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Abstract  z 

The local displacement of an object is very useful 
for deciding grasp stability, generating trajectories, 
recognizing assembly tasks, and so on. To calculate 
this displacement, the screw theory is employed. It is 
equivalent to the first order Taylor expansion of the 
displacement. The screw theory is very convenient, 
because the displacement is formulated as simulta- 
neous linear inequalities, and a powerful tool to cal- 
culate such inequalities, the theory of the polyhedral 
convex cones, has already been established. 

However, truncation errors introduced by first order 
approximations sometimes cause mistaken results. 
In this paper, we improve the screw theory by using 
2nd order terms and verify the validity of the result. 

1 I n t r o d u c t i o n  

The local displacement of an object is very use- 
ful for deciding grasp stability[I, 2], generating 
trajectories[3, 4], recognizing assembly tasks[5, 6], 
and so on. The screw theory or tools with equiva- 
lent capabilities are employed for calculating the dis- 
placement. They are the first order Taylor expansion 
of the displacement. Therefore, the displacement is 
being formulated as simultaneous linear inequalities. 
That  is a good characteristic because a powerful tool 
to calculate such inequalities, the theory of the poly- 
hedral convex cones[7], has already been established. 

However, truncation errors introduced by first order 
approximations sometimes cause mistaken results. 
For example, consider the case shown in Figure 1. 
We can easily see that  the contact relation cannot be 
maintained if the white object rotates about the y- 
axis, which is perpendicular to this paper. However, 
we cannot recognize this with the screw theory. To 
overcome this problem, this paper considers the use 
of high order terms, especially second order terms. 

Rimon and Burdick proposed an index for deciding 
grasp stability that  employs second order terms[I]. 
However, the index can be employed only for this 
purpose. Research to employ high order terms does 
not, to our knowledge, exist. Therefore we propose 
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an improved screw theory for various types of appli- 
cations, that  also employs second order terms. 

The contents of this paper are as follows: Section 2 
illustrates the original screw theory. Sections 3 and 
4 introduce an improved screw theory from local dis- 
placement. Section 5 applies it to a contact relation 
in which the original screw theory produces a mis- 
taken result. Section 6 concludes this paper. 

2 S c r e w  t h e o r y  

To represent infinitesimal displacement, we employ 
the screw representation[8]. It is represented as the 
combination of a translation along the screw axis and 
a rotation about the same axis (Shown in Figure 2). 
We can formulate the infinitesimal displacement by 
using the screw theory. 

The screw is a convenient concept for representing 
three dimensional rigid body displacement. Any 
rigid body displacement can be accomplished by a 
rotation about a unique axis and a translation along 



the same axis. The combined motion is called a screw 
displacement or twist. The axis is referred to as the 
screw axis, and the ratio of the t ranslat ion to the 
rotat ion is designated as the pitch of the screw. The 
amount  of rotat ion about  the screw axis is called the 
ampli tude of the screw. 

A screw S is represented mathemat ica l ly  by two 3D 
vectors, [So, Sl]. So is the direction of the screw axis 
and Sl  = P x So + p S o ,  where the vector P is one 
from the origin to the screw axis and the scalar p is 
the pitch of the screw. For pure rotation, the pitch 
p is equal to 0, and the screw S will be [So, P x Sol. 
For pure translation,  the pitch p is infinity, therefore 
the screw S will be [0, So]. 

Consider two bodies in contact as shown in Figure 3. 
Let screw S = [So, Sl] represent the line of contact 
in 3D space and screw T = [To,T1]  represent the 
displacement of one object with respect to the other. 
Any screw T tha t  can cause the sliding of object B 
on object A is called a reciprocal screw and is related 
to S by equation (1). 

S 0  • T 1  + S l  • To - 0 (1) 

Any screw T tha t  can cause the detaching of object 
B from object A is called a repelling screw and is 
related to S by equation (2). 

S o  • T 1  + S l  • To > 0 (2) 

Thus the relation tha t  defines the feasible set of legal 
motions which do not violate the contact(sliding and 
repelling) can be wri t ten as equation (3). 

