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Toward Automatic Robot Instruction
from Perception—Mapping Human

Grasps to Manipulator Grasps
Sing Bing Kang and Katsushi Ikeuchi,Senior Member, IEEE

Abstract—Conventional methods for programming a robot
either are inflexible or demand significant expertise. While the
notion of automatic programming by high-level goal specification
addresses these issues, the overwhelming complexity of planning
manipulator grasps and paths remains a formidable obstacle
to practical implementation. Our approach of programming a
robot is by direct human demonstration. Our system observes
a human performing the task, recognizes the human grasp, and
maps it onto the manipulator. Using human actions to guide robot
execution greatly reduces the planning complexity. Subsequent to
recording the human task execution, temporal task segmentation
is carried out to identify task breakpoints. This step facilitates
human grasp recognition and object motion extraction for robot
execution of the task. This paper describes how an observed
human grasp can be mapped to that of a given general-purpose
manipulator for task replication. Planning the manipulator grasp
based upon the observed human grasp is done at two levels: the
functional and physical levels. Initially, at the functional level,
grasp mapping is achieved at the virtual finger level; the virtual
finger is a group of fingers acting against an object surface in a
similar manner. Subsequently, at the physical level, the geometric
properties of the object and manipulator are considered in fine-
tuning the manipulator grasp. Our work concentrates on power
or enveloping grasps and the fingertip precision grasps. We
conclude by showing an example of an entire programming cycle
from human demonstration to robot execution.

I. INTRODUCTION

ROBOT programming is the act of specifying actions
or goals for the robot to perform or achieve in order

to carry out a useful task. It is an essential and necessary
component of task automation. Robot programming methods
can be generally subdivided into four categories (which are not
mutually exclusive): teleoperation, teaching, robot-level tex-
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tual programming, and automatic programming. Teleoperation
basically refers to the direct control of a remote manipulator
(the slave) by manipulating a master device; the control
signals are usually low-level and are difficult to interpret. The
teaching and textual programming methods are by far the most
pervasive in both the industrial and academic environments. In
teaching methods, the robot or manipulator learns its trajectory
either through a teach pendant or actual guidance through the
sequence of operations. Portability between different systems
is a problem in both teleoperation and teaching methods.
Robot-level textual programming refers to the approach of
hand-coding programs to enable the robot to execute motions
in robot joint and task spaces. While this approach of robot
programming is flexible, it requires expertise and often a long
development time. In contrast, automatic programming con-
ceptually requires only the object description and high-level
task specifications in order to generate the control command
sequences to the robot. In general, the realization of a practical
system with automatic programming is difficult because of the
complexity of path and grasp planning and high-level task goal
interpretation.

The approach that we adopt in robot programming is the
Assembly Plan from Observation(APO) paradigm proposed by
Ikeuchi and Suehiro [9]. In this approach, task programming is
performed by demonstrating the task to the system rather than
by the traditional method of hand-coding. The key idea is to
enable a system to observe a human performing a task, analyze
it, and perform the task with minimal human intervention. This
method of task programming would obviate the need for a
programmer to explicitly describe the required task.

A similar approach to APO was taken by Kuniyoshiet al.
[18] who developed a system which emulates the performance
of a human operator. However, their system is restricted to
pick-and-place operations. Takahashi and Ogata [31] use the
virtual reality environment as a robot teaching interface. The
operator’s movements in the virtual reality space via the VPL
dataglove are interpreted as robot task-level operations by
using a finite automaton model. Hamadaet al. [7], on the other
hand, specify commands such as “carry(cap, path, body)” to
interactively carry out operations. This is first simulated in a
“task mental image” comprisinga priori action knowledge
and a graphical display. Subsequently, the operations are
carried out by the manipulator with the aid of a vision
system that matches the “mental image” models with the real
objects.

1042–296X/97$10.00 1997 IEEE
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Fig. 1. System block diagram.

A. Automatic Robot Instruction via APO

In the APO approach to robot programming, the human
provides the intelligence in choosing the hand (end-effector)
trajectory, the grasping strategy, and the hand-object interac-
tion by directly performing them. This alleviates the problems
of path planning, grasp synthesis, and task specification. Our
system, which uses the APO approach, is shown in Fig. 1. We
provide an overview of the entire system here.

The data acquisition system extracts data from the en-
vironment; it provides low-level information on the hand
location and configuration, objects on the scene, and contact
information between the hand and object of interest. The
grasping task descriptor/recognition module translates low-
level data into higher levels of abstraction to describe both
the motion and actions taken in the task. The output of the
grasping task descriptor module is subsequently provided to
the task translator which in turn creates commands for the
robot system to replicate the observed task. The representations
given in submodules A, B, and C are independent (up to
some level of task specification) of the manipulator used in
the backend of the system, while the converse is true of the
translator. The translator decides the information level at which
the robot is programmed. At the lowest level, it produces the
manipulator trajectory based directly on that of the human
hand. At intermediate and high levels, it uses the concept of the
virtual finger1 and identity of the human grasp to synthesize
the manipulator grasp. This paper shows how human grasp
description (output of grasping task descriptor module) can be
used by the grasp/task translator to map the human grasp to
that of the manipulator. We are interested in using human cues
as hints in planning manipulator grasps and paths.

