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Abstract

We propose a method which refines the range measure-
ment of range finders by computing correspondences of
vertices of multiple range images acquired from various
viewpoints. Our method assumes that a range image ac-
quired by a laser range finder has anisotropic error dis-
tribution which is parallel to the ray direction. Thus,
we find corresponding points of range images along with
the ray direction. We iteratively converge range images
to minimize the distance of corresponding points. We
demonstrate the effectiveness of our method by present-
ing the experimental results of artificial and real range
data. Also we show that our method refines a 3D shape
more accurately as opposed to that achieved by using the
Gaussian filter.

1 Introduction

Large scale 3D modeling technology has become popu-
lar and is often used for modeling industrial plants, build-
ings, cultural heritage objects, and so on. Using this tech-
nology, enables many project scientists to digitize large
scale cultural heritage objects or natural scenes.

The 3D object modeling is accomplished by performing
the following three steps:
(1) Acquiring the range images (Scanning).
(2) Aligning of many range images acquired from differ-
ent viewpoints (Aligning).
(3) Re-generating the unified meshes (Merging).
Usually, during the scanning process To ensure that all of
the 3D shape data is acquired, several range images are
taken of each portion of the object surface.

For the alignment of the small objects, the geometrical
relationship between range images can be easily identi-
fied because the objects’ motions are controlled by us-
ing rotation tables or manipulators. However, that re-
lationship cannot be acquired for large objects; in such
cases, range image matching techniques are used for the
alignment. Many studies have been devoted to achieving
this purpose. Besl proposed a feature point-based match-
ing method [1], while Chen’s method is based on the

evaluation between the point and the polygons. Neuge-
bauer proposed the idea of ’simultaneous registration’
that aligns range images simultaneously to avoid the er-
ror accumulation of the pairwise alignment methods [6].
A similar idea was proposed by Nishino et al. [7].

A merging procedure produces unified meshes from
aligned range images. This is accomplished by concate-
nating the polygons’ borders [10], using deformable sur-
faces [4] or implicit functions [2, 11]. Wheeler’s method
uses ’signed distance’ to represent the distance from 3D
mesh surfaces and their consensus. As the result, the er-
rors and outliers are eliminated.

The errors of the final 3D model come from these factors.
(1) A measurement error on the range images.
(2) A matching error on the alignment process.
(3) The quantization and equalization errors on the merg-
ing process.
The type (2) and (3) errors depend on the object shape
and the algorithm, and so are solved by selecting a suit-
able algorithm according to the objects. For the type (1)
error, Taubin used the spatial smoothing filter [9], but fine
features can be lost during this procedure. Basically, this
kind of error cannot be avoided from one range image by
using any software algorithms.

Taking many range images of the same surface is the one
of the solutions for this problem. Generally, any range
measurement system has its characteristic minimum mea-
surement accuracy and error distributions. Wheeler’s
method is based on this consideration, but is weak for
spatially high resolution range images. The signed dis-
tance is calculated along the normal direction of the sur-
face. If the normal directions are not responsible because
of a measurement error, then the final merging result is
also not responsible.

We propose a method to avoid this weakness and im-
prove the accuracy of the final 3D model. This reduces
the measurement errors on the distance value in the over-
lapping areas of the aligned range images. By applying
this method before the merging process, a much finer 3D
model may be acquired. Unlike the existing spatial fil-
tering method, our method is able to not only smooth the



Figure 1: Measurement error

surface of the final 3D mesh model but also to extract
fine features. In the following sections, 2 describes our
proposed estimation and correction method. 3 shows the
result of refinement of artificial and real range data. Fi-
nally, we summarize our method in 4.

2 Proposed Method

Our method corrects errors by iterative computation sim-
ilar to registration techniques like ICP[1]. Let us call the
base range image the ’model’ and others the ’scenes.’ We
first search the corresponding points on all scenes of each
vertex of the model. Then, we move every vertex of the
model respectively to reduce the distance of each corre-
spondence. Our method continues this process until the
distances become sufficiently small.

The following pseudo code shows the proposed algo-
rithm:

Algorithm Procedure of Correct Errors
while (error > threshold){

for (i = 0; i < nImage; ++i){
/* range image i is model */
for (j = 0; j < nImage; ++j){

/* Search corresponding points */
/* for all vertices of the model*/
if (i != j) CorrespondenceSearch(i, j);

}
/* Compute the next position of vertices */
MoveVertex(i);

}
/* Update the motion of all vertices */
UpdateVertex(all);

}

2.1 Error model of Range Measurement

Laser range finders measure distance by shooting a laser
and receiving its reflection from the target object. The
3D position of the point of reflection is computed by the

Figure 2: Search correspondence

distance and the ray vector. The error of the 3D position
mainly depends on the error of the distance. The error of
the vertical direction to the ray vector, which is caused by
the mechanism of the range finder, is much smaller than
the error of the distance. Thus, we assume the error of the
range measurement by a laser range finder is anisotropic
and exists only along the ray vector (Figure 1).

