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偏光解析による透明物体の形状計測
宮崎大輔 池内克史

東京大学情報理工学系研究科コンピュータ科学専攻

あらまし コンピュータグラフィクスやバーチャルリアリティの技術が様々な場面で応用されるにした

がって，現実物体の３次元形状を計測する手法の重要性が高まってきた．しかしながら，ガラスやア

クリルといった透明な物体の３次元形状を計測する手法はわずかしか提案されておらず，一般に普及

されるには至っていない．本論文では，偏光解析をもとに透明物体の表面形状を計測する三つの手法

を提案する．一つ目の手法では，熱力学の知識ももちいて透明物体の表面形状を決定する．二つ目の

手法では，微分幾何学の知識ももちいて透明物体の表面形状を決定する．三つ目の手法では，透明物

体の表面形状の初期値をもとに，反復計算により真の表面形状を決定する．

Shape Estimation of Transparent Objects

by using Polarization Analyses
Daisuke Miyazaki and Katsushi Ikeuchi

Computer Science, Graduate School of

Information Science and Technology, The University of Tokyo

Abstract Today, techniques developed in the field of computer graphics and virtual reality are applied in

many scenes, resulting the method of measuring 3D shape of real objects to be more and more important.

However, less methods are proposed to measure 3D shape of transparent objects such as glasses and acrylics.

In this paper, I propose three kinds of method, which estimate the surface shape of transparent object by using

polarization analysis. The first method determines the surface shape of transparent object by also using the

knowledge established in the research field of thermodynamics. The second method determines the surface

shape of transparent object by also using the knowledge established in the research field of differential geom-

etry. The third method determines the true surface shape of transparent object by an iterative computation by

giving an initial value of the surface shape.

1. Introduction

In the field of computer vision, few methods have been

proposed for estimating the shape of transparent objects,

because of the difficulty of treating with the internal in-

terreflection(=internal reflection or interreflection), which

are the phenomena that the light not only reflects at the

surface of the transparent object but also transmits into

the object and causes multiple reflection and transmission

inside it. This paper presents three methods for estimating

the surface shape of transparent objects by analyzing the

polarization of transparent objects.

1.1. Related Work

Polarization is a phenomenon in which the light os-

cillates in one direction. Recently, research to estimate

the object shape by using polarization has increased.

Kosikawa and Shirai [1] proposed to use the degree of

polarization, employing circulary polarized light sources

to determine the surface normal of specular polyhedrons.

They used a method called Mueller calculus to calculate

the polarization state of the light. Wolff and Boult [2]

indicated that the surface normal of the object surface is

constrained by analyzing the polarization of the object,

and estimated the surface normal of a planer glass from
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two views. Rahmann [3] estimated the orientation of a

flat object and the position of the light source by polariza-

tion analysis of single view. Rahmann also [4] addressed

the potential of recovering the shape of specular surfaces

from polarization. Later, Rahmann and Canterakis [5] es-

timated the shape of specular objects from two or more

views. Also, they proved that the quadratic shape of spec-

ular objects can be estimated from two views [6]. Dr-

bohlav and Šára [7] estimated the shape of diffuse objects

by combining the polarization analysis and the photomet-

ric stereo. Miyazaki et al. [8] estimated the shape and

reflectance of specular objects and the illuminant direc-

tion from one view. Saito et al. [9] employed the analy-

sis of the degree of polarization and developed a method

with which the surface of a transparent object could be

determined; however, the degree of polarization provided

two candidates of surface normal, and they did not solve

this ambiguity. Unfortunately, because these methods do

not consider internal interreflections, they do not provide

sufficient accuracy for estimating the shape of transparent

objects.

A little methods which estimate the 3D shape of trans-

parent objects have been proposed. Murase [10] estimated

the shape of water surface by analyzing the undulation of

the water surface. Hata et al. [11] estimated the surface

shape of transparent objects by analyzing the deformation

of the light projected onto the transparent objects. Ohara

et al. [12] estimated the depth of the edge of transparent

object by using shape-from-focus. Ben-Ezra and Nayar

[13] estimated the parameterized surface shape of trans-

parent objects by using structure-from-motion. These

methods, however, do not estimate arbitrary shapes of

transparent objects.

1.2. Overview

Saito et al. [9] employed the analysis of the degree of

polarization and developed a method with which to mea-

sure the surface of a transparent object. Then, by mea-

suring the DOP(=degree of polarization) of a transparent

object, they determined surface normals. Unfortunately,

however, the DOP provides two solutions corresponding

to one DOP.

In this paper, I propose to disambiguate these two so-

lutions by two methods. One is to introduce the DOP

of the thermal radiation, and the other is to introduce

the polarization analysis by considering the differential-

geometrical property of the object surface. Saito’s method

and these two methods do not consider the effect of in-

ternal interreflection, hence, I propose another method to

estimate the surface shape of transparent objects more pre-

cisely by considering both reflection and transmission.

The paper is organized as follows. In Section 2, I

present the background theory of polarization and then

develop an underlying algorithm to determine surface nor-

mal up to two possible incident angles, using the polariza-

tion. I describe the first method in Section 3: This method,

using thermal radiation, solves the ambiguity problem of

Saito’s method and obtain an unique surface normal of

transparent object. I describe the second method in Sec-

tion 4: This method, using differential geometry, solves

the ambiguity problem of Saito’s method and obtain an

unique surface normal of transparent object which is also

done in the first method. I describe the third method

in Section 5: This method, using polarization raytrac-

ing, solves the internal interreflection problem of Saito’s

method, the first method, and the second method. In Sec-

tion 6, I describe the apparatus of these three methods and

the experimental results of them. Section 7 concludes the

paper.

