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This paper proposes a novel notion of spatio-temporal range image and an efficient way to construct 3D geometric model
of urban scene with the use of this range image. We mount vertical and horizontal line-scanning laser range finders on
our vehicle. The vertical one is for acquiring the scene geometry itself, and the horizontal one is for self-positioning
of the vehicle. Laminating horizontal-scanning data along time axis, we can get a spstio-temporal range image which
simulatneously represents spatial feature and temporal continuity of the scene geometry. Analyzing this range image, we
can estimate the velocity or the self-position of our vehicle without using any external devices as GPS or INS. With this
information, we can align the position of the vertical scanning lines and construct a proper 3D model of urban scene.
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1. Introduction

Construction of a 3-D geometric city model in a
virtual world has become a highly interesting research
topic among many research fields such as computer vi-
sion/graphics, virtual/mixed reality, sensing, architecton-
ics, etc. In particular, urban environment models are
expected to be applied to various fields, including ur-
ban planning, disaster prevention, and intelligent transport
systems.

However, the geometry or textures of extensive envi-
ronments such as urban scenes cannot be scanned by a
single sensing device at one time because of either occlu-
sion or a resolution problem with current commercially
available sensing devices. One general solution is to re-
peat “stop-and-go” as [3], that is, scan from one fixed
point and move to another fixed point repeatedly, where
the data is merged after whole scanning. Although this
approach gives a relatively dense and accurate scanning
result, it takes a long time to apply it to extensive environ-
ments like urban scenes.

A powerful way to solve the problems of this approach
is to scan objects with a sensor that is mounted on some
kind of movable body, e.g., a vehicle, a helicopter,or an
airplane. This method is relatively efficient and suitable
for scanning extensive areas; however, the ego-motion or
the velocity of the scanner must be obtaind by some kind
of technique.

The most popular solution for this problem is to mount
other external devices such as global positioning system
(GPS) or inertial navigation system (INS) on the scan-
ning vehicle[4]. It is a very simple, convenient technique;
however, the accuracy of the positioning result depends on

the condition of the radio wave signnal, especially on the
reception situation. The accuracy is not sufficient at the
ground level of urban areas where there is occulusion by
buildings or raised expressways.

Another approach has been proposed by C.Frueh et
al.[5]. They mount a line-scanning laser range finder on
the data acquisition vehicle, and let it sweep horizon-
tal scanning lines. By matching each result of the scan-
ning frame pairwise, the ego-motion of the data acqui-
sition vehicle can be acquired. They constructed 3-D
virtual textured model of an urban space by using this
technique[6, 7].

Our strategy agrees with the attitude of this approach,
that is, external devices such as GPS are suitable for ac-
quiring the initial or macro position of the scanner. The
detail or micro position is acquired by computational pro-
cess of acquired geometric data from the viewpoint of
computer vision. In concrete terms, the positional infor-
mation is acquired by the horizontal-scanning laser range
finder on our data acquisition vehicle in a similar way.
However, in contrast to [5], one of the characteristic as-
pects of our approach is that our process allows for tempo-
ral continuity per scanning frame, not for pairwise match-
ing.

Meanwhile, also in the field of mobile robotics this
kind of problem has been studied for over 15 years as si-
multaneous localization and mapping (SLAM). The dom-
inant approach to the SLAM problem was introduced in
a seminal paper by Smith[8]. This paper proposed the
use of the extended Kalman filter (EKF) for incremen-
tally estimating the posterior distribution over robot pose
along with the positions of the landmarks in outer envi-
ronments. In the last decade, this approach has found



widespread acceptance in the field of robotics, as tutorial
paper documents[10]. Recent research has focused on ex-
tending this approach to larger environments with a speed-
ing up algorithm[11, 12, 13].

These approaches are similar to the problem configu-
ration in our approach; however, they are basically con-
formed on a sequential/incremental framewise process to-
gether with robot control signals as inputs. Moreover, in
the case of mobile robots, there are no constraints on 2-D
movements except obstacles and it is permissable to scan
anew landmarks that were scanned in the past, where our
method assumes a situation in which the scanning vehi-
cle runs along a street, permitting movements due to an
amount of lane-changing. Our method can reduce localiz-
ing errors in such situations.

We propose a novel notion of spatio-temporal range im-
age from epipolar plane image(EPI), which is a classical
analysis method of moving image. Spatio-temporal range
image can simultaneously represent spatial features and
temporal continuity. We estimate the self-position of our
data aquisition vehicle by analyzing it.

