
���������
	 �
������������������� ����!#"
$&% ')(&*

? +-,�.0/ ?

1325476 8:9<;>=@?>A>BDCFE<GIHKJMLONDPFQ>RKS3TDUIV3U>W3XYCFE<G@Z>[3\5]_^FLa`cbedf9<Qcg@hIikj:lmjnRoOprqts>u j:QIvDwcGx?yA>B>CFE<zy{@|c} q�~K� jO���IX����3Xf�y�K�cG5�M^>�>�t� qa�K� �r�a�K�F�F��Qr�I�ai� `cbc=�\5�F�<�yED� q�� �nzy{y|<} q �>�D�r�t�3hF�@Z>[q5�> �m�ai>�F�c�yED�MG>S3TKUIV3UDWyL>\5¡c¢LF�>�n�F�K�@£KE>¤y¥
(KPO) ¦ Tx§I¨<} qa©Fª jnRx«c¬>G5­K�KZ � lm®°¯K±K²cL��K���FGyS3TyU q´³@µ jnhOi@�G´C�EML>\>S3TDU@V3U>Wx¶cLx·_¸_®�9<h�Z � l¹®Yº�»>¼K½ q�¾ �O�r��8cXa=_¿IÀ�Á7ÂÃGI£�E qI³�µ �m�5Z>[q�ÄÅ j:hIi78:9_Lc��Æt¿IÀ�Á7Â q £KEed�Çr�xGFL´�K�3� ¦ T�ÈOÉ3Ê@�IËcÌ<L5ÍDÎ<�yÏ�ÐÑXt�KÒ�hIi;Dh �DÓFÔ =F\��yÕD�DÖ q ­&jnR � ZD[ML´×FØe�5zD{y|c}>=F\x�>�F�cGyP¹�Ùw<lKGD�O�rL´ÚK�r� �F��q ·�¸K�8�Xa�D=cg@h_8cX qtÛKÜ �aiÑdF®tL@Ry��Õ q´Ý j:QI�3h�LyÞ�®:lmXt�KÒ�h��y�K�cGD�5�3ß q ½DàD���ai

Knotting Rope by Learning from Visual Examples

Maiko MIYAZAKI?? Katsushi IKEUCHI??

Abstract In the field of deformable object manipulation, planning and manipulation methods have long
been studied separately. Yet, to put together these methods to implement one whole manipulation system, a
variety of implementational problems need to be solved.
This work presents a new approach to implement a knot tying system. For the planning phase, we used the Knot
Planning from Observation (KPO) paradigm, which generates plans based on visual examples demonstrated
by humans. For manipulation, we developed a method to determine robot commands by extracting visual
information from the examples obtained in the planning phase. This yields a simple solution to determine
manipulation parameters.
Experimental results are also reported, indicating that our proposed system solves some of the implementational
problems in deformable object manipulation.

1 Introduction

Not only are robots presently playing an important role
in manufacture, but they are also expected to accom-
plish a much wider variety of tasks in the future. To
be able to work on more intelligent activities, manipu-
lating objects, especially deformable objects such as a
rope, is an important activity the robot must learn to
do. This activity has been studied for over a decade.

Almost all research methods on rope manipulation
concentrated on how to apply visual feedback. Inaba et
al. built a hand-eye manipulation system that checks
and corrects manipulation operations [1]. Hopcroft et
al. introduced a vision-based high-level language for
describing knot tying and implemented a manipulation
system using it [2]. Matsuno et al. used dual manipu-
lation systems together with a vision system [3].

These methods forced a user to manually write pro-
grams to execute rope manipulation tasks. This was in-
efficient because the programs took much time to write,
needed to be newly written for each task, and had to
be rewritten every time the task was altered. This gave
rise to the demand to automatically generate the pro-
grams through determining what operations should be

? á°â�ã°äYåçæéèéêéë�ìéí
?? Institute of Industrial Science, The University of Tokyo

done on the object to accomplish a task. In short, what
should be considered is so-called task planning.