B. Organization of Paper

This paper starts with a brief discussion on grasp planning
issues. Before grasp mapping can be accomplished, human
grasp descriptions have to be acquired first. A brief review
of how a human grasp is recognized from observation is
thus given. The general approach of planning manipulator
grasps from human grasp description is delineated next. Grasp

1Defined as a collection of real fingers acting in a similar manner against
the surface of an object in a grasp [1].

planning depends on the type of grasp used—both approaches
of planning volar grasps and fingertip precision grasps are
given in this paper. Example grasp mappings are subsequently
shown. The robot system (comprising the PUMA arm and
Utah/MIT hand) used as part of the testbed for proof of concept
is also described here. We also describe an example of a
full programming cycle, from human demonstration to robot
execution, before presenting concluding remarks.

A major component in task planning is planning the ma-
nipulator grasp. In the following section, we briefly discuss
some of the issues involved in grasp planning and reiterate
the justification for our approach.

II. GRASP PLANNING

Grasp planning involves determining the hand placement
relative to the object of interest as well as the posture of
the hand assumed in grasping the object, both in a manner
consistent to the requirements of the task (examples include
[5], [19], [24], [29]). It is computationally intensive due to
both the large search space and the incorporation of geometric
and task-oriented constraints. Globally optimal grasp planning
using comprehensive or exhaustive search is not feasible,
especially with a high number of joints of the robot arm and
hand.

The search space for an optimal grasp can be reduced in
size or dimensionality by using certain heuristics or structural
constraints. For a two-finger gripper, for example, the surface
element pair selection can be guided by a series of constraints,
such as face parallelism, permissible face separation, and
nonzero overlap between projected faces [34]. By imposing
fixed contact locations or fixed types of grasp, Pollard com-
putes a 6-D projection of the 15 DOF configuration space for
the Salisbury hand [27]. This reduced space represents the
space of wrist poses for geometrically feasible grasps, and is
used to search for a globally optimal grasp. In addition, a
popular strategy for reducing the complexity of planning the
dextrous hand grasp is by using a small set of predetermined
grasps or grasping behaviors (e.g., [3], [6], [28]).

In our approach of robot programming by human demon-
stration, grasp planning is made more tractable by using cues
extracted from human execution of the grasp. Subsequent to
temporal segmentation of the recorded task, the human grasp is
recognized and the approximate grasp contact locations recov-
ered. This is followed by determining the initial approximate
grasp which satisfies kinematic and geometric constraints, and
subsequently performing local optimization of the grasp using
the approximate grasp as the starting condition as well as a
task-oriented objective function. Our grasp mapping approach
is described in detail in the following sections. Prior to grasp
mapping, however, we need to produce descriptions of the
observed human grasp.

III. RECOGNIZING A GRASP FROMOBSERVATION

In this section, we briefly describe how an observed hu-
man grasp is recognized (full details can be found in Kang
and Ikeuchi [16]). The descriptions of the human grasp are
subsequently used as cues for the robot system to plan the
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Fig. 2. Grasp classification for recognition.

manipulator grasp. Central to the human grasp recognition
scheme is a 3-D grasp representation called thecontact web.

A. The Contact Web

A contact web is defined as a 3-D graphical structure
connecting the effective points of contact between the hand
and the object grasped. When parts of a finger or palm make
contact with the grasped object, the actual contact area is
finite. A point contact is useful in conceptually representing
the contact between the phalangeal segments and palm and
the object because of ease of representation and analysis, and
accommodation of uncertainty in grasping. The shape and
cardinality of the contact web yield important information
about the type of grasp effected.

B. Grasp Classification and Recognition

The main classification of grasps using the contact web
is shown in Fig. 2. Grasps are initially dichotomized into
volar and nonvolar grasps according to whether there is
contact between the palm and object. Nonvolar grasps are
further categorized as either fingertip grasps (in which only
the fingertips are involved) or composite nonvolar grasps (in
which a mix of fingertips and more proximal finger segments
are involved).

Nonvolar grasp classification and recognition follows Fig. 3;
classification and recognition is based on the number of fingers
and finger segments contacting the object as well the shape of
the contacts. (In Fig. 3, only the represented finger segments
in contact with the object are shown. The small filled circles
represent the fingertips, excluding the thumb, and the small
hollow circles represent the proximal finger segments. The
small filled box represent the tip of the thumb.) Volar grasp
classification and recognition is not as straightforward due to
the many finger segments involved in the grasp. To aid in volar
grasp recognition, we use the notion of thevirtual finger.

