phase shift, calculated by
using the following formula:

5§ cosf+/sin’6 — n?

tan — =
2

(13)

sin? 0

where 6 is the incident angle and n = ny/ny, where ny
and n» are the refractive indices of the object and the air,
respectively.

When theincident angleislessthan the Brewster angle,
the phase of the reflected light will be inverted; thus, the
matrix D(180°) should be multiplied from the left to the
reflection Mueller matrix.

2.2.4. Degree of Polarization

Because the linear polarizer is used in this research,
the fourth parameter s; of the Stokes vector cannot be
determined. The relationship between the Stokes vector



(80, 51, SZ)T and Imaxv Iminv 1/) is:

S0 1 0 0 Imin + Imax
51 |=]0 cos2¢p —sin2¢ || Imin — Imax |, (14)
S9 0 sin2¢ cos2y 0

where I, and I,,;, are defined in Section 2.1, and v
is a POl angle aso defined in Section 2.1. The degree
of polarization represents how much the light is polarized
and is defined as follows:
jo Vit ntss (15)
S0

However, linear polarizer can only calculate thefollowing
degenerated DOP:

_ Imax - Imin VvV 5% + 5% (16)
N Imax + Imin N S0 .
For the remainder of this paper, | refer to the ratio calcu-

lated by Equation (16) as DOP.

2.2.5. lllumination Distribution

In this paper, | assume that al light sources are unpo-
larized. In Section 5, | assume that the intensity of the
illumination is known.

3. Shape Estimation of Transparent Objects by
using Polarization Analysis and Thermal Radi-
ation

In this section, | explain the method to solve the ambi-
guity by introducing thermal radiation.

3.1. Introduction

Section 2 explained how to calculate surface normal
from polarization data. However, there exist an ambiguity
problem of determining the zenith angle ¢ from the DOP
p, since the correspondence between p and 6 is not one-
to-one but one-to-two. Fortunately, the correspondence
between the DOP and the zenith angle will be one-to-one
if we obtain the DOP of the thermal radiation observed in
the infrared light domain. In this section, | explain how to
obtain the correct surface normal by disambiguating ¢ by
analyzing the thermal radiation by using the knowledgein
thermodynamics and optics.

3.2. Thermal Radiation

Any object who has a positive temperature will radi-
ate energy. Let us explain the polarization phenomenon
of thermal radiation by considering the light emitted from
inside the object [16-21]. Thermal radiation emitted from

inside the object is transmitted through the interface sur-
face and radiated into the air.

For the explanation in this section, suppose material 1
be the object and materia 2 be the air, as shown in Figure
1. Inthiscase, 65 > 6;. Therefractive index of the object
relative to the air will be n = ny/ns. 65 isthe emitting
angle.

| can define the parallel and perpendicular intensity ra-
tios of transmission, 7}, and 7', , as

sin 26, sin 205
sin2(91 + f2) cos? (6 — 03)
T, = si.n 2291 sin 26+ (17)
sin(0y + 62)
Therefore, ., and I, will be written by using the
total energy of the emitted light, W/, as
1 g
B TR T T Y

1 =

W. (18)

The degree of polarization of thermal radiation p g will
be asfollows:
—Iyn Ty =T
. Imax — Imin Il L . (19)

i = Imax + Imin - ﬂ| + TJ_

3.3. Degree of Polarization of Thermal Radiation

Figure 5(a) shows the relation between the DOP, p 1R,
and the emitting angle, 6. Asshown inthisfigure, thereis
a 1-to-1 correspondence between the DOP and the emit-
ting angle. Therefore, once | measure the DOP in an in-
frared light, | can uniquely determine the emitting angle.
For the sake of comparison, Figure 5(b) representsthe vis-
ible light condition. In this function, as mentioned, one
DOP value corresponds to two emitting angles.

Unfortunately, however, the DOP in emitted infrared
light is much smaller than that in reflected visible light.
Thus, | propose to use both visible and infrared light. By
using visible light, | can achieve a highly accurate mea-
surement with ambiguity. By using the infrared light, |
discriminate between the two sides.