In the first step of task planning, modeling of a de-
formable object was activated. The ability to predict
deformation of the object when applying external force
enables one to plan tasks through computer simulation.
The most common modeling tool is the Finite Element
Method (FEM), which is commonly used for a wide
variety of objects. For example, rope [4], cloth [5],
etc. was successfully modeled based on this method.
But it was quite difficult to plan the tasks using the
model from only the goal of the manipulation, because
a deformable object allows quite various types of oper-
ations. Furthermore the FEM requires much compu-
tation.

As one solution to realize both task planning and
programming for manipulation simultaneously, we
focused on the Learning from Observation (LFO)
paradigm. One characteristic of this paradigm is to
use observed data in acquiring task plans, which dra-
matically decreases the difficulty of programming. As
a result, automatic programming becomes possible,
and the need for expertise in robot programming is
completely eliminated. This is the reason the LFO
paradigm has been applied to various manipulation
systems that handle rigid objects [6, 7, 8].

In this paper we propose a system that implements
both planning and manipulation steps for tying knots
in a rope on the basis of the LFO paradigm. We chose
the knot tying task for two reasons. First, because a
rope (and similar objects, e.g., wire and cord) is one

of the most simple but often-used deformable objects
in our daily lives. Second, because knot tying has a
good mathematical background called the knot theory
[9], which clearly classifies knot tying operations into
few categories [10]. Planning is conducted using a KPO
paradigm which we have already designed [10]. Manip-
ulation is achieved by reusing the observed data in the
planning phase to simply determine parameters nec-
essary for translating the plans into executable robot
commands. We also introduce our first attempt to im-
plement the Cross move, which is defined later.

2 Outline of the Knot Tying

System

The present goal of our system is to tie a knot in a
rope that is placed on a flat surface such as a table. We
decided to lay the rope on a surface in order to ease
image recognition. The system works in two phases:
the planning and the manipulation phase.

The planning phase is built on the basis of the KPO
paradigm [10]. This paradigm is an application of the
LFO paradigm for knot tying. Based on the knot the-
ory, it provides us with a methodology for describing
and generating the plans. Concretely, the plans are
generated from data acquired from examples shown by
humans through performing the following steps:

1. Observation

Obtain sequential images of a knot-tying perfor-
mance

2. Conversion to Knot Geometry

From each image, obtain a geometric representa-
tion of a knot state (K-data)

3. Conversion to Knot Topology

From each geometric representation, convert it to
a topological representation of a knot state (P-
data)

4. Plan Generation

From the sequence of topological representations,
identify movement primitives

The generated plan is then passed onto the manip-
ulation phase. Here, a knot tying task is executed ac-
cording to the given plan by using visual information
to extract robot command parameters. The manipu-
lation phase works for each movement primitive in the
following steps:

1. Object-level Parameter Acquisition

Determine object-level parameters by using the
movement primitive and the geometric represen-
tation

2. Present Knot State Acquisition

Obtain the present state of the rope that the robot
will manipulate

Fig. 1: Similar knots in terms of knot tying

3. Robot-level Parameter Acquisition

Acquire robot-level parameters by using object-
level parameters and the present knot state

4. Robot Command Conversion

Generate and execute a sequence of robot com-
mands using robot-level parameters

3 Theory for the KPO Paradigm

In this section, we roughly introduce the KPO
paradigm [10], which provides us three important el-
ements required for the planning phase, which are:

• How to represent knot states

• What to define as movement primitives

• How to identify the movement primitive that
caused the knot state transition

3.1 Representation of Knot States

Considering a knot state representation appropriate for
generating task plans, Morita et al. concluded that
an abstract representation that does not depend on
parametric information is preferable[10]. The reason
can be shown through a simple example. The two knots
illustrated in Fig. 1 are essentially the same in terms of
how crossing occurs in the rope; that is, the knots are
different in shape, but the same in the way they are
knotted. Geometrically, however, they are judged as
different knots. This is inconvenient because it would
mislead the system to think a state transition should
have occurred between the two states.