C. The Virtual Finger and Grasp Abstraction Hierarchy

Arbib et al. [1] introduced the concept of the virtual finger:
a functional unit comprised of at least one real physical finger
(which may include the palm). The real fingers comprising a
virtual finger act in unison to apply an opposing force on the
object and against the other virtual fingers in a grasp. This
concept replaces the analysis of the mechanical degrees of
freedom of individual fingers by the analysis of the functional
roles of forces being applied in a grasp [1].

By analyzing the contact web, the medium level grasp
concept of the virtual finger space can be described. The virtual
finger is used in characterizing the type of grasp and indicating
the functionality of the grasp.

Fig. 3. Nonvolar grasp classification.

Fig. 4. Volar grasp classification.

Mapping the real fingers to virtual fingers has been de-
scribed in Kang and Ikeuchi [16]. The mapping results in what
we call thegrasp cohesive index, which indicates how well
the fingers grouped as virtual fingers act in similar manner
against the surface of the object. Using the grasp cohesive
index and the degree of thumb abduction, we can then classify
volar grasps as shown in Fig. 4. (For a detailed description
of the types of volar grasps, see [16].) Nonvolar grasps are,
on the other hand, classified according to the number of
finger segments touching the object and the shape assumed
by fingertip position as shown in Fig. 3.

Once the grasp has been identified, the grasp abstraction
hierarchy can be constructed as depicted in Fig. 5 [15]. The
levels of description correspond to those depicted in the
grasping task module shown in Fig. 1. The hierarchy contains
information from the low-level of finger segment pose and
joint angles to the identity of the grasp itself. This hierarchy
is used by the task translator module of the robot system to
plan the manipulator grasp.
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Fig. 5. Grasp abstraction hierarchy.

IV. M APPING GRASPS

A. General Approach

Once we have extracted the human grasp descriptions
from observation, the robot system then proceeds to plan the
manipulator grasp. Planning the manipulator grasp comprises
the following steps:

1 Local Functional Mapping: This is done by observing
the type of grasp used by the human, and the functions
and grouping of the palm and individual fingers. The
latter is determined using the real finger-to-virtual finger
mapping described in Kang and Ikeuchi [14], [16]. The
mapping of the manipulator end-effector to the virtual
fingers depends on the effective cohesive index.

2 Adjustable or Gross Physical Mapping: This operation
is carried out using the outcome of the local functional
mapping and the initial location of the manipulator (near
the pose of the human hand while carrying out the task).
It results in an approximate form of the manipulator grasp
of the object which is geometrically feasible.

3) Fine-Tuning or Local Adjustment of Grasp: The grasp
determined from steps 1 and 2 may not exhibit static sta-
bility or that it may not be locally optimal (according to a
chosen task-related criterion). By analyzing the criterion
and iteratively perturbing the initial grasp configuration,
we arrive at a locally optimal grasp. In the case of the
volar grasp which involve high kinematic constraint, this
step is skipped.

Step 1 corresponds to grasp planning at the functional level
whereas steps 2 and 3 correspond to grasp planning at the
physical level.

In order to provide both a means for locally adjusting the
grasp and for checking the appropriateness of the resulting
manipulator grasp, we make use of certain grasp analytic
measures.

B. Analytic Measures of a Grasp

Cutkosky and Howe [5] summarizes a number of analytic
measures that have been used by various researchers in their
analyzes of grasps, several of which are for the purpose
of grasp synthesis. Examples of such analytic measures are
manipulability, grasp isotropy, force and form closure, internal
forces, and resistance to slipping.

The overall strategy of mapping grasps is depicted in
Fig. 6. The human grasp can be described in a hierarchical
fashion. With a priori knowledge of the human hand and

Fig. 6. Grasp mapping strategy.

data derived from observation, certain analytic grasp measures
can be extracted (such as connectivity and mobility). Armed
with these information, together witha priori kinematic,
structural and geometric knowledge of the manipulator, the
grasp translator would then attempt to produce a manipulator
grasp with compatible analytic grasp measures. In our work,
the manipulability measure is used as the criterion used in
generating the locally optimal manipulator grasp.

The functions of the hierarchical description of the human
grasp are:

1.) Local functional mapping;
2.) Gross physical mapping.

The functions of the analytic grasp measures are:

1) Verification of appropriateness of gross physical map-
ping;

2) Local fine-tuning or perturbation of grasp to a locally
optimal posture.

C. Local Functional Mapping

This first step in mapping grasps is common to all types of
grasps, i.e., volar and precision grasps. The local functional
mapping associates the manipulator fingers to those of the
hand, and is generally different for different grasps. To guide
the local functional mapping, we first assign manipulator
fingers as either a primary finger, secondary finger, or a palm.

Assigning Manipulator Fingers:Prior to mapping the ma-
nipulator fingers to those of the human in the observed grasp,
the manipulator finger has to be assigned as one of the groups
of fingers:

• Primary finger/s: A finger in this group would correspond
to the human thumb, which has at least the same number
of degrees of freedom as the other fingers. It serves not
only to secure the hold of the object against the palm
and/or other fingers, but also to manipulate the object.