4. Shape Estimation of Transparent Objects by
using Polarization Analysisand Differential Ge-
ometry

In this section, | introduce the method of solving the
ambiguity by rotating the object.
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1.5), and (b)reflected light (visible light) (n = 1.5)

4.1. Introduction

Section 2 explained how to calculate surface normal
from polarization data. In that section, | indicated that
there exists an ambiguity problem: the surface normal
cannot be uniquely determined from several possible sur-
face normal's obtained by the measurement. As| discussed
in Section 2.1.2, the zenith angle 6 of the surface nor-
mal can be determined from the degree of polarization p,
though there is an ambiguity problem. In this section, |
explain how to disambiguate the ambiguity of ¢ and to ob-
tain the correct surface normal by rotating the object and
analyzing the differential-geometrical property of the sur-
face, observing the object in visible light domain, which
is a different approach from the method in Section 3 but
same purpose. If the reader of this paper is not familiar to
the fundamental theory of Gaussian geometry, please read
the literature [22, 23].

4.2. Brewster Segmentation

| have explained how to obtain the DOP of the light
reflected on the object surface in Section 2. Now, | seg-

ment the data of DOP into some regions bounded by the
Brewster angle 6. Points of the Brewster angle have no
ambiguity and the DOP p isequal to 1.

Since | assume that the object is a closed, smooth ob-
ject, the curve connected by points of the Brewster angle
will form a closed curve. This curve is sometimes thick,
sometimes thin, and sometimes a combination of both. |
denote a point where the zenith angle is equal to Brew-
ster angle as the “Brewster point” and the closed curve
consisting of Brewster points as the “Brewster curve.” |
define the segmentation by Brewster curves as “Brewster
segmentation.”

Theincident angle of all pointsin the region segmented
through the Brewster segmentation, is either greater than
the Brewster angle or smaller than the Brewster angle.
Therefore, | can uniquely determine all the incident an-
glesin theregion if | can disambiguate only one point in
the region.

Now, let us consider the surface regions segmented with
regard to the Brewster angle with a Gaussian sphere rep-
resentation. The regions generated by Brewster segmen-
tation can be grouped into three classes(Figure 6):

1. B-E region — a region enclosed within a Brewster
curve and an occluding boundary (mapped to the
Equator on the Gaussian sphere),

2. B-N region — aregion enclosed only with a Brew-
ster curve and containing asurface normal toward the
viewer direction (mapped to the North Pole on the
Gaussian sphere),

3. B-B region — a region enclosed only with one or
more Brewster curve(s) and neither containing oc-
cluding boundary nor the surface normal facing the
viewer.

The result of the Brewster segmentation of the object
depicted in Figure 7 is shown in Figure 8. Figure 8(a) is
a gray image of the DOP, where p = 0 is represented as
black and p = 1 isrepresented aswhite. Figure 8(b) isthe
result of the Brewster segmentation of Figure 8(a). There
are two Brewster curves and one occluding boundary and
one each of B-E region, B-B region, and B-N region.

4.2.1. B-E Region

The B-E region is the region which includes the occlud-
ing boundary whose zenith angle ¢ equals 90°. On the
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Fig. 7: A photograph of the bell-shaped object.

Gaussian sphere, B-E region is enclosed within a small
circle mapped from the Brewster curve and an equator
mapped from the occluding boundary. The zenith angle of
all the points of B-E region is located between the Brew-
ster angle and the occluding angle, 90°. The graph de-
scribed in Figure 3 indicates that the correspondence be-
tween ¢ and p isoneto one at thisregion, g < 6 < 90°;
thus, | can uniquely determine the incident angle from an
observed DORP, p.

| assume that the self-occlusion never occurs even if |
tilted the object at an infinitesimal angle. To satisfy the

(a) (b)
Fig. 8: (a) A gray image of obtained degree of polarization
of the bell-shaped object and (b) the result of Brewster
segmentation.

above assumptions, | consequently assume that there are
no points where the zenith angle 6 is equal to 90° ex-
cept for the occluding boundary. By calculating the back-
ground subtraction image, the occluding boundary can be
calculated; thus, the B-E region is easily determined.

4.2.2. B-N Region

The B-N region isthe region which includesthe point(s)
mapped onto the North Pole on the Gaussian sphere. As
shown in Figure 3, the region is mapped to a spherical cap
on the Gaussian sphere, enclosed by asmall circle mapped
from the Brewster curve. The North Poleislocated at the
center of this spherical cap. The zenith angle of all the
points in this region is in the range of 0° < § < fp.
From the graph in Figure 3, | can also conclude that, in
this range, the correspondence between ¢ and p is one-to-
one, and | can also determine the zenith angle from the
observed DOP.