As such a representation, we use P-data represen-
tation. P-data is an array of numbers, and each col-
umn expresses the ID of crossed intersection and the
attribute (vertical position and crossing direction rel-
evant to the crossed strand) of the corresponding in-
tersection. The topological information can be recon-
structed from only P-data. An example of a 2D knot
projection and its corresponding P-data is given in Fig.
2.

3.2 Definition of Movement Primitives

Morita et al. proposed the following four types of
movement as movement primitives: three types of Rei-
demeister moves and the Cross move[10].

Reidemeister moves are introduced from the knot
theory [9]. Figure 3 illustrates the three moves. The

� �� �

�������
	��
�
	��
���
�

� � ���
��� � � � � � �
� � ���
��� � � � � � �
� � � � �

� ����� � �! #"
� � $�% � �! '&
� ����� � �!)(
� � $�% � �* '+

�,�-�����
�

..

//

00
11

22

33

�
4
�
46545 4758

�
8
587545 85 8
�
8
�
8
585 87545 4

Fig. 2: 2D knot projection to P-data representation

9;: < =�: >?: < @ A : B*>?C�DE:GF 9H:�< =I: >?:�< @ A : B!>?C�DJ:GF F 9;: < =�: >?: < @ A : B*>?C�DE:GF F F

Fig. 3: The three Reidemeister moves

Cross move is introduced from the difference of target
knots between in the knot theory (simple closed curve)
and in knot tying (simple open curve). The illustration
of a Cross move is given in Fig. 4.

The sufficiency of the movement primitives for real-
izing any knot tying can be easily shown by extending
the Reidemeister’s proof on knot-equivalence.

3.3 Movement Primitive Identification

The basic idea of identifying the primitives is by com-
paring the t-th P-data Pt and (t + 1)-th P-data Pt+1.
The P-data after the transition Pt+1 can be estimated
from the P-data before the transition Pt by using the
type and parameters of the movement primitive that
achieves the transition. Conversely, if Pt+1 is equal to
the P-data which is estimated from Pt under some type
and parameters of a movement primitive, one can con-
clude the movement primitive was performed at time
t.

4 Manipulation Phase

As the first attempt of the implementation, we chose
the Cross move. Our choice of the Cross move was in-
fluenced by the fact that it is the most essential move
in knot tying. That is, it is fundamentally possible to
tie all types of knots by only this move. Furthermore,
we concentrate on the Cross move to cross the termi-
nal segment over the other segment. We took such a
stance because the move can be realized by manipu-
lation using only one hand. This is much easier than
manipulation using both hands, which would introduce
the problem of avoiding collisions; it is natural to use
both hands to achieve a Cross move to cross the termi-
nal segment under the other segment. However, once
the collision can be avoided, the under-Cross move can
be realized by only adding a few simple operations to
the over-Cross move, and therefore it is considered ap-
propriate to tackle the over-Cross move first.

Fig. 4: The Cross move

The manipulation phase is passed on a knot tying
plan from the planning phase, which is in this case
a sequence of Cross moves. Each Cross move holds
two pieces of information: which terminal to move
and which segment to cross over/under. While this
serves as adequate information for humans to conduct
a Cross move, it is too abstract for robots. Humans can
complement the abstract information to reproduce the
move. On the other hand, robots need to be given more
concrete information: the exact position and direction
in robot coordinates, in other words, metric informa-
tion. Thus, in this phase it is necessary to complement
the abstract information so that it can be understood
to robots. Only then can they be executed. In doing
so, there are three things to be determined:

• what metric information we need

• how to get the information

• where to get the information from

Out of the three issues, we considered what met-
ric information we need. As a result, we decided that
three pieces of metric information would be sufficient
to execute a Cross move. They are the grasp point,
destination point, and the path from the grasp point
to the destination point. The grasp point is the point
where the robot hand grasps the rope and starts the
Cross move. The destination point is where the robot
hand releases the rope and ends the move. Given the
position and direction of the robot hand at these two
points in robot coordinates, the robot understands the
start and goal of its move. In addition to these points,
the robot need to be given the path from the grasp
point to the destination point. The need of such path
is characteristic to flexible objects. For flexible objects,
the path which it moves along make great difference to
the resulting state of the object. 5 shows an example of
how the knot state could differ by taking two different
paths with the same start and goal. The rope is held
at the terminal on the left, and is moved clockwise in
the upper picture and anti-clockwise in the lower one.