2. Polarization Analysis

2.1. Fresnel Reflection

In this section, I present a brief overview of the ba-

sic equation of reflection and refraction [14]. In Figure

1, let us consider the case in which a light hits the in-

terface surface between two materials, the refractive in-

dices of which are denoted as n� and n�, respectively.

One part of the light is reflected from the interface sur-

face, while another part penetrates the surface and is re-

fracted when it enters the second material. The plane in-

cluding the surface normal and the incident light ray is

called the POI(=plane of incidence). I identify the paral-

lel and perpendicular components to the POI as k and �,

respectively. The incident, reflecting, and transmitting an-

gles are defined as ��, ���, and ��, respectively, as shown

in Figure 1. Since I focus on optically smooth transparent

objects, the incident angle and the reflecting angle will be
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Fig. 1: Reflection, refraction, and transmission.

the same �� � ���. �� and �� is related by Snell’s law,

n� sin �� � n� sin �� � (1)

I define the parallel and perpendicular intensity reflectiv-

ities, Rk and R�, respectively, as

Rk �
tan���� � ���

tan���� � ���

R� �
sin���� � ���

sin���� � ���
� (2)

From the above equation, an incident angle to makeRk �

� can be obtained. This incident angle is referred to as the

Brewster angle, �B . The Brewster angle is obtained by

substituting �� � �� � ��� (namely, Rk � �) into Snell’s

equation as

tan �B �
n�
n�

� (3)

Once the reflecting angle and the POI angle are known,

I can determine the surface normal with respect to the

viewer, as shown in Figure 2. I will denote the POI an-

gle and the reflecting angle as � and �, respectively, and

determine these two angles by using the degree of polar-

ization of reflected light.

2.1.1. POI Angle

As shown in Equation (2), the intensity of the reflected

light varies depending on the direction of oscillation in

the plane of oscillation; therefore, a difference can be ob-

served when the polarization filter is rotated in front of a

CCD camera. The variance is described as a sinusoidal

function of rotation angles. I will denote the maximum

and minimum brightness in the observed intensities as

Fig. 2: Reflected and transmitted light observed by the

camera.

Imax and Imin . Given that the sum of the maximum and

minimum brightness is the total brightness of the reflected

light Ispec,

Imax �
R�

Rk � R�
Ispec� Imin �

Rk

Rk �R�
Ispec � (4)

By this equation, the direction parallel to the plane

of incidence provides the minimum brightness Imin .

Namely, by measuring the angle where the minimum

brightness is observed, I can determine the POI angle �

(� � � � ��). POI angle is determined as the angle

between �x-axis and POI, from �x-axis to �y-axis, as

shown in Figure 2. There are two possible POI angles,

�LO and �HI, which are definable as �HI � �LO � �,

where � � �LO � � and � � �HI � ��. Surface normal

can be represented in polar coordinates with zenith angle

� and azimuth angle �. Azimuth angle � equals to �LO or

�HI.

Since I assume that the object is a closed, smooth ob-

ject, I can determine the surface normal at the occlud-

ing boundary; the surface normal heads for the outside

of the shape of the projection of the object at the occlud-

ing boundary. By using the � at the occluding bound-

ary as an initial condition, I propagate the constraint of �

throughout the surface and, finally, determine the value of

�, whether it is � � �LO or � � �HI, over the entire

surface, assuming that all local parts of the surface are not

concave toward the camera direction.

2.1.2. Incident Angle

The definition of the degree of polarization is,

	 �
Imax � Imin

Imax � Imin

� (5)

The degree of polarization is 0 when the light is unpolar-

ized, whereas it is 1 when the light is linearly polarized.
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Fig. 3: Relation between the degree of polarization and

the incident angle (n � ���).

The linearly polarized light is observed when the incident

angle and the reflecting angle are at the Brewster angle.

By substituting Equation (4) and (2) into Equation (5)

with Snell’s law, I can represent the degree of polarization

	 as

	 �
� sin� �

p
n� � sin� � � n� sin� � � sin� �

n� � sin� � � n� sin� � � � sin� �
� (6)

The degree of polarization is a function of the refrac-

tive index n (� n��n�) and the incident angle � (� ��)

(� � � � ���). Threfore, by obtaining the degree of po-

larization from the data, I can determine the incident angle

�, given the refractive index n.

Figure 3 shows the relationship between the degree of

polarization and the incident angle. Here, the horizontal

and vertical axes denote the incident angle and the degree

of polarization, respectively. I can obtain the incident an-

gle from the observed degree of polarization even if I do

not know the intensity of the light source. The function

has an extremum at the Brewster angle. From this func-

tion, an observed degree of polarization provides two pos-

sible incident angles, except at the Brewster angle. It is

necessary to have a method to resolve this ambiguity. In

this paper, I propose to solve this problem by two meth-

ods, one by considering the polarization of far infrared

light (Section 3), and the other by comparing two polar-

ization data through rotating the object (Section 4).

2.2. Polarization Raytracing

2.2.1. Mueller Calculus

A conventional raytracing method renders a 2D image

from 3D geometrical shape data of transparent objects or

other kind of objects. In this paper, I call the raytracing

method which considers the polarization effect the polar-

ization raytracing method. The algorithm of the polariza-

tion raytracing method can be divided into two parts. For

the first part, the calculation of the propagation of the ray,

I employ the same algorithm used in the conventional ray-

tracing method. For the second part, the calculation of

the polarization state of the light, the direct implementa-

tion of Section 2.1 is possible, however, there are more

effective methods to calculate the polarization: Mueller

calculus [15], Jones calculus [15], and the method which

uses the coherence matrix [14]. In this paper, I employ

Mueller calculus, because of its simplicity of description,

along with its ease of understanding and implementation.