• Secondary finger/s: This group would correspond to the
fingers of the hand other than the thumb. This group of
fingers would serve to secure the hold of the object against
the palm and/or primary finger/s.

A special case of a “finger” which is also assigned is the
palm of the robot hand; it is designated as such because it is
passive with no local degree of freedom (i.e., discounting the
global 6 DOF of the manipulator).

Manipulators are designed with specific functions or level
of dexterity in handling objects. The repertoire of grasping
abilities may be as limited and simple as just clamping
the object between its jaws as a means of securing a hold
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Fig. 7. Mapping grasps according to cohesive indices of virtual fingers.

Fig. 8. Scheme for generating the manipulator grasp and pregrasp trajectory
(the grasp mapping steps in bold).

on it (as in the parallel-jaw gripper). The manipulator may
be anthropomorphic to some degree and be able to mimic
certain grasps of the human hand; examples of such hands
are the Utah/MIT hand [10], Salisbury hand [21], and Okada
hand [25]. It is usually simple to labela priori each of the
manipulator fingers as either a primary or secondary finger.
It is also conceivable that the fingers can also be classified
by comparing the similarity in shape and orientation of the
velocity or manipulability ellipsoids of the fingers with the
hand assuming a certain pose (for example, at “mid-posture,”
with all the finger joint angles midway between the joint
limits). We chose to specify the type of fingera priori.

Once the primary and secondary fingers have been identi-
fied, the hand-to-manipulator finger mapping can proceed with
the aid of another type of mapping. This mapping relates real
fingers to groups of functionally equivalent fingers called vir-
tual fingers. A consequence of this real finger-to-virtual finger
mapping is thecohesive index. In short, the cohesive index is
associated with the degree to which the real fingers in a virtual
finger act in a similar manner; this is determined by comparing
the object normals at the contact points. A cohesive index of
a virtual finger is maximum at unity, and would indicate that
the fingers within that virtual finger act exactly alike.

(a)

(b)

Fig. 9. Approach alignment: (a) Determining approach vectora, (b) Ori-
enting robot hand to align with approach vectora (Trans(T ) refers to the
translation component of transformT ).

Using the Cohesive Index to Guide Mapping of Fingers:An
indication of how the cohesive index is used to guide the
virtual finger mapping between those of the human hand and
the manipulator is illustrated in Fig. 7. (Fis the th real
finger, and VF refers to the th virtual finger with C being
its associated cohesive index.) The palms, primary fingers, and
secondary fingers are mapped appropriately as seen in Fig. 7.
The cohesive index serves as a check—the virtual finger
corresponding to the group of secondary fingers normally has
a cohesive index less than that of the collection of primary
fingers. The virtual finger composition determined from the
real finger-to-virtual finger mapping take precedence, however.

Once the functional finger assignments have been accom-
plished, the more detailed manipulator grasp planning can then
proceed.

D. Approach in Generating Grasp and Pregrasp Trajectory

The diagram representing the entire manipulator grasp and
trajectory planning approach is shown in Fig. 8. Prior to the
more detailed manipulator grasp planning, the manipulator
assumes a fixed pose and posture relative to the human hand
throughout the task execution; local planning is carried out
within the vicinity of this pose and posture. Note that by
virtue of the different form and function of the volar and
fingertip precision grasps, they are planned in a different
manner elucidated in subsequent sections.

Once local planning (i.e., fine-tuning of grasp) is done,
starting with the pose and posture of the manipulator during
the grasping stage, the pregrasp trajectory is then planned
backward, with the goals of a smooth and collision-free path.
This path would closely follow that assumed by the human
hand trajectory. A basic issue in all grasp and task planning,
collision detection, is described in [11].

Depending on the type of grasp, the approach in manipulator
grasp planning differs. In the subsequent description of such
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Fig. 10. Determining direction of translation.

Fig. 11. Results of mapping a cylindrical power grasp for Utah/MIT hand
(top-right) and Salisbury hand (bottom-right).

mapping techniques, we concentrate on two classifications of
grasps, namely the volar grasp and the fingertip precision
grasp.

E. Generating the Volar Grasp

The primary purpose of the volar grasp, in which the hand
generally envelops the object, is to ensure a secure hold of the
held object at the expense of dexterity [23].2 As such, we are
primarily concerned with the manipulator providing complete
or high kinematic restraint on the object. Hence, in the case
of the volar grasp, we can dispense with the third step of local
grasp adjustment.

General Approach:The approach taken to generate the
volar or “enveloping” grasp follows that taken in “reactive”
planning (similar to that described by Brock and Salisbury
[3]). Note that this approach is taken in generating the grasp,
and is not used in the actual execution of the grasp itself. The
approach is characterized with the following phases:

1) Aligning the dextrous hand with the approach vector
assumed by the human hand just prior to grasping
(approach alignment phase).

2) Translating the hand (preserving its orientation) toward
the object until the palm touches the object (approach
phase).

3) Adjust the hand to “fit” the object to the palm (adjust-
ment phase).

4) Flex the fingers to envelope the object (wrapping phase).