S 0 "  T 1  + S l  • To _> 0 (3) 

3 I m p r o v e d  s c r e w  t h e o r y  

We improve the screw theory as follows: First, we 
employ second order terms. Next, a center of ro- 
ta t ion is variant to an amount  of rotation, how- 
ever an axis direction of rotat ion is invariant to the 
amount ,  because local displacement usually appear- 
ing has this characteristic. 

Due to limitations of space, we are concerned here 
with only polyhedral  objects. We believe tha t  our 
proposed method  is useful for objects with second 
order curved surfaces. However, it should not be use- 
ful for objects with more than  second order curved 
surfaces, because of second order approximations of 
the local displacement. 

Every contact relation between two polyhedral  ob- 
jects can be represented as a combination of vertex- 
face(V-F), face-vertex(F-V), and non-parallel edge- 
edge(E-E) contacts as shown in Figure 4. And local 
displacement is usually formulated as simultaneous 
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Figure ¢" Essential three contacts 

inequalities each representing a contact in the com- 
bination. 

First, we formulate the local displacement in three 
types of contact relations. Next, we apply a second 
order Taylor expansion to them. We only concen- 
t ra te  on rotation. We consider t ranslat ion after for- 
mulat ing the displacement in rotation. 

3.1 V - F  c o n t a c t  

Consider the case of a V-F contact as shown in Fig- 
ure 5. The feasible displacement is formulated by 
equation (4), where n is a unit face normal vector, v 
is a vector from origin to the vertex, r = (rx,%, rz) 
is a right-screw axis direction of rotation, c is a cen- 
ter of rotation, A0 is an amount  of rotation, and I 
is a 3 x 3 unit matrix.  

A v f - n ' ( R ( v - c ) + c + s r - v )  > 0  (4) 

R - I + sin A0[r] x + (1 - cos A0)[r] 2 × 

0 -rz r v ) 
- rz 0 - r x  

--ry rx 0 

Equat ion (5) is obtained by applying the Taylor ex- 
pansion to equation (4) near A0 - 0, where t l  = 
r ( ¢  0), t2 - c x r + s i r ,  t3 - 2c' x r + s2r. The sign 
' means pr imary differentiation to A0. 

Avf = ((v x n ) .  t l  + n .  t2)AO 

+ (n .  t3 + (n × t l )"  (t l  × v + t 2 ) ) - -  

+ o( x0 

A0 2 

2 

(5) 

Natural ly the coefficient of A0 is equivalent to the 
original screw theory. 

3.2 F - V  c o n t a c t  

Consider the case of an F-V contact as shown in Fig- 
ure 6. The feasible displacement is formulated by 
equation (6). 

- ( R n ) .  ( v -  R t v  - c ) -  c -  _> 0 (6) 

Equat ion (7) is obtained by applying the Taylor ex- 
pansion to equation (6) near A0 - 0. Naturally, it is 
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Figure  5: V-F contact F igure  7: E-E contact 

F igure  6: F -V  contact 

the same as when substituting t l  - - t l ,  t2 - - t 2 ,  
and t 3 - - t 3  in equation (5). 

Afv  = - ( ( v  × n ) .  t l  + n .  t2)A0 

A0 2 
+ ( - n .  t3 d- (n × t l )"  (t l  × v d- t2)) 2 

+ O(~O ~) (7) 

3.3 E-E contact  

Consider the case of an E-E contact as shown in Fig- 
ure 7. The feasible displacement is formulated by 
equation (8). 

Ace - - (Rl l  × 12). ( R ( v -  c) + c + s r -  v) > 0 
IRll × 121 

(s) 
We need only to focus on the numerator  for the dis- 
placement. Equation (9) is obtained by applying the 
Taylor expansion to the numerator  of equation (8) 
near A0 = 0, where n = 11 × 12. However, the direc- 
tions of 11, 12 must be selected as the direction of n 
outside of an object. 

ACC - ((v × n ) .  tl + n .  tu)A0 

+ (n .  t3 + (n × t l )"  (t l  × v + t2) 

+ 2 ( ( t l  × 11) × 12)" ( t l  × v + t 2 ) ) - -  

+ 0(0 ~) 

A0 2 

2 

(9) 

3.4 Translation 

We formulated local displacement in rotation. For 
translation, the equation can easily be formulated as 

t l = 0. This can be seen by substituting t l = 0 in 
equations (5), (7), and (9). The factor t l  = 0 rep- 
resenting translation corresponds to a screw vector 
[0, T1] representing pure translation. Therefore, we 
need not to classify translation and rotation when we 
calculate local displacement. 