These three methods have almost identical functions; thus,

all discussions presented in this paper are also applicable

to other calculi. I will present a brief overview of Mueller

calculus in the following pages; however, I will leave the

details to the literature [15].

In Mueller calculus, the polarization state of the light

is represented as Stokes vector s � �s�� s�� s�� s��
T . The

Stokes vector is a 4D vector. Its first component s� rep-

resents the intensity of the light; its second component

s� represents the horizontal power of the linear polariza-

tion; its third component s� represents the �	��-oblique

power of the linear polarization; and its fourth component

s� represents the power of the right circular polarization.

The Mueller matrixM, which is 	� 	 matrix, represents

how the object changes the polarization state of the light.

The operation of Mueller calculus is a linear operation.

2.2.2. Mueller Matrix

First, I introduce a method for calculating the polariza-

tion state of the reflected light and the transmitted light

when the POI angle is ��; after that, I introduce a method

for the case when the POI angle is not ��.

Mueller Matrices of reflection R and transmission T

when the POI angle is �� are represented as follows:

R�

�
BBBB�

�Rk � R���� �Rk � R���� � �

�Rk � R���� �Rk � R���� � �

� �
p
RkR� �

� � �
p
RkR�

�
CCCCA
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T�

�
BBBB�

�Tk � T���� �Tk � T���� � �

�Tk � T���� �Tk � T���� � �

� �
p
TkT� �

� � �
p
TkT�

�
CCCCA � (7)

Therefore, if I have a light ray with the Stokes vector s

impinged on an object, then the Stokes vector of reflected

light will be Rs, when the POI angle is ��. The same

thing can also be said of the transmitted light.

Figure 2 illustrates the case when the POI angle is �.

Figure 4 explains how to calculate the reflected light for

this case. The reflection matrixR is always multiplied to

the Stokes vector whose POI angle is transformed to ��.

So, I first rotate the incident Stokes vector s with the angle

��. After that,R is multiplied to the transformed Stokes

vector. Finally, the Stokes vector is rotated again with the

angle � in order to restore the original coordinates. The

resulting Stokes vector s� is as follows:

s
� � C���RC����s � (8)

where rotation matrix C is given as:

C��� �

�
BBBB�

� � � �

� cos �� � sin �� �

� sin �� cos �� �

� � � �

�
CCCCA � (9)

As for the case in Figure 2, observed light is a compo-

sition of reflected light and transmitted light. Therefore,

the Stokes vector s� of the observed light is calculated as

follows:

s
� � C���RC����sr �C���TC����st � (10)

where Stokes vectors of the incident light are represented

as sr and st, and where sr and st represent the lights

which are set in the origin of the reflection and transmis-

sion, respectively.

2.2.3. Phase Shift

If an incident angle is larger than the critical angle, then

the light does not transmit and totally reflects. This phe-

nomenon is called total reflection and occurs when the

light is inside the object. Critical angle is defined in fol-

lowing equation:

sin �C �
n�
n�

� (11)

Here, n� and n� are the refractive indices of two materi-

als, where n� 
 n�; for example, n� and n� might be the

Fig. 4: Calculation example of rotation Mueller matrix for

reflection.

refractive indices of the object and the air, respectively.

Phase of the reflected light shifts when the total reflection

occurs. Therefore, for the total reflection, the following

matrix D is used instead of the reflection Mueller matrix

R:

D��� �

�
BBBB�

� � � �

� � � �

� � cos � sin �

� � � sin � cos �

�
CCCCA � (12)

where � is the amount of the phase shift, calculated by

using the following formula:

tan
�

�
�

cos �
p

sin� � � n�

sin� �
� (13)

where � is the incident angle and n � n��n�, where n�
and n� are the refractive indices of the object and the air,

respectively.

When the incident angle is less than the Brewster angle,

the phase of the reflected light will be inverted; thus, the

matrix D��
��� should be multiplied from the left to the

reflection Mueller matrix.

2.2.4. Degree of Polarization

Because the linear polarizer is used in this research,

the fourth parameter s� of the Stokes vector cannot be

determined. The relationship between the Stokes vector
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�s�� s�� s��
T and Imax, Imin, � is:�

B�
s�

s�

s�

�
CA�
�
B�
� � �

� cos �� � sin ��

� sin �� cos ��

�
CA
�
B�
Imin � Imax

Imin � Imax

�

�
CA� (14)

where Imax and Imin are defined in Section 2.1, and �

is a POI angle also defined in Section 2.1. The degree

of polarization represents how much the light is polarized

and is defined as follows:

�	 �

p
s�� � s�� � s��

s�
� (15)

However, linear polarizer can only calculate the following

degenerated DOP:

	 �
Imax � Imin

Imax � Imin

�

p
s�� � s��
s�

� (16)

For the remainder of this paper, I refer to the ratio calcu-

lated by Equation (16) as DOP.

2.2.5. Illumination Distribution

In this paper, I assume that all light sources are unpo-

larized. In Section 5, I assume that the intensity of the

illumination is known.

3. Shape Estimation of Transparent Objects by
using Polarization Analysis and Thermal Radi-
ation

In this section, I explain the method to solve the ambi-

guity by introducing thermal radiation.