If the DOP p equals to 0, the zenith angle ¢ will be 0°
or 90°. However, since | assume that the points where the
zenith angle 6 isegual to 90° only appear at the occluding
boundary, the B-N region is determined only by searching
the point where the degree of polarization equals to zero.

4.2.3. B-B Region

The B-B region is defined as the region which includes
neither the occluding boundary nor the North Pole points
and is bounded by one or more Brewster curves. The re-
gion which is neither the B-E region nor the B-N region is
the B-B region. Inthe following sections, | will propose a
method for disambiguating B-B regions.

4.3. Folding Curve

There are two possibilities for the existence of the B-B
region on the Gaussian sphere. The B-B regioniseither on
the northern side of the Brewster curve or on the southern
side of the Brewster curve. The B-B region mapped onto
the Gaussian sphereis bounded by one Brewster curve and
one or more extra curves (Figure 6). By considering the
points in the B-B region on Gaussian sphere, | find that
there is one extreme point — northernmost or southern-
most — in each azimuth angle. | denote the set of these
points to be a folding curve. Now, | will prove that the
folding curve is a geometrical invariant; Gaussian curva-
ture at folding curve will be zero.



Theorem Any folding curve on an object surface is a
parabolic curve on that object surface. That is to say, at
any surface point on a folding curve, the Gaussian curva-

Camera

ture at the surface point vanishes.

Proof. A surface normal can be represented in gradient
space, a space constructed by gradients p and ¢:
OH OH
= oz’ q= % )
where T = H(x,y) denotes the height of the object
surface. A folding curve is an extremum not only in a
Gaussian sphere, but aso in gradient space, p = p(x, y)
and ¢ = ¢(z,y). Therefore, one or both of the following

equation holds:

(20)

op Op
5 = oy - ()
dq 0q
5 =y =" (22)

Hessian # and Gaussian curvature K are related by the
following equation:

sgnK —sgndet H | (23)
where Hessian is defined as:
?H  0*H
_ ox?  Jxzdy
H= 2 o2g |- (24)
Oydx  Oy?
Since (21) or (22) holds, from (20)-(24), K = 0 isfindly
obtained. d

A parabolic curve is a curve where Gaussian curvature
is zero and Gaussian curvature of object surface does not
change through object rotation. Therefore, | can conclude
that thefolding curveisintrinsic to an object and invariant
from the viewer direction.

4.4. Corresponding Points

| will solve the ambiguity in the B-B region by com-
paring the data of the DOP of the object placed unrotated
and that of the object rotated at asmall angle (Figure 9). |
compare the DOP at two points where the invariant prop-
erty on the surface matches, and disambiguate the ambi-
guity problem.

The Gaussian mapping of the B-B region of the object
surface onto the Gaussian sphere is depicted in Figure 6.
The B-B region includes neither the occluding boundary
nor the north pole point, and isbounded only by the Brew-
ster curve; thus, the folding curve always appears.

= =

S S

Polarizer

—

the

. object X
Non-rotated object Rotated object

Fig. 9: Object rotation.

Fig. 10: Corresponding Point.

| define the corresponding point as the point where
the folding curve and the great circle intersect (Figure
10). Thisgreat circle must be a cross-section between the
Gaussian sphere and the plane which is parallel to the ro-
tation direction of the object and includes the north pole of
the Gaussian sphere. The surface point which is mapped
onto this great circle, still maps onto this great circle after
the object rotation, thus enabling unique matching.

To summarize:

1. If the B-B region is mapped onto the north of the
Brewster curve, choose the northernmost point for
the corresponding point which intersects the great
circle; namely, choose the point where the DOP is
minimum.

2. If the B-B region is mapped onto the south of the
Brewster curve, choose the nearest point to the equa-
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Fig. 11: Graph of derivative of DOP (n = 1.5).

tor for the corresponding point which intersects the
great circle; namely, choose the point where the DOP
IS minimum.