2. Spatio-temporal range image

In this section, we introduce a novel notion of spatio-
temporal range image . This is a range image which si-
multaneously represents both spatial features and tempo-
ral continuity. Its notion is derived from the EPI. Here we
first explain the EPI analysis, and next explain the spatio-
temporal range image .

2.1. Epipolar plane image

Epipolar plane image (EPI) analysis[1, 2] is one of the
well-known methods for analyzing moving images, espe-
cially in the field of computer vision. EPIs can be created
by moving a “line” camera (1 pixel height) horizontally
and stacking each image frame vertically (or alternatively
by the cross section of a stacked frame of an ordinary 2-D
video image). As shown in Fig.1, when the camera moves
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Figure 1: Epipolar plane image (EPI)

horizontally, pixels in each frame of the EPI which repre-
sent same point in real world compose a continuous edge.

The edge image contains various amount of slope. These
varieties of the slopes are derived by the parallax, which
is the result of the difference of horizontal positions of the
camera. Fig.2 represents the change of parallax when the
camera moves from C1 to C2.
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Figure 2: Relation between depth and parallax

From this figure, the depthD of Point P, a horizontal
distance from the camera, and the parallaxu are related
with moving distance∆X.

∆U = u2 − u1 =
h0X

D
− h0(∆X + X)

D
= −h0

D
∆X

(1)
And the slope of the edgem is related to the depthD of
the point which composes the edge as follows:

m =
−∆v

∆u
=

−F0∆t

−h0
D ∆X

= −F0

h0
· D

V
(2)

whereV , andF are the moving velocity and the frame
rate of the camera, respectively.

By using this equation,D can be estimated fromm and
V , that is, the geometry of the object is reconstructed to
some extent.

Edge detection is usually processed through image bi-
narization and Hough transformation. Therefore, a camera
is supposed to move at a constant speed in an EPI analysis.

2.2. Spatio-temporal range image

Here we propose the notion of spatio-temporal range
image and describe its features, uses, and positioning
among other existing techniques.

2.2.1. Definition and feature

Spatio-temporal range image is a range image which is
created in a similar way as EPI, where the sensing device
is not a line camera but rather, a line-scanning laser range
sensor (Fig.3).

The feature is that stri simultaneously represents both
the spatial characteristics of the object and the tempo-
ral continuity derived by scanning with continuous move-
ment. In this range image, the slope of the edge directry
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Figure 3: Spatio-temporal range image

represents the movement of the sensor as follows:

m =
−∆y

∆x
=
−kF0∆t

−∆X
=

kF0

V
(3)

whereV , ∆X, F0 are velocity, moving distance, scanning
rate of the sensor, andk is an interval between each frame
in stacking them along a temporal axis.

Table 1: EPI and spatio-temporal range image
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In addition, spatio-temporal range image has several
features compared with EPI as Table 1 shows. (b) is
due to the essential feature of the sensing device, range
sensor, (c) is because a range sensor does not have a
projection plane as a camera. (d) means that an EPI,
a color/grayscale image, has a grid alignment of pixels
while spatio-temporal range image does not have such an
alignment. However, each point in spatio-temporal range
image composes some cluster planes (Fig.4). This is be-
cause the objects are scanned with overwrap per each scan,
in addition to (b).

2.2.2. Analysis and use

An unknown variable in EPI is the depth value of each
pixel; it can be estimated by the slope of the edge in the
EPI and the moving speed of the sensor as Equation 2
shows. Usually the camera is assumed to move in a uni-
form straight direction because of the difficulty of robust
edge extraction in color/grayscale image with the excep-
tion of straight lines.

On the other hand, depth values of each point are
known amounts in spatio-temporal range image . Though
the slope of the edge in the range image has no relation
with the depth value, the moving speed of the sensorV
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Figure 4: Cluster planes composed of each range
point in spatio-temporal range image . (b)(c) are side
views of Fig. 7(a).

has a relation as described in Equation 3. Therefore, we
can consider to estimate the moving speed of the sensor
an unknown amount from the slope of the edge. Since
each point in spatio-temporal range image composes clus-
ter planes, these planes are not difficult to separate geo-
metrically; hence its edge is relatively easy to extract even
if not straight. This means that we can estimage time rate
of change of the velocity, not a constant value. Besides,
since the distance to the object is obtained from spatio-
temporal range image , the moving path of the sensor can
be estimated even if it is curved. As described, horizon-
tal laser scanning can be used for ego-motion estimation
through spatio-temporal range image analysis. The con-
crete process is described in the next section.