3.1. Introduction

Section 2 explained how to calculate surface normal

from polarization data. However, there exist an ambiguity

problem of determining the zenith angle � from the DOP

	, since the correspondence between 	 and � is not one-

to-one but one-to-two. Fortunately, the correspondence

between the DOP and the zenith angle will be one-to-one

if we obtain the DOP of the thermal radiation observed in

the infrared light domain. In this section, I explain how to

obtain the correct surface normal by disambiguating � by

analyzing the thermal radiation by using the knowledge in

thermodynamics and optics.

3.2. Thermal Radiation

Any object who has a positive temperature will radi-

ate energy. Let us explain the polarization phenomenon

of thermal radiation by considering the light emitted from

inside the object [16–21]. Thermal radiation emitted from

inside the object is transmitted through the interface sur-

face and radiated into the air.

For the explanation in this section, suppose material 1

be the object and material 2 be the air, as shown in Figure

1. In this case, �� 
 ��. The refractive index of the object

relative to the air will be n � n��n�. �� is the emitting

angle.

I can define the parallel and perpendicular intensity ra-

tios of transmission, Tk and T�, as

Tk �
sin ��� sin ���

sin���� � ��� cos���� � ���

T� �
sin ��� sin ���

sin���� � ���
(17)

Therefore, Imax and Imin will be written by using the

total energy of the emitted light, W , as

Imax �
Tk

Tk � T�
W� Imin �

T�
Tk � T�

W � (18)

The degree of polarization of thermal radiation 	 IR will

be as follows:

	 IR �
Imax � Imin

Imax � Imin

�
Tk � T�

Tk � T�
� (19)

3.3. Degree of Polarization of Thermal Radiation

Figure 5(a) shows the relation between the DOP, 	 IR,

and the emitting angle, �. As shown in this figure, there is

a 1-to-1 correspondence between the DOP and the emit-

ting angle. Therefore, once I measure the DOP in an in-

frared light, I can uniquely determine the emitting angle.

For the sake of comparison, Figure 5(b) represents the vis-

ible light condition. In this function, as mentioned, one

DOP value corresponds to two emitting angles.

Unfortunately, however, the DOP in emitted infrared

light is much smaller than that in reflected visible light.

Thus, I propose to use both visible and infrared light. By

using visible light, I can achieve a highly accurate mea-

surement with ambiguity. By using the infrared light, I

discriminate between the two sides.

4. Shape Estimation of Transparent Objects by
using Polarization Analysis and Differential Ge-
ometry

In this section, I introduce the method of solving the

ambiguity by rotating the object.
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Fig. 5: DOP of (a)thermal radiation (infrared light) (n �

���), and (b)reflected light (visible light) (n � ���)

4.1. Introduction

Section 2 explained how to calculate surface normal

from polarization data. In that section, I indicated that

there exists an ambiguity problem: the surface normal

cannot be uniquely determined from several possible sur-

face normals obtained by the measurement. As I discussed

in Section 2.1.2, the zenith angle � of the surface nor-

mal can be determined from the degree of polarization 	,

though there is an ambiguity problem. In this section, I

explain how to disambiguate the ambiguity of � and to ob-

tain the correct surface normal by rotating the object and

analyzing the differential-geometrical property of the sur-

face, observing the object in visible light domain, which

is a different approach from the method in Section 3 but

same purpose. If the reader of this paper is not familiar to

the fundamental theory of Gaussian geometry, please read

the literature [22, 23].

4.2. Brewster Segmentation

I have explained how to obtain the DOP of the light

reflected on the object surface in Section 2. Now, I seg-

ment the data of DOP into some regions bounded by the

Brewster angle �B . Points of the Brewster angle have no

ambiguity and the DOP 	 is equal to 1.

Since I assume that the object is a closed, smooth ob-

ject, the curve connected by points of the Brewster angle

will form a closed curve. This curve is sometimes thick,

sometimes thin, and sometimes a combination of both. I

denote a point where the zenith angle is equal to Brew-

ster angle as the “Brewster point” and the closed curve

consisting of Brewster points as the “Brewster curve.” I

define the segmentation by Brewster curves as “Brewster

segmentation.”

The incident angle of all points in the region segmented

through the Brewster segmentation, is either greater than

the Brewster angle or smaller than the Brewster angle.

Therefore, I can uniquely determine all the incident an-

gles in the region if I can disambiguate only one point in

the region.

Now, let us consider the surface regions segmented with

regard to the Brewster angle with a Gaussian sphere rep-

resentation. The regions generated by Brewster segmen-

tation can be grouped into three classes(Figure 6):

1. B-E region — a region enclosed within a Brewster

curve and an occluding boundary (mapped to the

Equator on the Gaussian sphere),

2. B-N region — a region enclosed only with a Brew-

ster curve and containing a surface normal toward the

viewer direction (mapped to the North Pole on the

Gaussian sphere),

3. B-B region — a region enclosed only with one or

more Brewster curve(s) and neither containing oc-

cluding boundary nor the surface normal facing the

viewer.

The result of the Brewster segmentation of the object

depicted in Figure 7 is shown in Figure 8. Figure 8(a) is

a gray image of the DOP, where 	 � � is represented as

black and 	 � � is represented as white. Figure 8(b) is the

result of the Brewster segmentation of Figure 8(a). There

are two Brewster curves and one occluding boundary and

one each of B-E region, B-B region, and B-N region.