4.5. Difference of Degree of Polarization

Finally, | describe the method used to resolve the am-
biguity problem of the surface normal by comparing the
DOP at the corresponding point of the nontilted object
with that of thetilted object.

| regard the refractive index n as constant; thus, the
DOP p is only afunction of the zenith angle #. The re-
lationship between the rotation angle, Ag, the DOP of
the nontilted object, p(#), the DOP of the tilted object,
p(6 + A6), and the derivative of the DOP, p/ (), will be:

pl0+20)—pl6) = ()A) . (25)

if Adissufficiently small.

In fact, the absolute value of the rotation angle is not
needed; however, | assume that the rotation direction is
known. Since the azimuth angle ¢ has also already been
determined, the sign of A¢ can be determined. As are-
sult, by calculating the sign of the difference of two DOP
values at the corresponding point and by giving the sign of
Af, | can determine, by using Equation (25), whether the
zenithangled in B-B regionisintherangeof 0 < 6 < 0y
orof b < 0 < /2 (Figure11).

5. Shape Estimation of Transparent Objects by
using Polarization Raytracing

In this section, | introduce the method of estimating the
shape by polarization raytracing.
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5.1. Introduction

The two methods described in Section 3 and Section
4 focused on solving the ambiguity problem. However,
these methods did not focus on solving the internal in-
terrefleciton problem; they only considered the reflection
and they did not consider the transmission. The method
in this section focus on solving thisinternal interreflection
problem by considering both reflection and transmission.

In this paper, a forward-facing surface of the transpar-
ent object is denoted as a frontal surface and an object
surface facing awvay from the camera is denoted as a rear
surface. The proposed method estimates the shape of the
frontal surface by using polarization raytracing when the
refractive index and the rear surface are given.

5.2. Inverse Polarization Raytracing

In this section, | introduce the proposed method for es-
timating the frontal surface shape of a transparent object
using the DOP and the POI angle as inputs under the
assumption that the refractive index and the backward-
facing surface shape are given. Details of numerical
algorithms and mathematics are shown in the literature
[24,25].

| denote the input polarization data as Ig. Polariza-
tion dataare represented as an image(2-dimensionally dis-
tributed data) where the DOP and POI angle are set for
each pixel. The polarizaiton raytracing explained in Sec-
tion 2.2 can render the polarization data from the shape
of transparent object. | denote such rendered polarization
images as Ir. The shape of transparent objects is repre-
sented as the height H, set for each pixel. Heights par-
tially differentiated by = and y are called gradient, and are
represented as p and q, respectively:

OH

3_1"
Surfacenormal n = (—p, —¢, 1) isrepresented by these
gradients. The rendered polarization image I depends
upon height and surface normal, so it can be represented
as Ir(H,p,q). A straightforward definition of the cost
function which | want to minimize can be as follows:

[] Bzt

By = (Ig — Ir(H,p,q))°

oOH

p=H, = q= v = By (26)

27
where,

(28)



| will sometimes omit the variables (xz, y) in the subse-

guent discussions for the simplicity of descriptions. Ig
depends upon p, ¢, and H, whilep, ¢, and H depend upon
each other with Equation (26). Therefore, cost function
must be modified as follows:

// (AEy + Eo)dudy

By = (Hy—p)* + (Hy —q)°

A is Lagrange undetermined multiplier.
Euler equationswhich minimizes Equation (29) will be,

(29)
where,

(30)

AOE,
=H,— ——— 31
p > Oy (31)
_ AOE,
1=y =550 (32)
I A0,
H—H—Z(Px-i'ny)—g@—H ) (33)

where H isa4-neighbor average of H.
Each of the above Equations (31)(32)(33) can be de-
composed into two steps:

p< Hy (34)
p%p—Alaa—% (35)
q < Hy (36)
q %q—Azﬁa—Zl (37)
HeH—%(px—l—qy) (38)
H+ H — /\3% (39

Here, A\;, X2, and A3 are scalar values which are deter-
mined for each pixel and for each iteration step.