Then, in order to retrieve metric information, we
divided the information obtaining process into two
steps: first acquiring them in geometric form and then
in metric. For this purpose, we defined two levels
of parameters for expressing robot operation informa-
tion: object-level parameters and robot-level param-
eters. Object-level parameters corresponds to geo-
metric information. They give reference to a knot-
relative, coordinate-independent positions and direc-
tions according to the rope’s geometric structure. On

Fig. 5: Move of a rope through two different paths

the other hand, robot-level parameters corresponds to
metric information. They give reference to the metric
properties of a knot. We chose to use these two levels
of representation because directly obtaining metric in-
formation would be problematic. Parameters depend-
ing on metric properties of a knot are apt to change
and cannot be determined before manipulation. De-
pendence on metric properties would force a knot to
conform to the shape. This is too restrictive. However,
for the actual robot commands, metric information is
essential.

Last of all, we decided to retrieve the geometric infor-
mation from the knot images obtained in the planning
phase. There are various methods to retrieve this infor-
mation, so we should consider which method is most
appropriate. There is a method to obtain necessary
information through reconstruction of a knot from P-
data [10]. While this gives a more flexible choice of the
geometric representation to be made, it causes a new
problem of choosing the most suitable representation
for knot tying. Therefore, we obtained the knot’s geo-
metric data from the images acquired in the planning
phase, regarding them as examples demonstrating the
most suitable shapes for knot tying.

4.1 Preliminaries

4.1.1 K-data

K-data is a geometric representation of a knot state.
It is made from 2D knot projections on the flat surface
on which the rope is laid. K-data holds essentially two
pieces of information, which are a vector of specific
points on the rope and a vector of rope segments.

The vector of points in K-data consists of intersec-
tions and the two terminals of the rope. The points
are numbered, starting from one terminal of the rope
(the start terminal), then tracing along the rope, num-
bering each intersection according to its meeting order,
and finally ending at the other terminal (the end ter-
minal). Note that intersections will be given numbers
twice. Each point holds information to tell whether it
is an upper cross point (a point where the rope crosses
over itself), a lower cross point (a point where the rope
crosses under itself), or a terminal.

The segments are sections of a rope starting and end-
ing at either an intersection or a terminal. The vector

Fig. 6: Numbering of segments and points in a knot

of segments is ordered similarly to the points; starting
to number the segment with the starting terminal, then
tracing along the rope, and numbering each segment
according to its meeting order till reaching the segment
with the end terminal. Each segment has properties of
the starting and ending points and also a chain of di-
rections. This chain describes the shape of the rope
segment. We regard the segment as a chain of points
for visual feedback purposes. For each point we obtain
its direction, and hold this information as a direction
chain.

Figure 6 is an example of a knot with its points and
segments numbered as in the K-data.

4.1.2 Robot Commands

We present the robot commands we provided for knot
tying. The function arguments are given in the robot
coordinates. We assume that the Z-axis is in the direc-
tion upward from the flat surface which the rope is on.
Robot commands are defined as follows:

• graspRope(p, θ)

Grasp the rope at the position p (∈ R3). The
robot hand will be rotated so that it will be par-
allel to the direction θ.

• moveRope(p, θ)

Move the rope from the present position to the
position p. The robot hand should be in the di-
rection θ at that position.

• releaseRope()

Release the rope at the present position.

4.2 Object-level Parameter Acquisition

For each knot tying move, we obtained object-level pa-
rameters from the acquired task plan and the K-data
of the two successive knots. In the plan we find the
two segments (the terminal segment and the segment
that it crosses) involved in the Cross move. Then, by
comparing those segments in the pre-Cross-move K-
data and pro-Cross-move K-data we completely extract
object-level parameters. The Cross move parameters
are defined as follows:

Fig. 7: Example of object-level parameters acquired
from K-data

• terminal

Which terminal to move (start/end terminal)

• segment

Segment number to cross

• position

Relative position in the segment to cross (0 <

position < 1, in which 0 is the starting point and 1
the ending point of the segment. The coordinates
are named segment coordinates.)