4.2.1. B-E Region

The B-E region is the region which includes the occlud-

ing boundary whose zenith angle � equals ���. On the

7



Fig. 6: Gaussian mapping and regions.

Fig. 7: A photograph of the bell-shaped object.

Gaussian sphere, B-E region is enclosed within a small

circle mapped from the Brewster curve and an equator

mapped from the occluding boundary. The zenith angle of

all the points of B-E region is located between the Brew-

ster angle and the occluding angle, ���. The graph de-

scribed in Figure 3 indicates that the correspondence be-

tween � and 	 is one to one at this region, �B � � � ���;

thus, I can uniquely determine the incident angle from an

observed DOP, 	.

I assume that the self-occlusion never occurs even if I

tilted the object at an infinitesimal angle. To satisfy the

Fig. 8: (a) A gray image of obtained degree of polarization

of the bell-shaped object and (b) the result of Brewster

segmentation.

above assumptions, I consequently assume that there are

no points where the zenith angle � is equal to ��� ex-

cept for the occluding boundary. By calculating the back-

ground subtraction image, the occluding boundary can be

calculated; thus, the B-E region is easily determined.

4.2.2. B-N Region

The B-N region is the region which includes the point(s)

mapped onto the North Pole on the Gaussian sphere. As

shown in Figure 3, the region is mapped to a spherical cap

on the Gaussian sphere, enclosed by a small circle mapped

from the Brewster curve. The North Pole is located at the

center of this spherical cap. The zenith angle of all the

points in this region is in the range of �� � � � �B .

From the graph in Figure 3, I can also conclude that, in

this range, the correspondence between � and 	 is one-to-

one, and I can also determine the zenith angle from the

observed DOP.

If the DOP 	 equals to 0, the zenith angle � will be ��

or ���. However, since I assume that the points where the

zenith angle � is equal to ��� only appear at the occluding

boundary, the B-N region is determined only by searching

the point where the degree of polarization equals to zero.

4.2.3. B-B Region

The B-B region is defined as the region which includes

neither the occluding boundary nor the North Pole points

and is bounded by one or more Brewster curves. The re-

gion which is neither the B-E region nor the B-N region is

the B-B region. In the following sections, I will propose a

method for disambiguating B-B regions.

4.3. Folding Curve

There are two possibilities for the existence of the B-B

region on the Gaussian sphere. The B-B region is either on

the northern side of the Brewster curve or on the southern

side of the Brewster curve. The B-B region mapped onto

the Gaussian sphere is bounded by one Brewster curve and

one or more extra curves (Figure 6). By considering the

points in the B-B region on Gaussian sphere, I find that

there is one extreme point — northernmost or southern-

most — in each azimuth angle. I denote the set of these

points to be a folding curve. Now, I will prove that the

folding curve is a geometrical invariant; Gaussian curva-

ture at folding curve will be zero.
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Theorem Any folding curve on an object surface is a

parabolic curve on that object surface. That is to say, at

any surface point on a folding curve, the Gaussian curva-

ture at the surface point vanishes.

Proof. A surface normal can be represented in gradient

space, a space constructed by gradients p and q:

p �
�H

�x
� q �

�H

�y
� (20)

where H � H�x� y� denotes the height of the object

surface. A folding curve is an extremum not only in a

Gaussian sphere, but also in gradient space, p � p�x� y�

and q � q�x� y�. Therefore, one or both of the following

equation holds:

�p

�x
�

�p

�y
� � (21)

�q

�x
�

�q

�y
� � � (22)

Hessian H and Gaussian curvature K are related by the

following equation:

sgnK � sgn detH � (23)

where Hessian is defined as:

H �

�
BB�

��H

�x�
��H

�x�y
��H

�y�x

��H

�y�

�
CCA � (24)

Since (21) or (22) holds, from (20)-(24), K � � is finally

obtained.

A parabolic curve is a curve where Gaussian curvature

is zero and Gaussian curvature of object surface does not

change through object rotation. Therefore, I can conclude

that the folding curve is intrinsic to an object and invariant

from the viewer direction.

4.4. Corresponding Points

I will solve the ambiguity in the B-B region by com-

paring the data of the DOP of the object placed unrotated

and that of the object rotated at a small angle (Figure 9). I

compare the DOP at two points where the invariant prop-

erty on the surface matches, and disambiguate the ambi-

guity problem.

The Gaussian mapping of the B-B region of the object

surface onto the Gaussian sphere is depicted in Figure 6.

The B-B region includes neither the occluding boundary

nor the north pole point, and is bounded only by the Brew-

ster curve; thus, the folding curve always appears.

Fig. 9: Object rotation.

Fig. 10: Corresponding Point.

I define the corresponding point as the point where

the folding curve and the great circle intersect (Figure

10). This great circle must be a cross-section between the

Gaussian sphere and the plane which is parallel to the ro-

tation direction of the object and includes the north pole of

the Gaussian sphere. The surface point which is mapped

onto this great circle, still maps onto this great circle after

the object rotation, thus enabling unique matching.

To summarize:

1. If the B-B region is mapped onto the north of the

Brewster curve, choose the northernmost point for

the corresponding point which intersects the great

circle; namely, choose the point where the DOP is

minimum.

2. If the B-B region is mapped onto the south of the

Brewster curve, choose the nearest point to the equa-

9



Fig. 11: Graph of derivative of DOP (n � ���).

tor for the corresponding point which intersects the

great circle; namely, choose the point where the DOP

is minimum.

4.5. Difference of Degree of Polarization

Finally, I describe the method used to resolve the am-

biguity problem of the surface normal by comparing the

DOP at the corresponding point of the nontilted object

with that of the tilted object.