First, | set initial values of the shape H for each point
of frontal surface. Next, p and ¢ are calculated by Equa-
tions (34)(36). Then, | solve Equations (35)(37). A; and
Ao should be optimal values; thus, | use Brent's method
to determine \; and A, which minimizethe error function
E. After computing p and ¢ at every pixel, | solve Equa
tion (38) by the relaxation method [26, 27] to determine
the height H. | solved the relaxation problem by using the
alternating-direction implicit method.

| do not choose to solve Equation (39) by Brent's
method because the error function E; depends upon the
change of surface normal rather than on the change of
height. Another reason is that the error function F;
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smoothly changes when the surface normal changes, but
it does not smoothly change when the height changes.

To conclude, thefrontal surface shape of transparent ob-
ject is estimated by an iterative computation, where each
step of iteration solves Equations (34)—(38), and theitera-
tion stops when Equation (27) is minimized.

6. Evaluations

In this section, | present some experimental results and
evaluate the effectiveness of three proposed methods.
6.1. Experimental Setup

This section explains the experimental setup. Section
6.1.1 explains the experimental setup which obtains the
polarization data of visible light. Section 6.1.2 explains
the experimental setup which obtains the polarization data
of infrared light.

6.1.1. Experimental Setup of Visible Light

Figure 12 represents our experimental setup, which |
named “Cocoon”, for obtaining the polarization data in
visible light domain. The target object is set inside the
center of the plastic sphere whose diameter is 35cm. This
plastic sphere is illuminated by 36 incandescent lamps.
These 36 light sources are aimost uniformly distributed
spatially around the plastic sphere by geodesic dome. The
plastic sphere diffuses the light that comes from the light
sources, and it behaves as a spherical light source, which
illuminates the target object from every direction, which
is located at the center of the sphere. This spherical dif-
fuser provides an unpolarized light. The target object is
observed by monochrome camerafrom the top of the plas-
tic sphere, which has ahole on the top. Linear polarizer is
set in front of the camera.

6.1.2. Experimental Setup of Infrared Light

Figure 13 shows the apparatus for the infrared light.
Given that the infrared light is thermal radiation from a
body and is not a reflection component, | do not use any
light source. | increase the temperature of the object to 30-
40 degrees Celsius by using ahair dryer to blow heated air
over it. | also employ aninfrared polarizer and an IR-CCD
camera.

6.2. Experimental Results

This section explains the experimental result. Section
6.2.1 shows the measurement results of the first method,



B&W camera

Camera adapter

Computer

IR/UV cut filter

LJ inear polarizer|

Plastic
sphere

40W lamp
Transparent object
[inside]

Polarizer controller

Fig. 12: Experimental setup for visible light.
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Fig. 13: Experimental setup for infrared light.

which uses thermal radiation. Section 6.2.2 shows the
measurement results of the second method, which uses
differential geometry. Section 6.2.3 shows the measure-
ment results of the third method, which uses polarization
raytracing.

6.2.1. Experimental Results of Thermal Radiation
Method

This section shows the experimental results of the first
method, which uses thermal radiation.

| determined the shape of the object shown in Figure
14(a). The shellfish-shaped object is made of acrylic and
its refractive index is 1.5. The refractive index was ob-
tained from the literature [28]. Figure 14(b) shows the
obtained shape of the object.

6.2.2. Experimental Results of Differential Geometry
Method

This section shows the experimental results of the sec-
ond method, which uses differential geometry.
First, | used an acrylic transparent hemisphere whose
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(a) Acrylic shellfish object (b) Obtained shape

Fig. 14: The resulting shape of the shellfish-shaped object

Fig. 15: A rendered image of the obtained shape of the
bell-shaped object.

diameter was 30mm and refractive index was 1.5, ob-
tained from the literature [28]. Error was calculated as
an average value throughout the entire object surface, i.e.,
computed as an absol ute difference between the true value
and the obtained value. The errorsof DOP, incident angle,
and height were 0.17, 8.5°, and 1.1mm, respectively.

Next, | determined the shape of the bell-shaped ob-
ject shown in Figure 7. The object was made of acrylic
and its refractive index is 1.5, obtained from the litera-
ture [28]. The diameter(width) of the object was 24mm
and the height was 8mm. | tilted the object approximately
8 degrees and obtained the data from two views. Figure
15 shows the rendered image of the estimated shape of the
object. Figure 16 illustrates how the estimated shape fitted
the true shape. Dots represent the obtained height and a
solid line represents the true val ue, which was obtained by
hand using the edge from the photo of the object observed
from the side. An average error(=absolute difference) of
the height was 0.4mm.