• direction

Terminal’s vertical direction relative to the seg-
ment (over/under)

• argument

Argument of the terminal’s direction vector rela-
tive to the segment

• length

Relative length of the new segment to the to-
tal rope length (Let the length be 1, then 0 <

length < 1. The coordinates are named rope co-
ordinates.)

For example, parameters for the Cross move shown
in Fig. 7 are determined as follows: terminal =
end terminal, segment = 1, position = 0.25, direction

= under, argument = 90 [deg], length = 0.1.

4.3 Present Knot State Acquisition

In the present state acquisition step, we acquire geo-
metric information of the knot that will be manipu-
lated. First a 3D image of the knot is captured by
stereo vision. Next the image will be projected onto
the 2D plane and then converted to K-data. This will
all be done in the same manner as in the observation,
projection, and K-data conversion steps in the plan-
ning phase.

4.4 Robot-level Parameter Acquisition

In the robot-level parameter acquisition step, the aim
is to obtain metric information of the grasp point, des-
tination point, and a path that the rope should move
along. The path is defined from positions and direc-
tions of the following three specific points on the path:

the grasp point, the cross point, and the destination
point. Note that we need to specify only one set of
these three points per movement primitive.

The position of the grasp point Grope is acquired in
the rope coordinates as Equation (1).

Grope =

{

length (terminal = start terminal)
1 − length (terminal = end terminal)

(1)
In the implementation, we adjust Grope so that it would
not be too near or too far from the terminal of the rope
in order to make a firm grip on the rope. We determine
the position in the robot coordinates by finding in the
3D knot image the point that corresponds to Grope.
And we also determine the grasp direction using the
direction chain of the segment.

The cross point is the point where the rope should
make a crossing over/under itself. The position of the
cross point Cseg is acquired in the segment coordinates
as Equation (2).

Cseg = position × (segment)-th segment length (2)

The position and the direction in the robot coordinates
can be determined as the same manner.

The destination point is the final point that the grasp
point should move to after making a crossing at the
cross point. The point lies in the direction of the cross
point direction. The distance d between the cross and
destination point is determined by Equation (3)

d =















(length− Grope) × total rope length
(terminal = start terminal)

(length− (1 − Grope)) × total rope length
(terminal = end terminal)

(3)

Having considered the grasp, cross, and destination
points, we consider the path. The path from the grasp
point to the cross point is defined using the cubic Bezier
curve, and the path from the cross point to the desti-
nation point is defined as the straight line. Then we
concretely describe the setup of the cubic Bezier curve.

The curve has four control points. That is, we only
need to set up the points. The first and fourth control
points are the grasp and cross points so that they will
be the two ends of the Bezier curve. The second control
point is located on a half line starting from the grasp
point and extending in the rope direction of the grasp
point. The distance between the first and the second
control point is given as half the distance between the
grasp and cross points. We determined this distance,
regarding it reasonable for the rope not to take too
long a way around to the cross point. The third control
point is determined in a similar way to the second, only
that we use a half line starting from the cross point and
extending in the opposite direction of the rope direction
of that point.

4.5 Robot Command Conversion

Finally, a Cross move is translated into several robot
commands and executed in the execution step. The
Cross move will be executed in the following sequence:

1. graspRope(pgrasp, θgrasp)

2. Call moveRope(...) several times for realizing the
path generated by the cubic Bezier curve.

3. moveRope(pcross, θcross)

4. moveRope(pdest, θdest)

5. releaseRope()

pgrasp, pcross, and pdest stand for positions of the
grasp, cross, and destination points, respectively, and
θgrasp, θcross, and θdest stand for directions of the
grasp, cross, and destination points, respectively. Note
that while moving the rope, the Z-coordinates are set
up to be appropriately far away from the surface that
the rope is on (in this implementation 10[cm] higher).

