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Abstract|This paper describes a method for vehicle recog-
nition, in particular, for recognizing a vehicle's make and
model. Our system is designed to take into account the fact
that vehicles of the same make and model number come
in di�erent colors; to deal with this problem, our system
employs infra-red images, thereby eliminating color di�er-
ences. Another reason for the use of infra-red images is that
it enables us to use the same algorithm both day and night.
This ability is particularly important because the algorithm
must be able to locate many feature points, especially at
night. Our algorithm is based on con�guration of local fea-
tures. For the algorithm, our system �rst makes a com-
pressed database of local features of a target vehicle from
training images given in advance; the system then matches
a set of local features in the input image with those in train-
ing images for recognition. This method has the following
three advantages: (1) It can detect even if part of the target
vehicle is occluded. (2) It can detect even if the target vehi-
cle is translated due to running out of the lanes. (3) It does
not require us to segment a vehicle part from input images.
We have two implementations of the algorithm. One is

referred to as the eigen-window method, while the other is
called the vector-quantaizationmethod. The former method
is good at recognition, but is not very fast. The latter
method is not very good at recognition but it is suitable
for an IMAP parallel image-processing board; hence, it can
be fast.
In both implementations, the above-mentioned advan-

tages have been con�rmed by performing outdoor experi-
ments.

Keywords|Vehicle Recognition, IR image, Parallel Image
Processor

I. Introduction

Traditionally, the main purpose of vehicle detection is to
measure the number of vehicles at each sensing point for

ow estimation and prediction. As a result, point-oriented
sensors, i.e., ultrasonic sensors or loop detectors, are of-
ten used. Those point-oriented sensors collect only binary
information such as whether a vehicle exists at a certain
point at a certain place; the sensors, however, cannot col-
lect other important tra�c information, such as space ve-
locity, or size of vehicles. It is also true that those sensors
do not work well at merging points because many vehicles
switch lanes, and the sensors cannot detect such vehicles.
Recently, image-processing sensors have become practi-

cally available in ITS applications. Not only can those
sensors measure the number of vehicles but they can also
measure velocity; they also have the potential to detect
tra�c accidents. For example, Momozawa and Nomura
developed an accident recognition system[6].
This paper proposes an algorithm for recognizing target

vehicles, that is, for detecting types of vehicles, e.g., type
A of company B, by using image-processing sensors. It is
true that there are other methods to detect vehicle types,
e.g.,axle-counting equipment [8]. But such systems actually

detect the weight, the size, and/or the wheel-base of vehi-
cles, not the vehicle model. Our method is vision-oriented,
and can recognize speci�ed vehicles on roads.
One of the common problems with image-based vehicle

recognition systems is segmenting vehicle area from input
images. Various research on updating background (e.g.,
[2]) has been done; hence, with the method of background
subtraction, it is easy to obtain moving object areas. But
in cases where vehicles are occluded by other vehicles, it
is di�cult to segment each vehicle area. Because the al-
gorithm in our method uses local features, segmentation is
not necessary in our system.
In principal, if we had detailed training images of all

types of existing vehicles, and if we had a large amount of
resources such as memory and time, our system would be
capable of detecting the types of any vehicles on any road
in the world.

Although some other automatic vehicle identi�cation
(AVI) systems, including two-way communication and
number plate reading systems([3]) exist, they have several
practical problems. For example, two-way communicaltion
systems are expensive and not yet common; and data from
number-plate reading systems should be treated very care-
fully due to the privacy issue. Thus, we prefer the vision-
based system.

II. Recognition Algorithm

A. Overview

Our basic algorithm is based on the eigen-window
method, originally developed byOhba and Ikeuchi[12], [14].
Later, the algorithm is modi�ed for the IMAP-vision board,
which handles only integers using the vector quantization
method proposed by Krumm[13]. The following procedure
describes our method:

1. Make the database set in advance.
(a) Make the set of training images.
(b) Extract local feature points from each training im-

age.
(c) Compress the set of feature points.
(d) Make a database set which consists of pairs of a

compressed local feature and the location of the fea-
ture point in the training image.