I regard the refractive index n as constant; thus, the

DOP 	 is only a function of the zenith angle �. The re-

lationship between the rotation angle, 
�, the DOP of

the nontilted object, 	���, the DOP of the tilted object,

	�� �
��, and the derivative of the DOP, 	����, will be:

	�� �
�� � 	��� � 	����
� � (25)

if 
� is sufficiently small.

In fact, the absolute value of the rotation angle is not

needed; however, I assume that the rotation direction is

known. Since the azimuth angle � has also already been

determined, the sign of 
� can be determined. As a re-

sult, by calculating the sign of the difference of two DOP

values at the corresponding point and by giving the sign of


�, I can determine, by using Equation (25), whether the

zenith angle � in B-B region is in the range of � � � � �B

or of �B � � � ��� (Figure 11).

5. Shape Estimation of Transparent Objects by
using Polarization Raytracing

In this section, I introduce the method of estimating the

shape by polarization raytracing.

5.1. Introduction

The two methods described in Section 3 and Section

4 focused on solving the ambiguity problem. However,

these methods did not focus on solving the internal in-

terrefleciton problem; they only considered the reflection

and they did not consider the transmission. The method

in this section focus on solving this internal interreflection

problem by considering both reflection and transmission.

In this paper, a forward-facing surface of the transpar-

ent object is denoted as a frontal surface and an object

surface facing away from the camera is denoted as a rear

surface. The proposed method estimates the shape of the

frontal surface by using polarization raytracing when the

refractive index and the rear surface are given.

5.2. Inverse Polarization Raytracing

In this section, I introduce the proposed method for es-

timating the frontal surface shape of a transparent object

using the DOP and the POI angle as inputs under the

assumption that the refractive index and the backward-

facing surface shape are given. Details of numerical

algorithms and mathematics are shown in the literature

[24, 25].

I denote the input polarization data as IE . Polariza-

tion data are represented as an image(2-dimensionally dis-

tributed data) where the DOP and POI angle are set for

each pixel. The polarizaiton raytracing explained in Sec-

tion 2.2 can render the polarization data from the shape

of transparent object. I denote such rendered polarization

images as IR. The shape of transparent objects is repre-

sented as the height H, set for each pixel. Heights par-

tially differentiated by x and y are called gradient, and are

represented as p and q, respectively:

p � Hx �
�H

�x
� q � Hy �

�H

�y
� (26)

Surface normal n � ��p��q� ��T is represented by these

gradients. The rendered polarization image IR depends

upon height and surface normal, so it can be represented

as IR�H� p� q�. A straightforward definition of the cost

function which I want to minimize can be as follows:ZZ
E��x� y�dxdy � (27)

where,

E� � �IE � IR�H� p� q��
�

� (28)

10



I will sometimes omit the variables �x� y� in the subse-

quent discussions for the simplicity of descriptions. IR

depends upon p, q, and H, while p, q, and H depend upon

each other with Equation (26). Therefore, cost function

must be modified as follows:ZZ
�
E� � E�� dxdy � (29)

where,

E� � �Hx � p�� � �Hy � q�� � (30)


 is Lagrange undetermined multiplier.

Euler equations which minimizes Equation (29) will be,

p � Hx �



�

�E�

�p
(31)

q � Hy �



�

�E�

�q
(32)

H � �H �
�

	
�px � qy��







�E�

�H
� (33)

where �H is a 4-neighbor average of H.

Each of the above Equations (31)(32)(33) can be de-

composed into two steps:

p� Hx (34)

p� p� 
�
�E�

�p
(35)

q � Hy (36)

q � q � 
�
�E�

�q
(37)

H � �H �
�

	
�px � qy� (38)

H � H � 
�
�E�

�H
� (39)

Here, 
�, 
�, and 
� are scalar values which are deter-

mined for each pixel and for each iteration step.

First, I set initial values of the shape H for each point

of frontal surface. Next, p and q are calculated by Equa-

tions (34)(36). Then, I solve Equations (35)(37). 
� and


� should be optimal values; thus, I use Brent’s method

to determine 
� and 
� which minimize the error function

E�. After computing p and q at every pixel, I solve Equa-

tion (38) by the relaxation method [26, 27] to determine

the height H. I solved the relaxation problem by using the

alternating-direction implicit method.

I do not choose to solve Equation (39) by Brent’s

method because the error function E� depends upon the

change of surface normal rather than on the change of

height. Another reason is that the error function E�

smoothly changes when the surface normal changes, but

it does not smoothly change when the height changes.

To conclude, the frontal surface shape of transparent ob-

ject is estimated by an iterative computation, where each

step of iteration solves Equations (34)–(38), and the itera-

tion stops when Equation (27) is minimized.

6. Evaluations

In this section, I present some experimental results and

evaluate the effectiveness of three proposed methods.

6.1. Experimental Setup

This section explains the experimental setup. Section

6.1.1 explains the experimental setup which obtains the

polarization data of visible light. Section 6.1.2 explains

the experimental setup which obtains the polarization data

of infrared light.

6.1.1. Experimental Setup of Visible Light

Figure 12 represents our experimental setup, which I

named “Cocoon”, for obtaining the polarization data in

visible light domain. The target object is set inside the

center of the plastic sphere whose diameter is 35cm. This

plastic sphere is illuminated by 36 incandescent lamps.