Another transparent object shown in Figure 17(a) was
measured. This moutain-shaped object was made of
epoxy and its refractive index was 1.6 [28]. The diam-
eter(width) of the object was 45mm and the height was
25mm. Figure 17(b) shows the result of region segmen-
tation. Here, one B-E region, one B-N region, and four



B-E region

B-B region

Fig. 17: Measurement result of transparent moutain-
shaped object: (a) Real image, (b) region segmentation
result, and (c) and (d) rendered image.

B-B regions are observed. | rotated the object approxi-
mately 8 degrees. Figure 17(c) and Figure 17(d) represent
the estimated shape of the object.

6.2.3. Experimental Results of Inverse Polarization
Raytracing Method

This section shows the experimental results of the third
method, which uses polarization raytracing.

| observed an acrylic transparent hemisphere from the
spherical part, whose refractive index was 1.5 and diame-
ter was 30mm. The frontal surface was a hemisphere and
rear surface was a disk. The camera was set orthogonal
to the disk. | assumed that the illumination distribution is
known.

The estimation result is shown in Figure 18. Figure
18(a) represents the result of Saito’s method [9] and, at
the same time, it represents the intial value. Figure 18(b)
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(a)

Fig. 18: 3D hemispherical object result: (a)lnitia state,
(b)result after 10 loop.

(b)

is the result after 10 loop of the method. The computa
tion time was 36[sec] for 1 loop with 7,854 pixels by us-
ing Pentium4 3.4GHz. Here, the maximum number of the
light ray traced is 10 reflection or transmission, however,
if the energy of the light ray becomes less than a certain
threshold, the tracing of the light ray is stopped.

In order to evaluate the estimation result in more detail,
another evaluation was donein the 2D plane which was a
cross section of the 3D object, which included the center
of the base circle and the line perpendicular to that circle.
A light ray which was inside this plane did not go out,
and a light ray which was outside this plane did not come
in. The proposed algorithm estimated the frontal surface
shape, a semicircle, by using the polarization data of the
2D plane as input data.

The result of applying the proposed method is given
in Figure 19(d). For comparison, the result of Saito’s
method [9] is shown in Figure 19(a). In Figure 19, the
solid line represents the estimated shape, and the dotted
line represents the true value. The shape computed by
Saito’s method(Figure 19(a)) isused as aninitial valuefor
Figure 19(d). Figure 19(b)(c)(d) is the result after 5, 25,
and 50 loops, respectively.

The error value, Equation (27), is plotted in Figure 20.
In Figure 20, vertical axis represents the value of Equation
(27), and horizontal axis represents the number of itera-
tion. The leftmost valueis the error of Saito’s method [9].

The computation time was 5.9[sec] for 1 loop with 320
pixels by using Pentium4 3.4GHz. Here, the maximum
number of the light ray traced is 100 reflection or trans-
mission, however, if the energy of the light ray becomes
less than a certain threshold, the tracing of the light ray is
stopped.

The RMSerror between the estimated value and the true
value was used to compare the accuracy between the pro-
posed method and Saito’s method. The RMS error of the



Fig. 19: Estimation result: (a) Result of Saito’s method,
(b)(c)(d) result after 5, 25, and 50 loops with proposed
method, respectively.
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Fig. 20: Error for each loop.

surface normal was 13.5° for Saito’'s method and 7.02°
for the proposed method. The RMS error of the height
was 2.77mm for Saito’s method and 0.607mm for the pro-
posed method.

Next, | apply the method to the bell-shaped transparent
object shownin Figure 7. The object is observed from the
sticked-out part of the object. The frontal surface wasthe
curved surface and rear surface was a disk. The camera
was set orthogonal to the disk. | assumed that the illumi-
nation distribution is known. | estimated the shape of the
cross-section of the object to analyze the precision of the
proposed method. Figure 21(d) illustrates the estimated
shape of the object. Solid curve represents the obtained
frontal height, and dotted line represents the given rear
height. Initial value is set to be a semicircle shown in
Figure 21(a). Estimated shape after 1, 5, and 20 loopsis
illustrated in Figure 21(b), (c), and (d), respectively. True
shape is represented as a solid curve in Figure 16. An
error(=mean deviation) of the height was 0.24mm. The
computation time was 7.0[sec] for 1 loop with 320 pixels
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Fig. 21: Estimated shape of bell-shaped acrylic object by
using the inverse polarization raytracing method: (a) ini-
tial value, (b)(c)(d) estimated after 1, 5, and 20 loops, re-
spectively.