2. Compare input images with the database set.
(a) Extract local feature points from the input image.
(b) Find the closest feature points in the database for

each local feature point.
(c) Make a vote such that two feature points in the

input image are voted to the same point if, and only
if, their relative position is the same in both the
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training image and the input image.
(d) Detect according to the result of the vote.

The original algorithm is based on the eigen-space
method [9], in which we calculate eigen values of a co-
variant matrix. The eigen-window method uses small win-
dows as features for object recognition. Due to this window
method, the algorithm can handle images that contain par-
tially occluded objects.
In the remainder of this section, we describe the eigen-

window method([14]).

B. Eigen-window Method

B.1 Eigenspace Technique

We summarize the eigen-space method here. Let
z1; z2; . . . ; zM be a set of training images of n � m. Each
zi can be considered as a point in N = n�m dimensional
vector space. Let c be the average of all training images:
c =

P
zi=M. Then we have a N �M Matrix Z and its

covariant matrix Q of N �N as follows:

Z = fz1 � c; z2 � c; . . . ; zM � cg

Q = ZZt

Note that we can consider ~Q = ZtZ instead of Q of M �
M if N �M .
Let f�ig; �1 � �2 � � � � � �M � 0, be the eigen-values of

Q, and feig be its eigen-vectors: �iei = �iQ. For a given
threshold T , which is approximately 0.1, we can obtain
such number k that

 
kX
i=1

�i

!
=

 
NX
i=1

�i

!
� T:

We can expect that k is su�ciently smaller thanN if T is
suitable. The matrix Q is considered as a diagonal matrix
with respect to the base fe1; e2; . . . ; eNg. The contribution
of ek+1; . . . ; eN is relatively small; hence, we can reduce
this liner map of Q as
E = [e1; e2; . . . ; ek].
Using this reduction, we identify any image p of n � m

as Et(p� c), which is a point in the k-dimensional vector
space. If we put p = zi, we obtain a reduced set of the
training images.
In other words, we can reduce a set of points in N -

dimensional vector space into a set of k-dimensional vector
space. Usually k is about 10 or less, whereas N is over
1000; hence, it is much easier to match two images in k-
dimensional vector space.

B.2 Local Feature Points

In this subsection, we explain how to select local features.
We �rst extract the local features through the corner detec-
tor of Tomasi and Kanade[4]. Let I be the image intensity,
x = (x; y) be the coordinate and R be the region of a win-
dow (e.g., 10�10 square). Consider the following matrix S
of 2�2:

S =
X
x2R

�
@I

@x

��
@I

@x

�T

Then S has two eigenvalues: �1; �2. We select the win-
dow as a local feature point if

min(�1; �2) > �

for a given threshold �.
Secondly, when we make the database of training images,

we reduce the local features into a lesser number of char-
acteristic windows according to the criteria of uniqueness
and reliablity.
Let zi1; zi2; . . . ; ziMi

be the set of local features in a train-
ing image Ii, and z11; zi2; . . . ; zNMN

be the set of all local
features in the training images.
We de�ne that a window zij is unique if it satis�es the

following property:
[Uniqueness criterion](Figure1) For all zkl 6= zij , kzkl�
zijk > �, where � is a given threthold.

Fig. 1. Uniqueness criterion

If zij is not unique, it means that there exists a local
feature zkl which is similar to zij . This fact increases the
cost of vote because a window w which is similar to zij is
usually similar to zkl as well. In Figure 1, the windows of
a1 and b1 are similar, whereas the window of a2 is unique.
We remove the local features which are not unique, such
as a1 and b1.
A window zij is reliable if the following property is held:

[Reliablity criterion](Figure 2) Let I 0 be a image in
which the target object in I is slightly moved, and z0ij be
the corresponding window of zij in I 0. Then z0ij is similar
to zij : kz0ij � zijk > �0.
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Fig. 2. Reliablity criterion

Since a window which is similar to a non-reliable feature
might not actually be similar to a part of the object rec-
ognized, we also remove the local features which are not
reliable, such as a2; b2 in Figure 2.

