3D data processing 1

Geometric modeling

• Modeling real objects in 3D manner using cameras and laser range sensors

Modeling procedures

1. DATA ACQUISITION

Range image example

Range image (2.5D) Reconstructed partial 3D model

Measurement method (non-contact)

- Active
 - Structured light
 - Laser range sensor

Grey code structured lighting

[Inokuchi ICPR'84]

integer row/column index -> binary code -> Gray code

Structured light

Gray code -> binary code -> integer row/column index [Lanman et al.]

• Depth from ray-plane triangulation

Measurement result

[Lanman et al.]

Real-time full-field 3-D surface-shape measurement using off-the-shelf components and a single processor

P. Jia*, J. Kofman[†], C. English[†] *University of Ottawa, Laval University [†]University of Waterloo

Time-Coded Light Patterns

• Assign each stripe a unique illumination code over time [Posdamer 82]

Space

Proposed method

- Real-time Structured Light
 - Triangular-pattern & phase-shifting
 - Software synchronization (projector & camera)

Intensity ratio

Intensity ratio unwrapping

R is the region number

Intensity ratio unwrapping

Measurement Pipeline

- Image acquisition
- Intensity-ratio wrapping
- Intensity-ratio unwrapping
- 3D data reconstruction

Multi-thread Programming

Measurement of a human face

Photo Fringe image 3D model

Results 1: 2-step pattern

Measurement speed : 5.6 fps

Results 2: 6-step pattern

Measurement speed : 4.2 fps

Summary

- Triangular-pattern & phase-shifting
- Software synchronization (projector & camera)
- Measurement speed: 5.6 fps (2-step)
 4.2 fps (6-step)

A Sensor for Simultaneously Capturing Texture and Shape by Projecting Structured Infrared Light

> K. Akasaka, R. Sagawa, Y. Yagi Osaka University

Color coded pattern [Zhang 3DPVT2002]

Capturing texture and shape

• Color patterns method requires two shots for capturing both texture and shape

- Texture: Visible light
- Shape: Infrared structured light

Distribution of wavelengths

System overview

Structured light patterns

- De Bruijn sequence
 - n=8, q=2 (2colors: 880nm, 940nm)
 - The number of symbols=150

• Matching: DP matching

Multi-band camera

Experimental overview

Captured images

Texture image

IR filtered image
Detected lines

Generated 3D mesh model

Measurement time: 60 ms (16.7fps) with Intel Pentium 4 3.0GHz

Summary

- Simultaneously capturing texture and shape
 - Texture: Visible light
 - Shape: Infrared structured light (880nm, 940nm)
 - De Bruijn sequence (n=8, q=2)
 - DP matching

Dense 3D reconstruction

[Sagawa et al. ICCV'09]

Demo video

Codes for moving scenes

- Assign time codes to stripe boundaries
- Perform frame-to-frame tracking of corresponding boundaries

- Propagate illumination history

[Hall-Holt & Rusinkiewicz, ICCV 2001]

Kinect (Microsoft)

- Near-infrared laser
- Dot patterns

LASER RANGE SENSOR

VIVID910 (Konica Minolta)

- Range : 0.6-1.0m
- Accuracy : 0.05-0.4mm
- Time : 2.5 sec
- Resolution : 640×480
- Laser class : 2

Measured Data

Time to travel Distance

Scanning mechanism

Scan Station C10 (Leica geosystems)

- Range: 0.1-300m
 360 x 270 degrees
- Accuracy: 6mm (Depth: 4mm)
- Speed: 5,0000 pt / sec
- Laser class: 3R

Measured data (Cyrax)

Phase shift method

Imager5003(Z+F)

- Range : 187.3m
 - : 310° (v) $\times 360^{\circ}$ (h)
- Accuracy: 0.4 1.6mm
- Speed : 1,000,000 pt/sec
- Phase shift method (Amplitude modulation)

Measured data (Imager)

Velodyne LiDAR

Climbing Sensor -- Narrow Corridors – [Ono et al.]