These 36 light sources are almost uniformly distributed

spatially around the plastic sphere by geodesic dome. The

plastic sphere diffuses the light that comes from the light

sources, and it behaves as a spherical light source, which

illuminates the target object from every direction, which

is located at the center of the sphere. This spherical dif-

fuser provides an unpolarized light. The target object is

observed by monochrome camera from the top of the plas-

tic sphere, which has a hole on the top. Linear polarizer is

set in front of the camera.

6.1.2. Experimental Setup of Infrared Light

Figure 13 shows the apparatus for the infrared light.

Given that the infrared light is thermal radiation from a

body and is not a reflection component, I do not use any

light source. I increase the temperature of the object to 30-

40 degrees Celsius by using a hair dryer to blow heated air

over it. I also employ an infrared polarizer and an IR-CCD

camera.

6.2. Experimental Results

This section explains the experimental result. Section

6.2.1 shows the measurement results of the first method,
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Fig. 12: Experimental setup for visible light.

Fig. 13: Experimental setup for infrared light.

which uses thermal radiation. Section 6.2.2 shows the

measurement results of the second method, which uses

differential geometry. Section 6.2.3 shows the measure-

ment results of the third method, which uses polarization

raytracing.

6.2.1. Experimental Results of Thermal Radiation

Method

This section shows the experimental results of the first

method, which uses thermal radiation.

I determined the shape of the object shown in Figure

14(a). The shellfish-shaped object is made of acrylic and

its refractive index is 1.5. The refractive index was ob-

tained from the literature [28]. Figure 14(b) shows the

obtained shape of the object.

6.2.2. Experimental Results of Differential Geometry

Method

This section shows the experimental results of the sec-

ond method, which uses differential geometry.

First, I used an acrylic transparent hemisphere whose

Fig. 14: The resulting shape of the shellfish-shaped object

Fig. 15: A rendered image of the obtained shape of the

bell-shaped object.

diameter was 30mm and refractive index was 1.5, ob-

tained from the literature [28]. Error was calculated as

an average value throughout the entire object surface, i.e.,

computed as an absolute difference between the true value

and the obtained value. The errors of DOP, incident angle,

and height were 0.17, 8.5�, and 1.1mm, respectively.

Next, I determined the shape of the bell-shaped ob-

ject shown in Figure 7. The object was made of acrylic

and its refractive index is 1.5, obtained from the litera-

ture [28]. The diameter(width) of the object was 24mm

and the height was 8mm. I tilted the object approximately

8 degrees and obtained the data from two views. Figure

15 shows the rendered image of the estimated shape of the

object. Figure 16 illustrates how the estimated shape fitted

the true shape. Dots represent the obtained height and a

solid line represents the true value, which was obtained by

hand using the edge from the photo of the object observed

from the side. An average error(=absolute difference) of

the height was 0.4mm.

Another transparent object shown in Figure 17(a) was

measured. This moutain-shaped object was made of

epoxy and its refractive index was 1.6 [28]. The diam-

eter(width) of the object was 45mm and the height was

25mm. Figure 17(b) shows the result of region segmen-

tation. Here, one B-E region, one B-N region, and four
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Fig. 16: The result of the real bell-shaped object.

Fig. 17: Measurement result of transparent moutain-

shaped object: (a) Real image, (b) region segmentation

result, and (c) and (d) rendered image.

B-B regions are observed. I rotated the object approxi-

mately 8 degrees. Figure 17(c) and Figure 17(d) represent

the estimated shape of the object.

6.2.3. Experimental Results of Inverse Polarization

Raytracing Method

This section shows the experimental results of the third

method, which uses polarization raytracing.

I observed an acrylic transparent hemisphere from the

spherical part, whose refractive index was 1.5 and diame-

ter was 30mm. The frontal surface was a hemisphere and

rear surface was a disk. The camera was set orthogonal

to the disk. I assumed that the illumination distribution is

known.

The estimation result is shown in Figure 18. Figure

18(a) represents the result of Saito’s method [9] and, at

the same time, it represents the intial value. Figure 18(b)

Fig. 18: 3D hemispherical object result: (a)Initial state,

(b)result after 10 loop.

is the result after 10 loop of the method. The computa-

tion time was 36[sec] for 1 loop with 7,854 pixels by us-

ing Pentium4 3.4GHz. Here, the maximum number of the

light ray traced is 10 reflection or transmission, however,

if the energy of the light ray becomes less than a certain

threshold, the tracing of the light ray is stopped.

In order to evaluate the estimation result in more detail,

another evaluation was done in the 2D plane which was a

cross section of the 3D object, which included the center

of the base circle and the line perpendicular to that circle.

A light ray which was inside this plane did not go out,

and a light ray which was outside this plane did not come

in. The proposed algorithm estimated the frontal surface

shape, a semicircle, by using the polarization data of the

2D plane as input data.

The result of applying the proposed method is given

in Figure 19(d). For comparison, the result of Saito’s

method [9] is shown in Figure 19(a). In Figure 19, the

solid line represents the estimated shape, and the dotted

line represents the true value. The shape computed by

Saito’s method(Figure 19(a)) is used as an initial value for

Figure 19(d). Figure 19(b)(c)(d) is the result after 5, 25,

and 50 loops, respectively.

The error value, Equation (27), is plotted in Figure 20.

In Figure 20, vertical axis represents the value of Equation

(27), and horizontal axis represents the number of itera-

tion. The leftmost value is the error of Saito’s method [9].

The computation time was 5.9[sec] for 1 loop with 320

pixels by using Pentium4 3.4GHz. Here, the maximum

number of the light ray traced is 100 reflection or trans-

mission, however, if the energy of the light ray becomes

less than a certain threshold, the tracing of the light ray is

stopped.