2.2 Correspondence Search

Since we assume that error exists only along the ray vec-
tor and that range images are completely aligned, our
method searches corresponding points along the ray vec-
tor. Now, �x is the vector from the center of the sensor to
the vertex of the model and �y is the vector from the center
to the corresponding point of the scene. Then,

�y = a�x (1)

where a is the coefficient. Thus, these points are on the
same line (Figure 2).

To eliminate wrong correspondences, if the distance of
corresponding points is larger than a threshold, we re-
move the scene point from the correspondence. We use
the maximum error of the range finder as the threshold.
This correspondence search is computed for every com-
bination of range images.

2.3 Error Correction

Errors are corrected by moving each vertex to the new po-
sition, which is estimated from the corresponding points.
Since the direction of error of each range image is dif-
ferent, some correspondences are not accurate. In the
case that the number of overlapped range images is small,
it is difficult to estimate the accurate point. Thus, we
move each vertex to the weighted average point of the
correspondence in order to gradually converge the error.
The kth vertex of ith range image �xik is moved to the



Figure 3: Error by resolution and geometry

weighted average point

�x′
ik = (1 − w) · �xik + w · 1

nik − 1

∑
i �=j

�yjk (2)

where nik is the number of the corresponding points and
w is the weight. In this paper, we use w = 0.5. This pro-
cess is applied to all vertices of each range image. We
reiterate it until the error of correspondence converges
sufficiently.

2.4 Discussion

The error of corresponding points ε depends on the error
of measurement εMeasure and the error by sparse sam-
pling of a range image εGeometry.

ε = εMeasure + εGeometry (3)

εMeasure is corrected by iterative computation. However,
εGeometry is caused by the curvature of the surface and
the sampling interval of a range image.

In Figure 3, the range measurement is noise-free and the
vertices of range images are on the real surface (namely
εMeasure = 0); however, the error exists between �x and
�y. Thus, ε = 0 only if the surface is planar.

ε

{
= 0 planar area
> 0 otherwise

(4)

Figure 4 shows a 2D example of range images. For sim-
plicity, we assume the new positions of x2, y1, y2 after an
iteration is computed as

x′
2 = (1 − w)x2 + w((1 − α)y1 + αy2)

y′1 = (1 − w)y1 + w((1 − β)x1 + βx2) (5)

y′2 = (1 − w)y2 + w((1 − γ)x2 + γx3)

where w, α, β, γ are coefficients. Coefficients α, β, γ are
determined by correspondence of x1, x2, x3, y1 and y2.

x1

x2

x3

y1

y2

Ray directions

Range images

Figure 4: Smoothing effect by iteration

After one more iteration, x′
2 moves to

x′′
2 = (1 − w)x′

2 + w((1 − α′)y′1 + α′y′2)
= w2(1 − α′)(1 − β)x1 + w2α′γx3 +

((1 − w)2 + w2(1 − α′)β + w2α′(1 − γ))x2 +
w(1 − w)(2 − α − α′)y1 +
w(1 − w)(α + α′)y2 (6)

where α′ is a coefficient. Since the equation of x′′
2 in-

cludes the neighbor vertices x1, x3, the smoothing effect
occurs during an iteration similar to the smoothing filter.
However, the weight of x1 and x3 in (6) is small com-
pared with that of the smoothing filter, for example,

x′
2 = αx1 + βx2 + (1 − α − β)x3, (7)

which does not include y1, y2. Thus, the propagation of
the smoothing effect of our method is slower than that of
the smoothing filter. In our present implementation, we
determine the number of iterations by estimating manu-
ally whether the iteration is sufficient.

With regard to the computation cost, most of the com-
putation cost is due to searching for correspondences.
Our algorithm searches for correspondences of vertices
by rendering all range images from the viewpoint of the
reference range image. Thus, the order of computation is
O(MN2) for an iteration of refinement of all range im-
ages, where N is the number of range images and M is
the number of vertices of a range image.

3 Experiment

3.1 Error Distribution of Laser Range Finder

Among types of laser range finders, a time-of-flight range
finder is useful to measure a distant object with high ac-
curacy. We use a laser range finder of the time-of-flight
type, Cyrax 2500 [3] made by Cyra Technologies, Inc. To
estimate the error distribution of the Cyrax 2500, we set
the range finder in front of a concrete wall and measured
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Figure 5: Distribution of errors of Cyrax2500

the distance to the wall many times. We tested three con-
figurations of different distances, far range (67m), middle
range (20m) and near range (2m) 1. Figure 5 shows the
result of measurement and the average, variance and stan-
dard deviation are depicted in Table 1. The error distribu-
tion becomes wide in the near range; however, it can be
regarded as a normal distribution with about 3mm stan-
dard deviation. The maximum error is about 7–8mm,
which is a little larger than the 6mm (at 50m range) of
the catalog specification.

We did not test the error distribution of the vertical di-
rection to the ray vector. According to the catalog, it is
0.25mm at 50m range (0.0003 degree), which is drasti-
cally smaller than that of the ray direction. Thus, the error
distribution of the range image by Cyrax 2500 depends on
the ray direction.