Central to the alignment motions of the dextrous hand is
the pivot point. It is predefined to be a point on the surface of
the palm between the fingers. Its frame is oriented such that
its -direction points away from the palm and the-direction
points from the thumb (or a primary finger/s) to the rest of
the fingers.

2Napier [23] used the term “power grasp.”

Approach Alignment of Dextrous Hand:In order to mini-
mize the problem of collision with the object during the
pregrasp and post grasp phases, we first align the pivot frame
of the dextrous hand to the approach vector assumed by the
human hand just prior to grasping the object. This is known
as theapproach alignment phase. The approach vector is the
translation component of the differential transformation ,
where , is the transformation of the hand
at the grasp frame and is the transformation of the hand

frames prior to the grasp frame (is chosen to be 2). The
alignment is depicted in Fig. 9.

Once the rotational transformation (about the pivot point)
has been determined, the dextrous hand is rotated in steps,
with the intermediate collision detection with the object. This
initial rotation is performed to approximately center the grasp
aperture over the object to be grasped. If collision is detected,
the dextrous hand is translated or “repulsed” away (preserving
its orientation) from the surface of object that makes contact
with the hand. The normals of the surface or surfaces in
question determine the direction of the repulsion vector.

Adjusting Hand and Enveloping Object:Once the desired
orientation of the hand is assumed, planning proceeds with
the following behaviors:

1) Pure Translation Toward the Object (Approach Phase):
The translational motion is dictated by attractive forces
by the object on the pivot point on the dextrous hand.
This behavior is active prior to any collision between the
object and the manipulator palm. Note that the object
is represented as a collection of points sampled at a
regular but small interval (about 1.5 mm) on its surface.
Associated with each point is the object normal.

is the pivot point on the manipulator palm, and
is the th sampled object surface point. is the vector
from point to , i.e., is the object
normal at . The motion at each stage is

where is the step size in 3-D space,

is the weighting factor dependent on ; the
function used is .

2) Translation and Rotation About the Pivot Point (Adjust-
ment Phase): Once collision between the object and
the manipulator palm has been detected, this behavior
becomes active. The motion associated with this behav-
ior is defined by both the point or points of contact
and the entire object. The points of contact determine
the motion which tend to push away the manipulator
(repulsive forces) while the entire object tends to pull
the manipulator (via the pivot point) toward the object.
This has the property of trying to align the manipulator
relative to the object prior to grasping.
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Fig. 12. Orienting the pivot frame with respect to the contact frame.

It should be noted that while these behaviors are active,
the posture of the manipulator is that of full extension of
the fingers (for parallel jaw gripper, maximally distanced
fingers).
The rotation about the pivot point is,3 where

is the palm, is the quaternion associated with the
rotation due to the th contact point on the palm and
is given by

and .
3) Flexion of Fingers Around the Object (Wrapping Phase):

Once the manipulator has been adequately aligned with
respect to the object, the manipulator would then proceed
to wrap its fingers around it. This is done by flexing
successively distal joints (starting with the most proxi-
mal joint) until contact is made between the associated
link and the object. Note that the action of successive
joint flexion is done only in the planning and is not
actually executed by the robot hand. Once the final
hand configuration has been attained, the hand pose
and configuration in the frames prior to the grasp are
interpolated between this final hand configuration and a
valid hand configuration (that does not collide with the
object).

The assumption taken in this technique is that the dextrous
hand, when mapped to the coarse pregrasp trajectory, moves
it to a reasonably near vicinity to the object at an appropriate
posture. This should guarantee that, under the behaviors de-
fined in the “reactive” planning (which is basically local), the
manipulator posture should converge toward the desired volar
(enveloping) grasp.

F. Generating Fingertip Precision Grasp

General Approach:The approach taken to plan the finger-
tip precision grasp is different than that for the volar grasp,

3The circumflex̂ over the symbol indicates its normalized version.

Fig. 13. Results of mapping a fingertip precision grasp for Utah/MIT hand
(top-right) and Salisbury hand (bottom-right).

primarily because this precision grasp does not envelope the
object. As with the volar grasp, there are basically two stages:

1) Initial Grasp Pose and Posture Determination Phase:
Let the contact points on the object be denoted

. The initial grasp pose is determined
by calculating the pose of the contact frame and
orienting the pivot frame centered at the pivot
point on the hand by a certain fixed transformation
relative to (Fig. 12).
Subsequently, the pose of the hand is searched at this
neighhorhood until a kinematically feasible grasp is
found. The contact frame is centered about point,
defined to be

The orientation of is determined as follows:

If the best fit plane to the contact points is ,
where is any point on , and its unit normal, then

if
otherwise

and .
2) Local Grasp Pose and Posture Adjustment Phase: This

is done by locally optimizing a task-oriented criterion
with respect to the pose and posture of the hand. The
local adjustment is done at two levels; the two levels are
associated with the optimization with respect to the pose
(outer level) and with respect to the joint angles (inner
level). Note that the inner level optimization requires
iterations only if redundancy of finger DOF’s exists.
For the Utah/MIT hand, each finger has a redundant
DOF since there are 4 DOF’s per finger with only the
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Fig. 14. PUMA 560 and Utah/MIT hand system.