2.2.3. Positioning of spatio-temporal range image

Here, spatio-temporal range image as a vision tech-
nique is considered to be positioned as Table 5. Stereo
matching is a technique to reconstruct 3-D geometry by
detecting reference points from two color/grayscale im-
ages (area images). EPI is a notion that these two im-
ages become multiple line images with temporal continu-
ity. Reference points are detected in a line detecting pro-
cess, with the consideration of temporal cotinuity. On the
other hand, alignment is a technique to obtain positional
relation by detecting reference points from two range im-
ages (area images). Spatio-temporal range image is a no-
tion when these two range images become to multiple line
images with temporal cotinuity. Reference points are de-
tected by an edge extracting process, with the considera-
tion of temporal cotinuity.

3. Ego-motion estimation for urban
space modeling

In the previous section, we introduced spatio-temporal
range image and described how the motion of the sensor



Figure 5: Position of spatio-temporal range image
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can be estimated by analyzing it. In this section, a con-
crete technique for the estimation is described and our data
acquisition system for 3-D geometry reconstruction is in-
troduced.

3.1. Estimation algorithm

Here we explain the concrete algorithm for sensor mo-
tion estimation. This time, we assume that the sensor is
mounted on a vehicle and moves at a variable speed but
in a straight line. Fig.6 shows the process of estimatating
sensor velocity and position. The details of the process are
described in the following.

Scanned Data

Moving speed of the sensor

Self position of the sensor

Segment Segment Segment

Velocity

Curve
Velocity

Curve

Velocity

Curve

Regression / Differential

Segmentation

Combine each curve

Integrate

Spatio-Temporal Range Image

Figure 6: Flow of the estimation process of sensor
velocity and position

Step 1.

Obtain spatio-temporal range image by vertically ar-
ranging horizontal scanning range data per each frame.

Step 2.

Segment each clusters in the spatio-temporal range im-
age . As described in the previous section, each point
in the range image actually makes a cluster as shown in
Fig.4. Examples of segmentation results are shown in
Fig.7. These images are front views of spatio-temporal
range image , wherex, y axes in Fig.3 correspond to hor-
izontal, vertical axes in Fig.7 andz axis corresponds to
grayscale value. Each segment represents transition of the
sensor.

t
(a) (b)

Figure 7: Segmentation of spatio-temporal range im-
age . (a)Front view of original range image. (b) Seg-
mented result.

Step 3.

Fit an analytical curve to each segment. In each seg-
ment, the scanned objects are represented as gradually
moving, which is equivalent to the motion of the sensor
itself. Actually, however, the segments are not composed
of even planes because of scanning noise. Additionally,
scanned range points are discretely distributed and the seg-
ment edges are not smooth since the resolution of scanning
angle or scanning frequency is finite.

On the other hand, the range sensor is mounted on a ve-
hicle in this research. Generally, the movemant change of
a vehicle is considered to be smooth due to its mechanical
acceleration principle as long as intentional sudden accel-
eration or stop is not carried out. To get the general ten-
dency of transition, we propose to carry out the regression
analysis and fit an analytical function to each segment, for
vehicles can be assumed to make continuous and smooth
movement in general.



Step 4

Though the regression curves describe the positional
transition of the sensor, it is only in each segment that they
remain valid. The segments are separated and therefore
it is impossible to obtain the transition from start to end
directly. Since each curve is expressed in analytical equa-
tion, we can estimate the moving velocity of the sensor per
each segment by differentiating each curve. By smoothly
connecting the differential of the curves, the time varia-
tion of the velocity from the start point to the end point is
obtained. Finally, by integrating the time variation of the
velocity, we obtain the transition history of the vehicle.
Using the positioning information, we can align the verti-
cal scanning line according to the correct position, even if
the velocity varies.

3.2. System configuration and reconstructin
of urban scene

Fig.8 shows our data acquisition vehicle. Four line-
scanning laser range sensors are mounted on the vehi-
cle. One is mounted in a direction that the sensor re-
peats sweeping horizontal scanning lines so that we can
get spatio-temporal range image . The other three sen-
sors are mounted in a direction so that the sensor repeats
sweeping vertical scanning lines so that we can get ac-
tual geometry of buildings, etc., with each azimuth angle
to reduce occlusions. Table 2 shows the specification of
the laser range sensor. Laser class formulated by JIS is 1,
which is eye-safe[15].