B.3 Compression

We can apply the eigen-space technique to the set of re-
duced local features to obtain the set of compressed char-
acteristic local features. The dimension of local-features is
about 10�10 and k is approximately �ve.
We call the set of local features the database.

B.4 Recognition

For any input image J , we can extract local feature
points fwlg with the corner detector. Our system searches
where objects exist in J according to the following voting
system(See Figure 3).
Let fz1; z2; . . . ; zMg be the database. For each zi, we

write that it comes from the training image Ii and its lo-
cation in Ii is (xi; yi).
The base space of our voting operation is Z�R�R,

where Z corresponds to the number of training images,
and the other two R's correspond to o�-sets in the image.
Consider a local feature w 2 fwlg. If the location of w

in the input image J is (x; y) and w is similar to some zi;
kzi � wk < �, then we put a vote onto (Ii; x � xi; y � yi).
If w is similar to another zj, we also put another vote onto
(Ij ; x� xj; y � yj).
It is easy to see that w1 and w2 are voted onto the same

point if, and only if, there exist zi and zj such that
(1) w1 is similar to zi, and w2 to zj.
(2) Ii = Ij .
(3) xi � xj = x1 � x2 and yi � yj = y1 � y2.
If the number of votes on a point (I; x; y) is r, it means

that there are r local features in a training image I such
that their relative position in the training image is the same
as that in the input image. Hence, for each point in the base
space (I; x; y) on which the number of vote is large enough,
our system tells that there is an object in the image I with
the o�-set (x; y). Note that the o�-set (0,0) means that
the location in the input image is the same as that in the
training image.
Because of this voting operation, our system has the fol-

lowing properties:
1. It might recognize occluded objects when there is a
large enough number of their local-features which are
not occluded in input images.

2. It can recognize all objects in input images.
3. It can detect the objects even if the location in an in-
put image is di�erent from that of the training image.

4. It does not require us to segment the vehicle area from
the input images.

III. Basic Experiment

Under two di�erent sets of conditions, we conducted ve-
hicle detection experiments with the eigen-windowmethod,

and con�rmed that the method works well even if part of
the speci�ed vehicle is occluded.

A. Indoor Experiment

First we experimented in detecting model cars using in-
door images. We prepared 48 training images, 24 for each
model, rotating each model by increments of 15 degrees.
Figure 6 shows some of the training images, Figure 7 ex-
amples of input images.

The dimension of each image is 512�480, and the num-
ber of local feature points in an image is approximately
100{200.

The dimension of each local feature is 10�10, and some
of them are shown in Figure 4. The eigen-windows of the
local features are considered as their principal components.
The �rst �ve components are shown in Figure 5. In this
case, the contribution of the �rst �ve eigen-values is 99.2%,
which means that any local feature is very well-described
as a linear combination of these �ve eigen-windows.

Fig. 4. Examples of local feature windows

Fig. 5. The �rst �ve eigen-windows
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Fig. 3. Eigen-window method

Fig. 6. Examples of training images

The table I shows some of the voting results. In the table,
S{15 denotes that the type of model is a sedan and the
rotated degree is 15. In the same way, the training image
of a model wagon rotated by 30 degrees is described as W{
30. The numbers in the table show the number of votes for
the training image on the left-hand side. We do not show
incidences of less than 6 votes, and the symbol � means
wrong detection. In the case of #7, our system might not
have determined the pose of the wagon but this is to be
expected because the actual pose was rotated by about 280
degrees. In other cases, our system was somewhat confused
with the pose rotated by 180 degrees. These results show
that we do not need many poses for a vehicle, and that,
with the exception of a rotation of 180 degrees, our system
can recognize the vehicles very well.

Fig. 7. Examples of input images(#1 { #8)

We processed 20 images and there were no false alarms.
Except for the �gure in the right-bottom corner of Figure
7, in which most of the vehicles were occluded, our system
could recognize the vehicles and was able to detect their
pose and location correctly.