Balloon sensor [Banno et al.]

2. ALIGNMENT (REGISTRATION)

Modeling procedures

Alignment of range images

• Estimation of relative positions

Self positioning

GPS measurement

3D laser measurement system for large scale architectures using multiple mobile robots

R. Kurazume, Y. Tobata, Y. Iwashita, and T. Hasegawa Kyushu University

3D measurement of large scale architectures

Alignment of multiple range images

- Post-processing
 - ICP algorithm etc.
 - Requires initial positions: Laborious & time consuming
- Directly measuring positions
 - GPS (RTK, VRS)
 - Limited to outdoor environment & low accuracy

Proposed method

- Cooperative Positioning System (CPS)
 Multiple mobile robots
 - Measurement devices of mutual positions

Positioning method

- Odometry (Wheel encoder, Acceleration sensor)
 - low accuracy
- Landmarks (Camera, Range sensor)
 - require prior knowledge
- GPS
 - outdoor only

Cooperative Positioning System

(1) Robot 1 and 2 move.

(2) Robot 0 measures the position of robot 1.

(3) Robot 0 measures the position of robot 2.

(4) Robot 0 moves and measures the position of robots 1 and 2.

Measurement system with CPS V

Parent robot (P-cle)

- 3D measurement: Rotating table + 2D laser range sensor
- Position: Total station
- Measurement time: 37.8 sec

Child robot

Experimental result

Experimental result

Experimental result

- Total distance: 86.21m
- Number of scans: 23
- Positioning error: 1.17m (1.36%)

Alignment

• Estimation of relative positions using overlapping areas

Category of alignment method

- With and without features
 - Global features (EGI, SAI), Local features (Spin image)
 - ICP (Iterative Closest Point), many extensions of ICP
- Pair-wise vs. Simultaneous
 - In order to avoid error accumulation, errors have to be globally minimized

Global features

• 3D model is transformed to low dimension and rotation-scale invariant vectors

Spherical Attribute Image (SAI)

SAI matching

Local features

• Relative pose of two range images can be estimated from 3 or more matching points

 α : the radial distance to the surface normal line L β : the axial distance above the tangent plane P Rotation invariant

Spin image examples

Matching result by Spin image

Range image

Recognition result

ITERATIVE METHOD

Alignment method without features

• Iterative Closest Point (ICP) [Besl et al. '92]

Procedures of ICP

- 1. Find corresponding (nearest neighbor) points between 2 range images
- 2. Take sum of the errors between correspondences
- 3. Compute transformations so as to minimize the error
- Iterate the processes until termination criteria is fulfilled

ICP variants

[Rusinkiewicz et al. '01]

- 1. Selecting source points
- 2. Finding corresponding points
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric

1. SELECTION OF SOURCE POINTS

Selection of source points

- All points [Besl et al. '92]
- Uniformly sampled points[Turk '94]
- Randomly sampled points [Masuda '96]
- Normal vectors are uniformly distributed [Rusinkiewicz '01]

Normal space sampling

Uniform sampling

Normal space sampling

2. CORRESPONDENCE SEARCH

Matching method

• Closest point (Nearest Neighbor)

• Normal shooting

• Projection

Closest point

[Besl and McKay '92]

- Advantages
 - Correspondences are given independently to the initial positions
 - Robust to noises
- Disadvantages
 - Computational cost is high
 - Weak to sliding

Nearest neighbor search

• *k*-d tree (Binary search tree)

Approximate Nearest Neighbor search [Arya et al. 94] • $(1+\varepsilon)$ -approximate nearest neighbor p $||\mathbf{p} - \mathbf{p}_q|| \le (1 + \varepsilon) ||\mathbf{p}^* - \mathbf{p}_q||$ $\left\| \mathbf{p}_{q} - \mathbf{p} \right\| / (1 + \varepsilon)$ $\varepsilon > 0$ pq