3-D position of each fingertip being fixed. There is no
redundancy of DOF for the three fingers of the Salisbury
hand.
Let be the vector representing the hand
pose with and the translation and rotation vectors
respectively, be the vector of joint angles repre-
senting the hand posture, and be the task-oriented
criterion to be optimized. Then the optimization can be
symbolically represented as

The outer optimization level uses the Nelder-Mead sim-
plex algorithm (see, for example, [22]), while the in-
ner optimization is accomplished using Yoshikawa’s
scheme for optimizing manipulator postures with redun-
dant DOF’s [34].
For a given initial hand pose , the locally optimal
hand posture is determined using the following
pseudocode:

Repeat until either the joint angle limitations are exceeded
or the magnitude of joint angle change vector is below
a threshold

where is a positive multiplicative constant (set to 0.002 here)

since , the contact points being fixed at each iteration.

where is the hand Jacobian (which is simply the linear

Fig. 15. A snapshot of cylindrical power grasp planning—see left image of
Fig. 16.

transformation that maps the robot joint velocity into task
velocity) and is the pseudoinverse of the Jacobian, i.e.,

Estimating Dextrous Hand-Object Contact Points:In order
to plan the robot fingertip grasp, we need to determine the
points of contact between the robot hand and the object to be
grasped. This is done by following these steps:

1) Determine the rough positions of the human hand-object
contact points: Fit these contact points with a plane

. This is done using the observation
that human fingertip grasps result in contact points that
approximately lie on a plane [16].

2) Cull off planes and edges as potential grasping places by
imposing the constraint that the associated object normal
should not be too close in direction to: At each point
on edge (edge point) and point on face(face point),
let the associated normals be and , respectively.
Then, disregard points on edgeif and
points on face if . Since we favor
faces over edges, , with and .

3) For each virtual finger with more than 1 real finger,
fit a line to the human hand contact points, and space
the hypothesized dextrous hand-object contact points
equally along this line.

4) Find the object surface points nearest to the hypothesized
dextrous hand-object points; for each face point, impose
a margin from the nearest edge ( 1.0 cm) if
possible; other wise arrange its position in the center
between opposite edges.

Results of mapping a fingertip grasp to those of the
Utah/MIT and Salisbury hands (subsequent to estimating
dextrous hand-object contact points) are shown in Fig. 13.

The Optimization Criterion:The precision grasp may be
generated using a variety of task-oriented measures such as
the manipulability measure [34], task compatability index [4],
sum of force minimization [20], and measures based on the
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(a) (b)

Fig. 16. Cylindrical power grasp (left) and fingertip precision grasp (right) by the Utah/MIT hand.

Fig. 17. Observation system.

task ellipsoid [19]. We use Chiu’s task compatability index
[4] to generate precision grasps.

V. SYSTEM IMPLEMENTATION

A. Robot System

The arm/hand system used to verify the grasp mapping
technique is shown in Fig. 14. The arm used is the PUMA
560 arm while the dextrous hand used is the Utah/MIT hand.
Both the arm and hand are controlled via Chimera, which is a
real-time operating system for sensor-based control developed
at Carnegie Mellon University [30]. The joint angles of the arm
and the hand are fed from the grasp simulator to the arm/hand
system via Chimera.

B. Grasp Simulator

The grasp simulator was written in C and the interface
in XView and PHIGS (Programmer’s Hierarchical Interactive

Graphics System). The robot arm and hand models were cre-
ated in this environment; the object collision detection scheme
described in [11] is implemented in this grasp simulator as
well, for the purpose of robot grasp planning. A snapshot of
the simulator is shown in Fig. 15. The two types of grasp
performed by the Utah/MIT hand are shown in Fig. 16.

In general, depending on the task to be performed, a library
of autonomous functions would be required. A good example
is the task of turning a screw into a threaded hole; the exact
motions used by a human in turning a screw may not be
suitable for any specifically given manipulator. A skill library
would be required—such as that described by Hasegawa,
Suehiro, and Takase [8]—to execute fine manipulative actions
not transferable directly by the human operator. This is still
consistent with our notion of programming by human demon-
stration; the system basically recognizes certain actions and
passes that high-level information to trigger the relevant skill
library (which may include sensing strategies) to execute the
task. The notion of skill library is not addressed in this paper.
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Fig. 18. Recovered task breakpoints.

Some work on detecting the high-level repetitive actions (e.g.,
turning the screw) using spectrogram (local Fourier) analysis
on human hand motion profiles has been reported [13].