This experiment con�rmed that local feature-based de-
tection is an e�ective method for detecting vehicles.
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Input images #1 #2 #3 #4
Training image
S{255 32
S{270 56 100
W{270 77 65
W{285 32

Input Images #5 #6 #7 #8
Training Images
S{000 135
S{165 7�

S{300 7
S{315 10
S{330 7�

W{270 87 13�

W{285 15
W{345 8 7

TABLE I

Voting Examples of Indoor Experiment

B. Outdoor Experiment

Our second experiment was conducted to con�rm the ef-
fectiveness of our method in outdoor environments. Our
eigen-window method requires many local feature points.
Unfortunately, however, we could not expect a large enough
number of local feature points at night,if we employed only
the usual optical images. In order to increase those fea-
tures, particularly in night time images, we decided to use
infra-red (IR) images. Another reason why we employed
IR images is to solve the color problem, i.e., vehicles of
the same make and model come in di�erent colors, but we
would like to recognize them as one model.
Our IR camera can detect waves of 3{5 �m length;

through the outdoor experiment, we have determined that
this camera can sense a temperature range that of about
5{40 degrees centigrade.
We taped several sequences, in daytime and at night on

March 10, 1998. All the images in this paper are taken
from the same videotape.
We prepared two kinds of training images, taken both in

daytime and at night. These training images were manually
segmented from the background.

Fig. 8. Training images(left:day, right:night)

We prepared 30 input images for detection, all of which
were di�erent from any of the training images. The �gure
9 shows some of the input images. The results are shown
in the table II. The symbol \{" means that the system can
not detect the vehicle, even if the speci�ed vehicle is in the
input image. This kind of error was not observed in the

Fig. 9. Examples of outdoor IR images(D{3,4, N{3,4)

Input Images D{1 D{2 D{3 D{4
Training Images
Day { { 98
Night

Input Images N{1 N{2 N{3 N{4
Training Images
Day
Night 7 { 22 40

TABLE II

Some voting results of outdoor experiment

indoor experiments. Our system had one false alarm, and
failed to detect in 5 images; in four of these, the vehicle
was mostly occluded. The other image in which our sys-
tem failed to detect was actually a di�erent image. It is
true that the speci�ed vehicle is running in the image, but
it appears to be a di�erent one because it has been just
started and its engine is not yet warm.
These results con�rm that our method works for par-

tially occluded vehicles in outdoor environments.

IV. Parallel Implementation on the

IMAP-Vision Board

Although we have con�rmed that the eigen-window
method works very well in detecting speci�ed vehicles,
about 140 seconds on a Sun SPARCstation{20 are required
to process one input image. This processing time is too
long for practical use of our method. Thus, we decided to
implement our method on an image processing board. We
selected the IMAP-vision board because it has 256 proces-
sors with 1DC language development kit. Since the hard-
ware supports only integers, we modi�ed our algorithm so
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that it is based on vector-quantaization[13] instead of on
the eigen-windows. The dimension of the images is also re-
duced to 256�240 pixels, one-quarter of the previous sys-
tem, in order to maximize the performance of the IMAP-
vision board.
The hardware image processing board does not sup-

port 
oating-point calculation and in the eigen-windows
method, we need to calculate eigen-values. Hence, we
changed implementation of our algorithm from the eigen-
window method to the vector quantization method ([13])
so that we need only integer calculation.

A. Vector Quantization Method

A.1 Local Feature Points

First, the binary image is obtained through an edge de-
tector from the original image, and then the stable windows
are selected as described below.
Let B(I ;x; y; b) be the window of size (2b+1)� (2b+1)

pixels around (x; y) in a binary image I . The Hamming
distance DH between two binary vectors of the same di-
mension is de�ned as the sum of absolute distance of each
corresponding coordinate value. Thus, the Hamming dis-
tance of two binary images is equal to the number of un-
equal elements in corresponding positions.
We can de�ne a stable window of size (2b+1)� (2b+1)

pixels around (x; y) in an image I as those of which value
r(I;x; y) is small.

r(I;x; y) = minfDH [B(I ;x+ dx; y + dy; b); B(I;x; y; b)];

�d � dx � d;�d � dy � d; (dx; dy) 6= (0;0)g

For each training image Mi, we can select the �rst
n windows of size (2b + 1) � (2b + 1) centered around
(xij ; yij)1�j�n, such that r(Mi; xij ; yij) is small.