Vertical: For
Geometry Acquisition

Horizontal: For
Self-Positioning

Our Scanning Vehicle Line-scanning Laser Range Sensors

Figure 8: Our data acquisition vehicle

Table 2: Specification of the laser range sensor

Scanning principle Time-of-flight
Scanning rage 37.5 Hz max

Scan angle 100◦/ 180◦

Scan angle resolution 0.25◦/ 0.5◦/ 1.0◦

Measuring resolution 10mm
Measuring accuracy ± 35mm

Laser class 1
Manufacturer Sick AG[16]

3-D model of objective scene can be reconstructed
by arranging vertical-directional scanning lines to appro-
preate positions. When the vehicle travels at an arbitrary
unknown speed, the result of the arrangement becomes
expanded or shrunken before motion estimation,assuming
that the vehicle had traveled in a constant speed. Through
the motion estimation process proposed in the previous
section, the arrangement result becomes appropriate.

4. Experiment and discussion

4.1. Outdoor experiment

We have made an outdoor experiment to confirm that
our alogrithm works well. The experiment location was
our campus, the Institute of Industrial Science, The Univ.
of Tokyo (Fig.9). This time we assumed a linear motion
to the vehicle, parallel to the wall of our building.

Figure 9: Test scene (photo of our campus building):
vertical columns are actually arranged at every 6m.

Our data acquisition vehicle ran with its speed chang-
ing within the range of about 10 to 30km/h. Since the
scanning frequency of the laser range finder is finite, the
distance at which the vehicle moves during the scan of one
time could not be exactly disregarded. By using the laser
range sensor shown in Table 2, the distance corresponded
to about 7cm in the case of 20km/h. Considering that the
distance is smaller than the accuracy we intend to estimate,
we disregarded this influence in this experiment. Use of a
sensor with higher frequency or multiple sensors enabled
us to cope in the case of running at higher speed.

4.2. Result and evaluation

4.2.1. Velocity estimation result and evaluation

This time, we segmented each cluster manually and
fit 6-dimensinal polynomial function to the cluster seg-
ment. Fig.10 shows the aspect of the regression analysis.
Fig.11 shows estimated time variation of the velocity of
the vehicle and reference curve for evaluation. Evaluation
data was obtained from the pitch length of columns of the
building (6.0m) and the number of vertical scanning lines
included in the pitch shown in Fig.13(a), at each column
intervals.

Estimation result approximately agreed with the evalu-
ation data and indicated the effectiveness of our method.



Meanwhile, the maximum error was 8–12% compared
with the evaluation data, especially with notable differ-
ences at local maximum and local minimum points.
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4.2.2. 3-D reconstruction result and evaluation

According to the result of estimation, we reconstructed
the 3-D geometry of the objective scene by aligning the
position of vertical scanning lines. Fig.13 shows the mod-
eling result of the building, before and after the alignment
process. As photos in Fig.9 show, columns of the build-
ing are actually arranged in equal pitch in the real world.
Fig.12 shows the detail of the result. The gap between
each scanning line is adjusted according to the vehicle’s
velocity.

Fig.14 represents positional evaluation result of 3-D
reconstruction. Vertical lines of squares drawn in the
lower part of the figure represent the positions where the
columns of the building should be located. According to
this figure, the error becomes approximately 2m at most
throughout overall running length of 170m.

4.3. Discussion

4.3.1. Accuracy

The experimental result approximately agrees to the
correct answer. Positional error of 2m at most is suffi-

ciently small consiering that accuracy of ordinary GPS is
about 10m. Though RTK-GPS provides accuracy of sev-
eral centimeters in ideal wave condition, such a situation
almost never occurs in urban scenes. Moreover, accuracy
of this result is expected to good inital value for align-
mnent of range data and rough CAD model as described
later.

Meanwhile, according to the result of velocity estima-
tion, it includes 8–12% of maximum error.

Regarded causes to the error can be raised as follows:

• Regression by a single polynomial:
In this experiment, the regression process was carried
out by one polynomial per segment. The regression
equation was not necesserily a polynomial. It must be
examined to use a more suitable equation for vehicle
dynamics.