C. Typical Execution Times

The execution time for the entire system is greatly limited
by the recovery of depth images from multibaseline stereo.
Currently, each stereo depth image of resolution 480512 is
calculated at the rate of about 8 min per frame on an iWarp
machine [2]. The total time taken to track an object is highly
dependent on the complexity of the object and the number
of frames to be tracked. Typical times for object tracking are
between 3–6 min per frame on a SUN SparcStation 1. On
the same workstation, task segmentation typically takes about
2–10 s while grasp mapping and planning (which includes
intermittent hand redisplay) for the Utah/MIT hand takes
between 5–10 min.

VI. ROBOT PROGRAMMING TO EXECUTION EXAMPLE

In this section, we describe a complete cycle that starts from
human demonstration of a task to the system, task analysis
of observed data, and finally robot execution of the observed
task. The human demonstration of the task is observed using
Version 2 of the observation system shown in Fig. 17.

A. Observation System

Our observation system consists of a four-camera active4

multibaseline system that is connected to the iWarp array
via a video interface (Fig. 17). The iWarp system, by itself,
is capable of reading digitized video signals from the four
cameras at video rate, i.e., at 30 frames/s.

Normally, two cameras are sufficient to recover depth from
triangulation. However, having a redundant number of cameras
facilitates correct matches between images, which is critical to

4The word “active” refers to the addition of projected structured lighting
during image capture.

TABLE I
VIRTUAL FINGER ASSIGNMENT

accurate depth recovery [26]. Details of the video interface are
given by Webbet al. [32] while the depth recovery scheme
is described at length by Kanget al. [17]. The cameras are
verged so that their viewing spaces all intersect at the volume
of interest, maximizing camera viewspace utility. In addition,
a sinusoidally varying intensity pattern is projected onto the
scene to increase the local discriminability at each image point.
Results [17] have indicated that the average errors in fitting
planes and cylinders to stereo range data are less than 1 mm
at distances of 1.5–3.5 m away from the cameras.

Both the serial line outputs of theCyberGlove and Polhemus
device are connected to the host (front-end) Sun workstation.
During image capture, the video outputs of the camera system
(where all the four cameras are synchronized) are digitized,
distributed, and stored in iWarp DRAM’s using systolic com-
munication. Once image capture is complete, these images are
then chanelled to the front-end workstation to be stored in a
storage disk for later depth recovery. We are able to achieve
sampling rates of about 4.5–5 frames/s.

Depth of the scene at every frame is extracted using the
algorithm described in Kanget al. [17]. Noise (especially at
the object borders) are removed by filtering out outliers. An
example of extracted stereo data extracted from a scene is
shown in Fig. 19(c).

B. Segmenting Task Sequence

The task sequence has been identified by the system as
a 2-task, namely a task with two manipulation phases. The
result of the temporal task segmentation is shown in Fig. 18.
In Fig. 18, the fingertip polygon is the polygon formed with
the fingertips as its vertices and the volume sweep rate is the
product of the fingertip polygon area and hand speed. Task
segmentation is based on the fact that the hand motion profiles
(fingertip polygon area, hand speed, and volume sweep rate)
normally assume a bell curve [12]. The task involved picking
and placing a receptacle, followed by picking up a peg and
inserting it into the hole of the receptacle.

C. Identifying the Grasped Object

The initial gross positions of the objects were manually de-
termined by the user; the three–dimensional template matching
(3DTM) program subsequently refines these poses [33]. The
results of object localization are shown in Fig. 19.

D. Tracking 3-D Object

By using the CyberGlove and Polhemus data and the
results of temporal task segmentation, the object that is being
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Fig. 19. Object model fitting. (a) Geometric models of objects (receptacle, at left, and peg, at right). (b) Superimposed object models in a scene. (c)
Corresponding 3-D views.

Fig. 20. Object tracking results (selected frames shown). Object manipulation #1 involves translating the receptacle closer to the bottom left handside of
the image; object manipulation #2 involves picking the peg and inserting it into the receptacle. Note that significant object motion may occur between
frames, e.g., between frames 29 and 30.

moved during each manipulation phase can be automatically
identified. The object that is being moved is identified based
on the proximity of the fingertip polygon centroid of the
human hand to the objects in the scene during the grasp phase.
The smallest distance of each object to the fingertip polygon
centroid is first calculated. The object whose closest distance
is minimum is deemed to be the grasped object. Object motion
during the subsequent manipulation phase affects only the
identified object.

To track the identified object, the 3DTM algorithm [33] is
again used to finely localize its pose at each frame. While
3DTM is relatively robust to a certain degree of object
occlusion, it fails under significant object occlusion (such as
in Frames 35 and 38 in Fig. 20). This problem is avoided
by masking out range pixels of other known environmental
objects and by imposing geometric constraints during pose

estimation to avoid object interpenetration. The results of
object tracking are shown in Fig. 20.

E. Human Grasp Recognition

Once the object trajectory has been extracted, the two human
grasps (the first with the receptacle and the second with the
peg) have to be recognized. Prior to that, however, the hand
poses have to be adjusted to account for sensor inaccura-
cies. Hand readjustment is accomplished through local search
within a neighborhood of hand orientations that minimizes
geometric violations between the hand and the grasped object
[13]. The results of hand adjustment are shown in Fig. 21 (first
grasp) and Fig. 22 (second grasp).