The RMS error between the estimated value and the true

value was used to compare the accuracy between the pro-

posed method and Saito’s method. The RMS error of the
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Fig. 19: Estimation result: (a) Result of Saito’s method,

(b)(c)(d) result after 5, 25, and 50 loops with proposed

method, respectively.

Fig. 20: Error for each loop.

surface normal was ����� for Saito’s method and �����

for the proposed method. The RMS error of the height

was 2.77mm for Saito’s method and 0.607mm for the pro-

posed method.

Next, I apply the method to the bell-shaped transparent

object shown in Figure 7. The object is observed from the

sticked-out part of the object. The frontal surface was the

curved surface and rear surface was a disk. The camera

was set orthogonal to the disk. I assumed that the illumi-

nation distribution is known. I estimated the shape of the

cross-section of the object to analyze the precision of the

proposed method. Figure 21(d) illustrates the estimated

shape of the object. Solid curve represents the obtained

frontal height, and dotted line represents the given rear

height. Initial value is set to be a semicircle shown in

Figure 21(a). Estimated shape after 1, 5, and 20 loops is

illustrated in Figure 21(b), (c), and (d), respectively. True

shape is represented as a solid curve in Figure 16. An

error(=mean deviation) of the height was 0.24mm. The

computation time was 7.0[sec] for 1 loop with 320 pixels

Fig. 21: Estimated shape of bell-shaped acrylic object by

using the inverse polarization raytracing method: (a) ini-

tial value, (b)(c)(d) estimated after 1, 5, and 20 loops, re-

spectively.

Fig. 22: A photograph of the heart-shaped object.

by using Pentium4 3.4GHz.

I also apply the method to the heart-shaped transparent

object shown in Figure 22. The object was made of glass

and its refractive index is 1.5, obtained from the litera-

ture [28]. The object is observed from the curved surface

of the object. The frontal surface was the curved surface

and rear surface was a planar surface. The camera was

set orthogonal to the rear surface. I assumed that the il-

lumination distribution is known. The estimation result is

shown in Figure 23. Figure 23(a) represents the result of

Saito’s method [9] and, at the same time, it represents the

intial value. Figure 23(b) is the result after 10 loop of the

method. Figure 23(c) is rendered example of raytracing

method by using the estimated shape.

7. Conclusion

7.1. Summary

In this paper, I have proposed three methods for deter-

mining the shape of a transparent object by using polar-

ization filter. Algorithm that uses only one view in visi-

ble light domain results in ambiguities. The first method
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Fig. 23: Result of heart-shaped object: (a)Initial state,

(b)result after 10 loop, (c)raytraced image.

solves this ambiguity problem by employing the polar-

ization in infrared light domain, and the second method

solves it by employing the polarization of a slightly tilted

view. These two methods still have a problem that they do

not consider the internal interreflection. The third method

solves this internal interrefleciton problem by employ-

ing the polarization raytracing algorithm. The ambiguty

problem and the polarization raytracing algorithm are pre-

sented in Section 2.

First method [29] The thermal radiation, which also has

characteristics of polarization, can be observed as in-

frared light. This polarization is an one-valued func-

tion; measuring degree of polarization in infrared do-

main provides the unique zenith angle. However, the

degree of polarization is relatively low, and in some

cases it is difficult to determine the degree of polar-

ization precisely. Therefore, I propose to use polar-

ization in both visible and infrared light. This method

is presented in Section 3.

Second method [30] By rotating the object, the ambigu-

ity problem can be also solved. Two sets of data are

obtained: One is from the object not tilted, and the

other is from the object tilted at a small angle. These

data are segmented into some regions with regard

to the Brewster angle. Then, the method calculates

the difference of the degree of polarization between

these two sets of data at the corresponding point —

the point where surface normal lies along the rotation

direction and where the degree of polarization is min-

imum in the B-B region. From that difference, the

correct surface normal is determined. This method is

presented in Section 4.

Third method [31] Solving the inverse problem of po-

larization raytracing method, the shape of transparent

objects can be estimated more precisely. Polarization

raytracing method considers the internal interreflec-

tion. To obtain the shape of transparent object, the

method minimizes the difference between the input

polarization data taken by observing the transparent

object and the computed polarization data rendered

by the polarization raytracing method. This method

is presented in Section 5.

I have implemented these proposed methods, and

demonstrated their abilities to determine the shape of

transparent objects. Experiments are presented in Section

6.

7.2. Future Work

The future work is to obtain the shape of transparent

objects more accurately. I also intend to develop a method

which can measure the refractive index at the same time

as well as the surface shape of transparent object. By col-

laborating with a company, I am trying to develop a po-

larization camera [32], which measures the polarization

state of the light more faster than existing realtime po-

larization camera [33–35]. Another future work is to de-

velop a commercial product for measuring the shape of

transparent object by collaborating with a camera manu-

facturer. I am also planning to collaborate with scientists

of physics to obtain some advices to make my methods

more robustly by using the professional knowledges in the

field of physics.

There are many beautiful glass objects of art in all over

the world. The proposed method will be useful for model-

ing such glass objects of art. Other application field of the

modeling of transparent objects can range from computer-

aided manufacturing, classifying garbage/rubbish for re-

cycling glass and plastic bottles, to creating 3D catalogs

for online shopping, etc. For the first step for such a wide

area of applications, I proposed a basic technique for mod-

eling the surface shape of transparent objects.
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