• Completed process in one segment:
In this experiment, motion of the vehicle was esti-
mated from each segment by a completed process in
each segment, and finally they were smoothly com-
bined to estimate whole result. However, the neigh-
bor segment to a certain segment must represent ap-
proximately the same velocity. Therefore, the accu-
racy could be improved by considering inter-segment
continuity in the regression step.

• No use of reflectance:
Reflectance values could not be acquired from the
laser range scanner used in this experiment. Using
the reflectance edge in addition to the geometric edge
in spatio-temporal range image , would enable us to
improve the accuracy.

4.3.2. Issues for practical use

In this experiment, we assumed that the running path
of the vehicle was straight. When applying our method to
the more general case for a curved path, it is necessary to
fit curved surfaces instead of curved lines.

Additionally, swinging and variation of the vehicle
caused by acceleration or irregularity of the road surface
was disregarded in this case; however, such influence can
not be inevitable in practical application for city modeling.
In our current proposed method, swinging and viration di-
rectly affects the quality of vertical scanning lines, where
the difference value between the true value becomes pro-
portional to the tangent of roll/pitch/yaw angle.

One of the simplest solutions is to utilize hardware such
as a stabilizer; however, use of such devices has a limit for
adequate absorption of swinging. Our solutions through
software-based approaches are as follows:

• Use of correlation between prior/posterior frames of
vertical scanning lines.

• Extraction of road surface and building walls using
principal component analysis.
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Figure 12: The detail of modeling result, with before(a,b,c) and after(a′,b′,c′) the correction of the vehicle velocity.

(a)

(a′)

Figure 13: Modeling result: (a)before and (a′)after the correction of the vehicle velocity.

• Use of knowledge that road surface and building
walls are right-angled in dominant cases of urban
scene.

Moreover, as another approach, we intend to carry out
matching between vertical scanning range data and a quite
rough 3-D CAD model, which is given by an existing 2-
D house map and floor height information, as a frame-
work of alignment between range data with high and low
density. This approach is expected to strongly correct the
influence of swinging and vibration, in addition to the in-
fluence when the running path is not straight. Besides, a
digital housemap will enable us to operate global reset to
localization result per each intersections Running length in
this experiment, 170m, is sufficient regarding our method
as a first step in fusing dense range data and rough CAD
models.

5. Conclusion

In this paper, we first proposed a novel notion of the
epipolar plane range image. The feature of the epipolar
plane range image is that it shows both spatial and tempo-
ral contiuity simulatneously, and helps in obtaining gen-
eral tendency of the movement, compared with matching
each scanning frame precisely.

And by estimating the velocity of the data acquisition
vehicle with this theorem, we have aligned the vertical
scanning line which was obtained from another sensor
on the vehicle. The vertical scanning lines are correctly
aligned according to the vehicle velocity.

All estimation processes have been done without us-
ing any external positioning devices such as GPS, which
does not have enough accuracy for geometrical alignment
in general urban space with low radiowave sensitivity by
buildings or skyways.



Figure 14: Positional evaluation of 3-D reconstruction. Vertical lines of squares drawn in the lower part represent
the positions where the columns of the building should be located.

The future works are raised as follows:

• Accuracy improvement:
The accuracy of the estimation result will be im-
proved by the approach mentioned in the discussion
in the previous section.

• Fully arbitrary motion:
This time we assumed arbitrary speed and linear mo-
tion to the vehicle. By easing this constraint, the
spatio-temporal range image becomes a curved sur-
face.

• Further experiments in various environments:
In these experiments, the scanned objects are mainly
???along??? the column of our building. The experi-
ments in more complicated environments will be nec-
essary to demonstrate the versatility of our method.

• Texture mapping:
Mounting not only laser range sensors but also cam-
eras will enable us to acquire the textures of urban
scenes.

• Calibration of multiple sensors:
Position and orientation of each sensor will be es-
timated by analyzing spatio-temporal range image ,
simultaneously with the motion of the sensor using a
parametric alignment technique as [14].

Acknowledgement

This work was supported in part by a grant from Japan
Society for the Promotion of Science.