4 S o l v i n g  loca l  d i s p l a c e m e n t  

Before beginning to describe the method to solve 
local displacement, we should point out that  t l ,  
t2, and t3 can be set to any values independently. 
Therefore, we can treat  these variables indepen- 
dently. 

From the formulation we can see that,  when the co- 
efficient of A0 is greater than zero, the displacement 
corresponding to A0 > 0 is repelling motion, and 
when the coefficient is less than zero, the displace- 
ment is illegal. When the coefficient is equal to zero, 
the displacement, however, depends on a coefficient 
of A02, therefore, it is not always sliding motion. 

The problem of an improved screw theory is to clas- 
sify first order sliding motion into three types; second 
order repelling, illegal, or sliding motion. In this pa- 
per, we focus on classifying first order sliding motion 
into two types; second order sliding motion or not. 

Let equation (10) represent the feasible displacement 
of the i-th contact. Naturally equation (10) is equal 
to equation (5), (7), or (9). 

A -- f i ( t l ,  t2 )A0 d- 9 i ( t l ,  t2, t3 )A0 2 _> 0 (10) 

Second order sliding motion must satisfy equation 
(11). 

Vi(fi - 0 N g i - 0 )  (11) 

The condition, Vi(fi - 0), is a system of simulta- 
neous linear equalities, therefore, we can solve them 
as equation (12), where bi is an i-th six-dimensional 
basis. 

[tl ,  t2] -- Z sibi (12) 
i=1 

Next, equation (13) is obtained by substituting equa- 
tion (12) in gi. 

gi - ni" ta + hi (81 , . . . ,  8r) (13) 



Because gi is a coefficient of A02 in the equations (5), 
(7), or (9), hi must be a second order homogeneous 
polynomial. 

To solve the condition Vi(gi = 0), first we search 
all linear dependent combinations, Cj, of {hi}, and 
acquire equations as shown in equation (14), where 
ai is any real number. 

ki -- Z aj hj - 0 (14) 
jCCi 

All spaces ( S l , " ' , s ~ )  represent first order sliding 
motion. Among those, sub-spaces to be restrained 
by equation (14) represent second order not-sliding 
motion, and other sub-spaces represent second order 
sliding motion. 

Because the equation ki also must be a second order 
homogeneous polynomial, it can be represented by 
equation (15), where Ki is a symmetric  matr ix  and 

= 

ki = s TKis (15) 

Then a matr ix  Ki can be represented by ATWA,  
where A is an orthogonal matr ix  and W is a diagonal 
matrix,  because K is a symmetric  matrix.  

ki = (As)TWAs = 0 (16) 

Equation (16) can be decomposed as linear equations 
as shown in equation (17), if the signs of all diagonal 
elements, wi, of W are the same, because each si is 
a real number. 

N Z aijsj -- 0 (17) 
iC(wi=/:O) j 

Equation (16) can be decomposed in linear equations 
as shown in equation (18), if 3i,j(wi > 0 N wj < 
0 nV(k ¢ i , j)(wk = 0)). 

U Z a i j s j - O  (18) 
iC(wi=fiO) j 

To substi tute such linear equations obtained by the 
above mentioned method may enable all second or- 
der homogeneous equations to be decomposed. We 
believe that  usually all the equations can be decom- 
posed because local displacement may be usually rep- 
resented as linear equations. 

In some special cases, all equations may not be de- 
composed. To overcome this problem, we may be 
able to employ the concept of the Groebner basis. 
However, a second order polynomial is not conve- 
nient to treat.  We think our proposed method is 
very easy and very useful, because it t reats  only lin- 
ear equations and is superior to the original screw 
theory. 

Finally, we prove that  the result obtained by the 
above mentioned method is correct. For that ,  we 
prove two things as follows: one is that  the second or- 
der sliding motion obtained is correct, and the other 
is that  the second order non-sliding motion obtained 
is correct. The latter  thing is obvious. So we prove 
the former thing. 