A.2 Compression Method

Let z1; z2; . . . ; zM be a set of binary training images of
n�m. They are considered as points in N = n�m dimen-
sional vector space V on f0; 1g = Z=2Z. Then, for given
G, we can obtain such G segments fgigGi=1 in V that any
gi includes c training images, where c is N devided by G.
Instead of the eigen-vectors used in the previous method,
we can use fvig, the center of each segment:

vi =
X
zk2gi

zk=c

In this way, we obtain only G kinds of images instead of
N local features, which are called the code features.
Note that the distance between two points in V is equal

to the exclusive OR operation of two points.

B. New Implementation

We selected 25 local feature points whose stable windows
did not overlap one another. Then we computed the cen-
troid of the set of the M (= 25 � nm) local feature points
to obtain 20(= G) code features fvig20i=0, where nm is the

Fig. 10. Training images and feature points

Fig. 11. Code features

number of the models. In the manner of the previous sub-
section, we reduced each local feature point to a pair of the
closest code features and the coordinate of the center of the
window in its training image. We obtained the compressed
model of 25�nm local features (ckij ; xij ; yij)1�i�n;1�j�25,
where ckij is the closest code feature to B(Mi;xij ; yij ; b)
in fvig. The �gure 10 shows the local feature points in
training images, and the �gure 11 shows our code features
fvig.

C. Detection

We have already described our voting operation in the
algorithm section. We here discuss the threshold of the
voting operation because the maximum number of votes at
a point is very limited in this method.

Our system tells that the speci�ed vehicle exists at
the location of o�set (dx; dy) if the number of votes for
(n; dx; dy) 2 Z � R � R is greater than or equal to the
given threshold V .

We can estimate the threshold V on probability calcu-
lation. The probability of false alarm pfa(V ) with the
threshold V is calculated as follows: Let (nm; nx; ny) be
the dimension of the voting base space. Then
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pfa(V ) = 1� (1� pf )
nmnxny

where pf is the possibility that the number of votes is equal
to or greater than V at a location in a training image.
At �rst we assume that any local feature of background,
which is not any part of the target vehicles, is uniformly
distributed; this assumption makes calculation easier but
approximate. Under this assumption, the possibility that a
local feature can be equal to a code feature is 1=G, where G
is the number of the code features. Hence, pf is calculated
with binominal distribution:

pf =

nfX
i=V

 
nf

i

!�
1

G

�i �
1�

1

G

�(nf�i)

where nf is the number of local features in an image. We
now have the explicit expression of pfa as follows:

pfa(V ) =

1�

 
1�

 Pnf
i=V

 
nf

i

!�
1
G

�i �
1 � 1

G

�(nf�i)!!nmnxny

Setting that nf = 25; G = 20; nm = 2; nx = 127; ny =
120, we obtain:

pfa(8) = :449;

pfa(9) = :057;

pfa(10) = :005:

The function pfa(V ) is monotonically decreasing; the
threshold V should be nine or ten. We realized that actual
probability is much smaller than a theoretical probability,
probably because our assumption that local background
features are uniformly distributed was not true. On the
other hand, the smaller the threshold V , the better our
system could recognize occluded vehicles. We therefore set
the threshold to nine.

D. Implementation on IMAP-vision board

The IMAP-vision board is a parallel image processing
board with 256 processors (PE). Each chip contains 1KB
of memory, and 16MB external memory is shared with all
processors on board. We assigned each processor the task
of processing a vertical line. Because most of our method
needs only local information, it was easy to implement the
method on the board. But we lacked a good algorithm
for our voting operation, the part which is still slow and
dominant.

The eigen-window system on a Sun SPARCstation 20
needs about 140 seconds to process one image of the size
512�480; hence, it takes about 35 seconds for processing
an image of the size 256�240. Our system can process one
input image in less than 1 second.