References

[1] R.C.Bolles, H.H.Baker, D.H.Marimont : “Epipolar-plane
image analysis: an approach to determining structure from
motion”, International Journal on Computer Vision, 1, 7-55,
1987

[2] H.H.Baker, et.al : “Generalizing epipolar plane image anal-
ysis on the spatio-temporal surface”, International Journal
on Computer Vision, 3, 33-49, 1989

[3] K. Ikeuchi, Y. Sato, K. Nishino, R.Sagawa, T. Nishikawa, T.
Oishi, I. Sato, J. Takamatsu, and D. Miyazaki, “Modeling
Cultural Heritage through Observation”, Proc. of Pacific-
Rim Conference on Multimedia, 2000

[4] Huijing Zhao, Ryosuke Shibasaki: “Reconstructing Urban
3D Model using Vehicle-borne Laser Range Scanners”, In-
ternational Conference on 3D Digital Imaging and Model-
ing (3DIM), 2001

[5] Christian Frueh, Avideh Zakhor: “Fast 3D Model Genera-
tion in Urban Environments”, IEEE Conf. on Multisensor
Fusion and Integration for Intelligent Systems (MFI), 2001

[6] Christian Frueh, Avideh Zakhor: “3D Model Generation for
Cities Using Aerial Photographs and Ground Level Laser
Scans”, Proc. IEEE Computer Vision and Pattern Recogni-
tion (CVPR), 2001

[7] Christian Frueh, Avideh Zakhor: “Constructing 3D City
Models by Merging Ground-Based and Airborne Views”
Proc. IEEE Computer Vision and Pattern Recognition
(CVPR), 2003

[8] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain
spatial relationships in robotics”, In I.J. Cox and G.T. Wil-
fong, editors, Autonomous Robot Vehicles, pp. 167–193,
Springer-Verlag, 1990

[9] R. Smith, P. Cheeseman, “On the representation and esti-
mation of spatial uncertainty”, Technical Report TR 4760 &
7239, SRI, 1985

[10] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte
and M. Csroba, “An experiemental and theoretical inves-
tigation into simultaneous localisation and map building
(SLAM)”, Lecure Notes in Contorol and Information Sci-
ences: Experiment Robotics VI, Springer, 2000.

[11] J. Guivant, E. Nebot, “Optimization of the simultaneous lo-
calization and map building algorithm for real time imple-
mentation”, IEEE Transaction of Robotic and Automation,
May 2001.

[12] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, “Fast-
SLAM: A Factored Solution to the Simultaneous Localiza-
tion and Mapping Problem”, Proc. AAAI National Conf. on
Artifical Intelligence, Edmonton, Canada, 2002.

[13] M. Montemerlo S. Thrun, “Simultaneous Localization
and Mapping with Unknown Data Association Using Fast-
SLAM”, IEEE Int. Conf. on Robotics and Automation
(ICRA), Taipei, Taiwan, 2003.

[14] E. Boyer and J. S. Franco: “A Hybrid Approach for Com-
puting Visual Hulls of Complex Object”, Computer Vision
and Pattern Recognition, 2003



[15] JIS No. C6802, Japanese Industrial Standard Comi-
tee(JISC), http://www.jisc.go.jp

[16] SICK, AG; http://www.sick.de

Shintaro Ono He recieved his B.E.
degree in information and communication
engineering from the University of Tokyo
in 2001, and M.E. degree in 2003. Cur-
rently he is a Ph.D candidate student in
the Faculty of Information and Commu-
nication Engineering, Graduate School of

Information Science and Technology at the University of
Tokyo. His research interests include spatial information
analysis and ITS.

Katsushi Ikeuchi He is a Professor
at the Institute of Industrial Science, the
University of Tokyo, Tokyo, Japan. He
received the Ph.D. degree in Informa-
tion Engineering from the University of
Tokyo, Tokyo, Japan, in 1978. After
working at the AI Lab., MIT for three

years,the ETL for five years, and the School of Com-
puter Science, CMU for ten years, he joined the uni-
versity in 1996. He has served as the program/ gen-
eral chairman of several international conferences, includ-
ing 1995 IEEE-IROS, 1996 IEEE-CVPR and 1999 IEEE-
ITSC. He is on the editorial board of the International
Journal of Computer Vision, and the Journal of Computer
Vision,Graphics. He has been a fellow of IEEE since
1998. He is selected as a distinguished lecture of IEEE
SP society for the period of 2000-2001 He has received
several awards, including the David Marr Prize in compu-
tational vision, and IEEE R & A K-S Fu memorial best
transaction paper award. In addition, in 1992, his paper,
“Numerical Shape from Shading and Occluding Bound-
aries”, was selected as one of the most influential papers
to have appeared in Artificial Intelligence Journal within
the past ten years.He is a fellow of the IEEE.