P r o p o s i t i o n  1 The second order sliding motion ob- 
tained by the method mentioned above is correct, that 
is, all regions ( s l , ""  s~) not to be restrained by the 
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P r o o f  Now, we assume that  a region not satisfying 
the equation (11) exists. Then, hi is a constant real 
number. Because the equation, Vi(Ngi = 0), does 
not have a solution, a combination, {jl ,  • • • j,~ }, must 
exist, where the rank of a matr ix  A = m -  1, the rank 
of a matr ix  [A b] = m, and /n l/ /hill 

A -  • , b -  • . 

kj 
Because the rank of a matr ix  A = m -  1, 
{ n i l , . . .  njr ~ } is linear dependent.  Because the rank 
of a matr ix  A is different from the rank of a matr ix  
[A b], the equation (14)obtained by the combination 
must not be zero. That  is a contradiction. D 

5 E x a m p l e  

The original screw theory usually produces correct 
results. Because our proposed method is correct 
when the original screw theory is, we apply the 
method to the case in which the original screw theory 
produces mistaken results. 

The contact relation as shown in Figure 1 is ade- 
quate to verify the validity of the method. In this 
case, four F-V contacts exist. Locations of all of the 
vertices are (0, 20, 10), (0, 20 , -10 ) ,  ( 0 , -20 ,  10), and 
( 0 , - 2 0 , - 1 0 ) .  

First, we formulate feasible first order displacement 
as equation (19). 

10 0 0 0 0 - 1  0 
- 1 0 0 0 0 0 1  ( t l ) >  0 
- 1 0  0 0 0 0 - 1  t2 - 0 
10 0 0 0 0 1 0 

(19) 

We can solve equation ( 1 9 ) a s  equation (20), that  
means an object cannot t ranslate along the z-axis 
and rotate about the x-axis, and other displacements 
are first order slide motions. 

( 10 0 0 0 0 - 1 ) ( t l ) _ ( 0 )  
- 1 0  0 0 0 0 - 1  t2 0 

(20) 



We classify all first order slide motion into second 
order slide motion or not. We select the basis of first 
order slide motion as equation (21) 

S 1 = (0 ,1 ,0 ,0 ,0 ,0 )  

s2 = (0 ,0 ,0 ,1 ,0 ,0 )  

s8 = (0 ,0 ,0 ,0 ,1 ,0 )  

S 4 = (0, 0, - 1 ,  0, 0, 0) (21) 
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Next, we obtain equation (22) which second order 
slide motion must satisfy. 

(0, 0 , - 1 ) .  t 3  -~- 20812  -~- 2 8 1 8 2  - -  2 0 8 1 8 4  - -  0 

(0,0, 1). t3 + 20812 - 28182 + 208184 - 0 

(0, 0 , - 1 ) .  t3 + 208~ + 28182 + 208184 - 0 

(0, 0, 1). t3 -~- 20812 - 28182 - 208184 - -  0(22) 

We obtain equation (23) by searching linear depen- 
dent combinations. 

408~ - 0 

-408184 = 0 

408~ - 408184 - -  0 

408~ + 408184 - -  0 

408184 = 0 

40s~ - 0 (23) 

We obtain 81  = 0 by solving equation (23). This 
means rotation about the y-axis cannot maintain the 
contact relation, i.e. is not a second order slide mo- 
tion. But other first order slide motions are also 
second order slide motions. The result is obviously 
correct. 

6 C o n c l u s i o n  

We proposed a method to improve the screw the- 
ory using second order terms. First, we illustrated a 
problem of the original screw theory and described 
the use of second order terms to overcome this prob- 
lem. Next, we introduced the improved screw theory 
by applying second order Taylor expansion to the lo- 
cal displacement of an object. Then, we proposed a 
method to solve the resulting equations. Next, we 
verified the validity of our proposed method by ap- 
plying it to the case where the original screw theory 
produced a mistaken result. 

Due to space limitations, we could not illustrate the 
method for objects with second order curved sur- 
faces. However, we examined that  our method was 
probably useful for them through various trials. 

This paper proposed a method to classify first order 
slide motion into second order slide motion or not. 
However, we must introduce a method to classify it 
into three types; repelling, illegal or slide motion. 
That  is an open problem. 
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