Cached k-d tree search for ICP [A. Nüchter et al. 3DIM'07] cached kd-tree edges · data points traditional kd-tree search • query point proposed kd-tree search ٠. • • .

vector of point pairs v

Evaluation

• 3D laser range sensor based on SICK

Cluttered indoor environment

Outdoor environment

Search time / iteration

Overall comparison

cached kd-tree vs. kd-tree

Normal shooting [Chen and Medioni '91]

- Advantages
 - Fast convergence

- Disadvantages
 - High computational cost
 - Correspondences depend on initial estimation
 - Weak to noises

3. WEIGHTING CORRESPONDENCES

Weighting method

- Constant weight
- Inner product of normals $Weight = n_x \bullet n_y$
- Accuracy of sensors
- Confidence obtained from other modalities (color, reflectance, etc.)
- Distance between correspondences

Weight =
$$f\left(1 - \frac{Dist(x, y)}{Dist_{max}}\right)$$
Weight functions

Using photometric properties [Nishino & Ikeuchi '02]

• Reflectance obtained by laser range sensors

– Robust to illumination changes

Robust Range Image Registration Using Local Distribution of Albedo

Diego Thomas, Akihiro Sugimoto

Issues

• Range images of symmetrical objects

Approach

- Similarity evaluation using albedo
- Region-based approach using Level Set method

Albedo (True Color)

Region growing

Level set method

$$\frac{d}{dt}\psi = -P(x)\|\nabla\psi\|$$

[Fast level set method Kurazume et al. 03]

Correspondence search

Searching for the corresponding point of *m* n(m)m Region of point p Region of point q

Similarity evaluation using Albedo

$$\begin{split} & \text{Size of the regions} \\ & L(p,q) = \frac{size(R(p)) + size(R(q))}{(\sum_{m \in R(p)} \omega_{(m,q)} + \sum_{m \in R(q)} \omega_{(m,p)})^2} \\ & \times \Big\{ \sum_{m \in R(p)} \omega_{(m,q)} \| \overrightarrow{alb(m)} - \overrightarrow{alb(n(m)_q)} \|_2^2 \\ & + \sum_{m \in R(q)} \omega_{(m,p)} \| \overrightarrow{alb(m)} - \overrightarrow{alb(n(m)_p)} \|_2^2 \Big\}, \end{split}$$
 Weight by distance

Rigidity constraint

Pairs satisfying rigidity constraint Pairs violating rigidity constraint

Evaluation with synthetic data

Restance of the Constant

(a) First image.

(b) Second image.

(c) Albedo image.

Comparison with previous method

Evaluation with real data

• Range images captured from differenct viewpoints

(a) First image.

(b) Second image.

(c) Superimposed.

Albedo and Speed image

• Illumination conditions and region generation

(a) Albedo image.

(b) Gradient map.

(c) Speed map.

Experimental result 1

Proposed method

ICPA

ICP-CG

Experimental result 2

Summary

- Robust range images registration method
- Similarity evaluation using albedo
- Region-based approach by Level Set method

4. OUTLIER REJECTION

Outlier rejection

- Point to point distance is more than a threshold
- N % of pairs that have large distances
- Point to point distance is larger than the median (Lmeds) [Masuda et al. '96]
- Point to point distance is inconsistent with the neighboring pairs [Drai '98]
- Pairs include points on boundaries [Zhang '94] (Nearest neighbor search)

Threshold values

- Given by users
 - Generally used because ICP-based method is sensitive to initial positions

Consistency with neighbors

• Point to point distance is inconsistent with the neighboring pairs

Points on boundary [Zhang '94]

• A point on boundaries is matched with many points on non-overlapped areas

Outlier Robust ICP for Minimizing Fractional RMSD

J. M. Phillips, R. Liu and C. Tomasi Duke University

Registration with outliers

• New data

• Deformation

Registration is often skewed by outliersOutlier detection depends on registration