5 Experimental Results

In this section, we discuss the experiments conducted
for this paper. First we introduce the platform on
which we built our system. Second, we describe how a
knot image is acquired. Last, we some results of knot
tying tasks.

5.1 Platform

The robot of our system is designed to imitate the up-
per part of the human body, especially the vision sys-
tem (i.e., eyes), arms, and hands.

The vision system consists of a 9-eye stereo vision
system for 3D observation. These eyes are set onto the
head of the robot. The 9-eye stereo vision system is
made by Komatsu and uses the multi-baseline method
to recognize its surrounding environment in real-time.

The robot also has left and right arms, each with a
hand at the end. The arms are PA10 robot arms made
by Mitsubishi Heavy Industries. They have 7 degrees
of freedom (DOFs). This is enough for the robot hand
to move around in a wide area of three-dimensional
space.

The robot hands imitate those of a human. Both
hands have a thumb, and fingers that face the thumb.
The left and right hands are composed of three and
four fingers, respectively. The fingers are fewer than
the human hand, considering the size and shape of the
hand. Each finger has 3 joints, thus 3 DOFs. For
the movement of joints we use the finger joint actuator
made by Yaskawa Electric Corporation.

5.2 K-data Extraction

Here we explain how we acquire a 2D knot projection
by using the vision system and how we extract K-data
from the projection.

5.2.1 2D Knot Projection Acquisition

First, 3D images are captured through a vision system,
and RGB and disparity data are acquired. From the
disparity data we calculate the depth at each point
in the captured image. The depth is given in camera
coordinates, in which the coordinate center is fixed to
the center of the 9-eye vision system. We then convert
depth in the camera coordinates to that in the robot
coordinates. As we always place the knot on a 2D
plane, a 2D knot projection is simply the same as a 3D
image data without the Z-coordinates.

5.2.2 K-data Conversion

From the 2D knot projection, we extract K-data. The
conversion process is as follows:

1. Background subtraction

Subtract background data from the image to ex-
tract only the knot. The field of view is assumed
to be fixed for the subtraction.

2. Thinning

Change the knot into a thin line by using Hilditch
filter.

3. Graph-Representation Extraction

Find intersections and terminals in the knot by
counting the neighboring points for all pixels of
the thin line image. And find all segments by fol-
lowing neighboring pixels from the intersection or
the terminal until reaching another.

4. Reordering

Reorder the segments and points (intersections
and terminals) so that they are in an order that
can be traced from one terminal of the knot to the
other.

5. Vertical Position Extraction

By using disparity data obtained from the vision
system, determine vertical positions of the inter-
sections.

5.3 Results of Tying a Simple Knot

We conducted an experiment to tie a simple knot in a
rope. Due to the limitation of pages, we illustrated a
part of the knot tying. The knot images captured from
the human performance are shown in Fig. 8 (a). From
these images, K-data is acquired. Figure 8 (b) illus-
trates how the knot states are recognized after K-data
conversion. Their object-level parameters are given in
Fig. 8 (c). Figure 9 is an illustration of the calculated
path for the Cross move in Figure 10. Figure 10 shows
the results of manipulation using the parameters.

Looking at the path generated for the Cross move,
it appears that it was appropriate for producing the

Fig. 10: Manipulation of Cross move

���������	�
����

�
������ ��������
������ �
����
� �����
��
����

�� � ���
 ����� � � ���!�#"%$
�&����'%�

&� � ��"%")(�* �%
&�,+
�
��,� � - ��.�/ .�$

0�1�243
576�8�9;:	1#<�= >�? 0@5�2;ACB�D�1#<@1FE�>�?�:	8�9�6�=G>)? 0�E�2IH�J 1�?LK�8�?	8�9�1�<@=G>)?

Fig. 8: Knotting of a part of a simple knot

target knot state. We can also see that manipulation
was conducted successfully following the given path.