3.2 Error Correction of Artificial Data

First, we create artificial range images with random noise
and experiment with the error correction. Figure 6(a)
shows the model without noise. Its width and height are
40cm, its depth is 20cm and it consists of 100 × 100
points. The range image with noise, of which the maxi-

1The recommended range of Cyrax 2500 is 1.5–50m.

Table 1: Distance measurement error of Cyrax 2500

Average distance [mm] Var. [mm2] STD. [mm]
2017.2 (near) 11.0 3.3
21518.0 (middle) 9.1 3.0
67591.1 (far) 7.7 2.8

(a) (b)

Figure 6: Artificially created model

mum is 6mm, is Figure 6(b). We create 10 range images,
to which are added noises of different direction. The re-
sult of error correction is shown in Figure 7(a). Figure
7(b) is one of range images filtered by Gaussian filter.
We can see that our method corrects error sufficiently and
preserves edges more accurately than does the Gaussian
filter. Figure 8 compares these two results.

We use a PC with a PentiumIII 866MHz processor and
a NVIDIA GeForce3 graphics card. Since our method
searches correspondences by rendering range images, it
can be accelerated by the use of graphics hardware. The
computation time for 20 iterations is 413 seconds.

3.3 Error Correction of Real Data

Next, we experiment on the error correction of range im-
ages acquired by a laser range finder Cyrax 2400, whose
accuracy is the same as that of the Cyrax 2500.

The observed object is the Nara Asuka Great Buddha,
which is considered to be the oldest Buddha statue in
Japan. Its height is about 2.7m. Cyrax 2400 is a range
finder for long range, and is not suitable for measuring
objects of the Asuka Buddha’s size. However, because of
the bad environment around the Buddha, we cannot use a
more accurate range finder for near range. Thus, we mea-
sure the Buddha a little apart from it by using the Cyrax
2400.

We have acquired 9 range images of the front of the Bud-
dha. We align these range images simultaneously by us-
ing a robust registration method [7] (see Figure 10). Since
the object is relatively small and the range is near, the ob-
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Figure 7: Refined model

Figure 8: Compare our method and Gaussian filter

vious noise can be seen in the range images.

Figure 11 shows the result of the error correction by our
method. The noise has been removed from the model
and its surface is smooth. In spite of that, the edges are
well preserved because our method is not a smoothing
operation such as the Gaussian filter. In Figure 12, the
error converges to 0 as the number of iterations increases.
The computation time for 20 itrations is 1510 seconds.

Figure 13 shows the results of merging range images us-
ing both the original range images and the refined range
images. We use the merging technique by Sagawa [8].
Since the method takes consensus of range images us-
ing the distance and normal direction [11], it can remove
the error caused by measurement and registration. How-
ever, in this experiment, it is difficult to correct the error
because the range images are too noisy and its normal
direction cannot be relied on. We can see that the er-
ror remains in the merging result which uses the original
range images in Figure 13. On the other hand, the accu-
rate model is reconstructed in the merging result with the

Figure 9: Great Buddha at Asuka temple

Figure 10: Original range image

refined range images. In the area where range images are
not overlapped such as the side of the head, the error is
not removed.

We compare our method with the model filtered by the
Gaussian filter. Figure 14 shows a part of the model fil-
tered by the Gaussian filter after merging and the model
merged from refined range images. The model with the
Gaussian filter is smoothed out; however, our method re-
moves noise and preserves the edge of the surface.

Finally, we consider whether our method can be applied
to other range finders, for example, a stereo range finding
system. We construct a multi-baseline stereo system [5],
which consists of 9 cameras. Figure 15 shows one of the
camera images and a stereo range image. Since the multi-
baseline stereo generates a range image for each camera
by taking matching images with the other 8 cameras, we
generate 9 stereo range images. These range images are
pre-aligned by stereo calibration. Thus, our refining pro-
cess can be applied straightforwardly to the 9 range im-
ages. In the raw stereo range image (Figure 16(a)), we
can see the step-shaped error caused by quantization of



Figure 11: Refined range image

Figure 12: Convergence of error

images. Figure 16(b) is the refined model after 10 times
of the iteration. The step-shaped error is removed after
refinement. Also, Figure 16(a) contains a lot of debris
due to mismatching. Since the refining process is an esti-
mation of the confidence of range data, we can regard the
vertices of the range image which cannot be refined as
unreliable vertices. Figure 16(c) is the range image after
the unreliable vertices are removed.

4 Summary

In this paper, we have proposed an efficient range image
refinement method under the consideration of unique er-
ror distributions of multiple range images. We described
how we applied this method for the modeling of the ar-
tificial test object and the actual cultural heritage object
from the images acquired by the time-of-flight range sen-
sor. Finally, we applied our method to the range images
which are generated by the multi-baseline stereo system.
The experimental result shows the validity of this method
compared with that of the existing filter-based methods.

Original Refined

Figure 13: Results of merging

Gaussian Filter Our Method

Figure 14: Compare with Gaussian filter
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Figure 16: Refinement of range image by stereo
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