Fig. 22: A photograph of the heart-shaped object.

by using Pentium4 3.4GHz.

| also apply the method to the heart-shaped transparent
object shown in Figure 22. The object was made of glass
and its refractive index is 1.5, obtained from the litera-
ture [28]. The object is observed from the curved surface
of the object. The frontal surface was the curved surface
and rear surface was a planar surface. The camera was
set orthogonal to the rear surface. | assumed that the il-
lumination distribution is known. The estimation result is
shown in Figure 23. Figure 23(a) represents the result of
Saito’s method [9] and, at the sametime, it represents the
intial value. Figure 23(b) is the result after 10 loop of the
method. Figure 23(c) is rendered example of raytracing
method by using the estimated shape.

7. Conclusion
7.1. Summary

In this paper, | have proposed three methods for deter-
mining the shape of a transparent object by using polar-

ization filter. Algorithm that uses only one view in visi-
ble light domain results in ambiguities. The first method
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Fig. 23: Result of heart-shaped object: (a)Initial state,
(b)result after 10 loop, (C)raytraced image.

solves this ambiguity problem by employing the polar-
ization in infrared light domain, and the second method
solves it by employing the polarization of a dlightly tilted
view. These two methods still have a problem that they do
not consider the internal interreflection. The third method
solves this internal interrefleciton problem by employ-
ing the polarization raytracing algorithm. The ambiguty
problem and the polarization raytracing al gorithm are pre-
sented in Section 2.

First method [29] The thermal radiation, which aso has
characteristics of polarization, can be observed asin-
frared light. This polarization is an one-valued func-
tion; measuring degree of polarization ininfrared do-
main provides the unique zenith angle. However, the
degree of polarization is relatively low, and in some
cases it is difficult to determine the degree of polar-
ization precisely. Therefore, | propose to use polar-
ization in both visible and infrared light. Thismethod
is presented in Section 3.

Second method [30] By rotating the object, the ambigu-
ity problem can be also solved. Two sets of data are
obtained: One is from the object not tilted, and the
other isfrom the object tilted at a small angle. These
data are segmented into some regions with regard
to the Brewster angle. Then, the method calculates
the difference of the degree of polarization between
these two sets of data at the corresponding point —
the point where surface normal liesalong the rotation
direction and where the degree of polarizationismin-
imum in the B-B region. From that difference, the
correct surface normal is determined. Thismethod is
presented in Section 4.

Third method [31] Solving the inverse problem of po-
larization raytracing method, the shape of transparent
objects can be estimated more precisely. Polarization
raytracing method considers the internal interreflec-
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tion. To obtain the shape of transparent object, the
method minimizes the difference between the input
polarization data taken by observing the transparent
object and the computed polarization data rendered
by the polarization raytracing method. This method
ispresented in Section 5.
| have implemented these proposed methods, and
demonstrated their abilities to determine the shape of
transparent objects. Experiments are presented in Section
6.

7.2. Future Work

The future work is to obtain the shape of transparent
objects more accurately. | also intend to develop amethod
which can measure the refractive index at the same time
aswell as the surface shape of transparent object. By col-
laborating with a company, | am trying to develop a po-
larization camera [32], which measures the polarization
state of the light more faster than existing realtime po-
larization camera [33-35]. Another future work isto de-
velop a commercial product for measuring the shape of
transparent object by collaborating with a camera manu-
facturer. 1 am also planning to collaborate with scientists
of physics to obtain some advices to make my methods
more robustly by using the professional knowledgesin the
field of physics.

There are many beautiful glass objects of art in all over
theworld. The proposed method will be useful for model-
ing such glass objects of art. Other application field of the
modeling of transparent objects can range from computer-
aided manufacturing, classifying garbage/rubbish for re-
cycling glass and plastic bottles, to creating 3D catalogs
for online shopping, etc. For the first step for such awide
areaof applications, | proposed abasic technique for mod-
eling the surface shape of transparent objects.
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