E. Results

We have processed about 400 input images, all of which
are di�erent from any of the training images. Half of them
are images in which the target vehicle appears to be al-
most the same size as the training image; the other half
are not, that is to say, in these images, there might be sev-
eral vehicles but no target vehicle, the vehicle which we
would like to recognize, or there is a target vehicle whose
scale is di�erent from that of any training image. As we
discussed, we �xed the threshold to nine votes throughout
the experiment.

Our system can detect the target vehicle if its appearance
size in the input image is almost the same as that in the
training image. Figure 12 shows several examples of input
images and processed images. Model 1 means the model
in daytime, and Model 2 is the model at night. The table
III shows the result of detection. The upper line shows the
result of images in which no speci�ed vehicle appears, but
other vehicles do appear. The lower line shows the result
of images in which the speci�ed vehicle runs and its size in
the image is almost the same as that in the training image.
Detection failure of ten cases in the lower line was caused
by occlusion; however, we have input 50 occluded images
in total. In other words, our system has correctly detected
80% of partially occluded images.

We have again con�rmed that our system can detect the
speci�ed vehicle even if it is partially occluded.

Input Im.\ Result Failure Success Ratio
No speci�ed veh. 0 200 100%
Exists speci�ed veh. 18 182 91%

TABLE III

Recognition results

For a practical system, we still have several issues that
must be solved. One issue is the system's robustness to the
vehicles' environments, e.g., we have to take into account
such conditions as di�erent seasons, di�erent weather.
Moreover, even for vehicles of the same make and model,
we need to consider such things as di�erent body colors
and di�erent temperature distributions according to run-
ning time.

We have captured many infra-red images of the same ve-
hicle in di�erent seasons to test our system's performance.
For instance, we have made our model from training im-
ages in spring, and included summer and winter videos in
our system. In this case, there were no false alarms, but
the recognition ratio was decreased. The number of votes
to any point was not large enough for our system to recog-
nize the vehicle, although there were votes to the correct
point. In other words, the di�erences of the various en-
vironments made input images noisy, which decreased the
number of votes. On the other hand, in the second version
of our system with an IMAP board, we could treat images
of the dimension 256�240, and the dimension of vehicle
area would be too small to obtain a large number of fea-
ture points. Our system would perform much better if we
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had a large number of feature points.
We noted that, in the case of spring and summer, the

camera positions were not exactly the same. Thus, we
realized that our system is robust for rotation of the vehicle.
There is a possibility that our system might be confused

by similar-looking makes and models; however, the fact
that our system seldom has few false alarms indicates that
our feature selection method is good. We expect that our
system can recognize vehilce make and model as well as
human beings do.
Another problem is that of scale. It is true that our

system often fails to recognize the vehicle if its scale is
di�erent from any scale of the training images. In order to
solve this problem, we can prepare multiple scale images
for each vehicle. However, in the �eld of ITS, the roadside
camera is �xed; hence, there is a limited area where the
vehicles run in view of the camera. As a result, the number
of multiple images is small.

Fig. 12. Vehicle detection on IMAP-vision board

V. Conclusion

We have con�rmed that our local-feature based method
is e�ective not only for vehicle detection but also for vehi-
cle recognition. In paticular, our system has the advantage
in cases where the target vehicles are partially occluded
by other vehicles. At �rst we applied the eigen-window
method to perform both indoor and outdoor experiments.
We have also implemented the method based on the vec-
tor quantization on a parallel image processing board, the
IMAP-vision board. Our system can recognize the target
vehicle in less than 1 second. The detection speed is still
not fast enough because vehicles move 15 meters in one
second and our detecting area is small. The accuracy of
our system is over 90% both in the eigen-window method
and in the vector quantization method.
We believe that our algorithm is general enough to be

applied to outdoor visible images on a CCD camera, if
there are large number of feature points in the images. In
paticular, visible images are required if we need to specify
colors or painting. i.e., signs, on vehicles. The indoor ex-
periment suggests that our algorithm can cooperate with
outdoor visible images.
We plan to increase the speed of our system. We also

plan to extend the system so that it can treat many training
images while cooperating with the host computer. Finally,
we are going to apply our method to recognize the classes
of vehicles, such as trucks, buses, sedans, and so on.
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