However, in some cases, there were failures in the
manipulation although the calculated path seemed to
be sufficient in executing the desired Cross move. The
failure occurred when the hand rotated to change the
rope direction. When manipulating rope, rotating
the other way around is undesirable because it could
change the outcome of the rope state. The robot hand
needs to rotate continuously. But there is a limit to
how much the robot hand can be twisted because the
hand may collide with the arm that it is connected to.
Therefore, the hand is rotated within the limit. How-
ever, when it becomes impossible to rotate any further,
the hand switches to rotate the other way around to
reach to the same direction. Thus, when there arises a
situation that the robot hand has reached its rotation
limit but still has to rotate, the robot comes to a halt.

To solve this hand-arm collision problem, there are
serveral possible consideration to make. One is to im-
prove the robot’s solution to inverse kinematics. We
could optimize the solution selection so that the so-
lution is chosen in which collision is least probable to
occur. Another is to put down the rope and regrasp it
when collision may occur.

Fig. 9: Calculated path of the Cross move in Fig. 10

6 Conclusion

We proposed a manipulation method for a knot ty-
ing system to carry out knot tying plans generated on
the basis of the KPO paradigm. We concentrated on
manipulating the Cross move because it was the most
simple and fundamental movement primitive.

First we presented a method to automatically deter-
mine a sequence of robot commands from task plans.
We made extensive use of geometric data that can be
obtained from observation in the planning phase in
order to determine the details of manipulation move-
ments. We obtained a movement path using Bezier
curves, of which parameters are determined by three
specific points (grasp, cross, and destination points)
that were acquired from observation.

Then we conducted experiments to evaluate our
method, taking simple knot tying as an example.
The experimental results indicated that the movement
paths generated are on the whole appropriate for mak-
ing a transition to the next knot state in a knot tying
task. Thus we conclude that our method effectively
determines manipulation procedures.
Carrying out the procedures, however, there still re-

mains hand-arm collision problems. These we will
tackle in our future works. Implementation of other
movement primitives will also be considered in future
works. We believe they can be implemented in the
same manner as the Cross move.

References

[1] M. Inaba and H. Inoue. Hand eye coordination
in rope handling. J. of Robotics Society Japan,
Vol. 3, No. 6, pp. 32 – 41, 1985.

[2] J. E. Hopcroft, J. K. Kearne, and D. B. Krafft. A
case study of flexible object manipulation. Int. J.

of Robotics Research, Vol. 10, No. 1, pp. 41 – 50,
1991.

[3] T. Matsuno, T. Fukuda, and F. Arai. Flexible
rope manipulation by dual manipulator system us-
ing vision sensor. IEEE Int. Conf. on Advanced

Intelligent Mechatronics, pp. 677 – 682, 2001.

[4] T. Wada, B. J. McCarragher, H. Wakamatsu, and
S. Hirai. Modeling of shape bifurcation phenom-
ena in manipulations of deformable string objects.
Int. J. of Advanced Robotics, Vol. 15, No. 8, pp.
833 – 846, 2001.

[5] T. Wada, S. Hirai, and S. Kawamura. Analysis
and planning of indirect simultaneous positioning
operation of deformable objects. Journal of the

Robotics Society of Japan, Vol. 18, No. 5, pp. 675
– 682, 2000.

[6] K. Ikeuchi and T. Suehiro. Toward an assem-
bly plan from observation part i: Task recognition
with polyhedral objects. IEEE Trans. on Robotics

and Automation, Vol. 10, No. 3, Jun. 1994.

[7] J. Takamatsu, H. Tominaga, K. Ogawara,
H. Kimura, and K. Ikeuchi. Extracting manip-
ulation skills from observation. IEEE Int. Conf.

on Intelligent Robots and Systems, Vol. 1, pp. 584
– 589, 2000.

[8] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learn-
ing by watching: Extracting reusable task knowl-
edge from visual observation of human perfor-
mance. IEEE Trans. on Robotics and Automation,
Vol. 10, No. 6, Dec. 1994.

[9] K. Reidemeister. KNOT THEORY. BCS Asso-
ciates, 1983.

[10] T. Morita, J. Takamatsu, K. Ogawara, H. Kimura,
and K. Ikeuchi. Knot planning from observa-
tion. IEEE Int. Conf. on Robotics and Automa-

tion, 2003.