The first grasp (with the receptacle) has been recognized as
a “four-fingered disc grasp.” Note that the extracted measure-
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(a) (b)

Fig. 21. Hand pose (a) before and (b) after adjustment (first grasp). The hand is grasping the receptacle, corresponding to frame 10 in Fig. 20.

(a) (b)

Fig. 22. Hand pose (a) before and (b) after adjustment (second grasp). The hand is grasping the peg, corresponding to frame 25 in Fig. 20.

ment of the last finger resulted in the analysis that it did not
“touch” the object, when it actually did during the task. This
is a problem due to both imperfect glove calibration and hand
model. The second grasp (with the peg) has been recognized
as a “five-fingered prismatic grasp.”

Subsequent to grasp recognition, the human grasps are
mapped to manipulator grasps as shown in Figs. 23 and 24.
The assignment of real fingers to virtual fingers in both human
and robot hands are shown in Table I. (VFis the th virtual
finger while F is the th real finger.)

F. Robot Execution

Once the grasp mapping has been performed, the robot
system comprising the PUMA arm and Utah/MIT hand is
used to perform the task as shown in Fig. 25. The robot hand

trajectory was planned such that object motion during human
demonstration is replicated. As described in Section VI-D, the
object trajectories were obtained by tracking the grasped object
at every frame from stereo range data. Full details of each
operation in the programming to robot execution cycle are
given in Kang [11].

G. Summary: System Flow of Information

This section briefly reviews the types of information used
by our system for the process of robot programming by
human demonstration to work. As shown in Fig. 26, there
are three types of information used in the system:raw input
data that are sampled measurements taken during human
task demonstration,user given informationthat is necessary
a priori information used by the system, andsystem generated
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(a) (b)

Fig. 23. Result of grasp mapping #1: (a) Human grasp, and (b) Utah/MIT grasp.

(a) (b)

Fig. 24. Result of grasp mapping #2: (a) Human grasp, and (b) Utah/MIT grasp.

informationthat is internal knowledge (generated based on the
first two types of information) used to enable robot execution
of the observed task.

For our system, the raw input data are:

1) Stereo images (from which depth images are recovered,
Section VI-A [17]), and

2) CyberGlove and Polhemus data (used to recover task
breakpoints, Section VI-B [12]).

The user defined information comprises:

1) 3-D object models (used to track objects, Section VI-D
[11]),

2) Human hand model and grasp taxonomy (used to rec-
ognize grasp and extract grasp abstraction hierarchy,
Section III-B [15], [16]), and

3) Robot arm and hand models, group assignments of robot
fingers, and Chiu’s task compatability index (used in
conjunction with the system generated information of
object trajectory and grasp abstraction hierarchy to plan
the robot grasp and trajectory, Section IV).

VII. D ISCUSSION

Robot programming by human demonstration as described
in this paper constitutes an attractive alternative means of

teaching a robot to perform repetitive assembly tasks. This
is especially true if the assembly tasks involve many different
small to medium batch jobs that may require programming of
dextrous manipulators. Programming can be done easily and
quickly, since it is reduced to merely demonstrating the task.
This work is a first step in showing that such a method works.

While mostly positional and geometric information is used
in our work, the central idea of robot programming by demon-
stration can be extended to involve other modes of sensing,
such as force sensing. Such a mode of sensing would obviously
be necessary in tasks that involve objects with tight tolerances
and compliant force/motion strategy. Equally important are
skill libraries and the ability to replan (the latter in case of
initial failure). These additional features are necessary if this
approach of robot programming is to be made practical and
viable.

One salient characteristic of this approach is that task
planning is done based on the observation of human execution
and is hencehuman-centric. The optimality of the resulting
plan cannot be easily verified. A problem with this approach
of robot programming is that very specialized grippers (such as
suction cups for lifting flat pieces of glass and miniature end-
effectors on a turret head) cannot be easily programmed with
this approach. Also, programming by human demonstration
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Fig. 25. Different temporal snapshots of task execution by PUMA arm and Utah/MIT hand system.

Fig. 26. Information flow of our robot programming by human demonstra-
tion system. Each line points to the product with the requisite input on the
other end of the line.

may not be suitable for tasks that require high precision and
high volume, where optimality, in terms of speed and power
consumption, is critical.

VIII. SUMMARY

In this paper, we have described our method of mapping the
observed human grasp to that of the manipulator. The map-
ping is performed at two consecutive levels—the functional
level and the physical level. In the functional level mapping,
functionally equivalent groups of fingers are mapped. Once
this is accomplished, at the physical level of mapping, the
location and pose of the robot hand is refined to accommodate
the different hand geometries in grasping the object.

The approach of robot programming by human demon-
stration greatly simplifies grasp planning. It illustrates our
philosophy of easing the programming burden to mostly

demonstrating the task; it reduces the complexity of program-
ming and planning the task by taking advantage of the cues
derived from observing a human.
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