Proposed method

• Register point sets and find outliers in one algorithm

• Using FRMSD (Fractional Root Mean Squared Distance)

Distance function

• RMSD (Root Mean Squared Distance)

$$\min_{T \in \mathcal{T}} \sqrt{\frac{1}{|D|} \sum_{p \in D} ||T(p) - \mu(p)||^2}$$

Align data point set *D* to model point set *M* T = rotations, translations, scale, ... μ = matching from *D* to *M*

Hard to optimize over both ${\cal T}$ and μ susceptible to outliers

Fractional RMSD

Let D_f be f|D| points $p \in D$ with smallest residuals $||p - \mu(p)||$.

$$\min_{\substack{T \in \mathcal{T} \\ f \in [0,1]}} \frac{1}{f^{\lambda}} \sqrt{\frac{1}{|D_f|}} \sum_{p \in D_f} ||T(p) - \mu(p)||^2$$

 λ is empirically given

Algorithm

- 1: Compute $\mu_0 = \arg \min_{\mu_0: D \to M} \operatorname{RMSD}(D, M, \mu_0).$
- 2: Compute $f_0 \in [0, 1]$ minning FRMSD (D, M, f_0, μ_0) .
- 3: $i \leftarrow 0$.

4: repeat

- 5: Compute D_{f_i} minimizing $\text{RMSD}(D_{f_i}, M, \mu_i)$ such that $D_{f_i} \subseteq D$ and $|D_{f_i}| = \lfloor f_i |D| \rfloor$.
- 6: Compute $T \in \mathcal{T}$ minimizing $\text{RMSD}(D_{f_i}, M, \mu_i)$. $D \leftarrow T(D)$.
- 7: $i \leftarrow i+1$.
- 8: Compute $\mu_i : D \to M$ minning $\text{RMSD}(D, M, \mu_i)$.
- 9: Compute $f_i \in [0, 1]$ minning FRMSD (D, M, f_i, μ_i) .
- 10: **until** $(u_i = u_{i-1} \text{ and } f_i = f_{i-1})$

Optimal value of λ

Alg.	λ	time (s)	# iter.	RMSD	FRMSD	f
FICP	1	0.142	10.38	0.158	0.225	0.701
FICP	1.3	0.069	3.81	0.170	0.248	0.749
FICP	2	0.059	3.06	0.170	0.303	0.750
FICP	3	0.061	3.17	0.170	0.404	0.750
FICP	4	0.062	3.21	0.171	0.538	0.751
FICP	5	0.063	3.30	0.172	0.717	0.751

FRMSD is robust for $\lambda \in [1, 5]$

Experiments

- Stanford bunny
 - 25% deformation, 5° rotation

Experimental result

Comparison

time (s)	60.1	
# iter.	78.8	
RMSD	0.6668	
FRMSD	0.6668	
f	1.0	

time (s)	16.5
# iter.	17.3
RMSD	0.0052
FRMSD	0.0124
f	0.750

5. ERROR METRIC

Error metric

• Point-to-Point [Besl & Mackey '92] $\hat{\varepsilon} = \min_{R,t} \sum_{i \neq j,k} (\vec{y}_{ijk} - (R_i \vec{x}_{ik} + \vec{t}_i))^2$

• Point-to-Plane [Chen & Medioni '91] $\hat{\varepsilon} = \min_{R,t} \sum_{i \neq j,k} \left(R_i \vec{n}_{ik} \cdot \{ (R_j \vec{y}_{ijk} + \vec{t}_j) - (R_i \vec{x}_{ik} + \vec{t}_i) \} \right)^2$

Point-to-Point [Besl & Mackey '92]

- Guaranteed to converge to local minima
- Low convergence-speed
- Weak to horizontal movement

Point-to-Plane

[Chen & Medioni '91]

- Sensitive initial positions, noises, threshold
- Convergence speed is high

6. OPTIMIZATION

Optimization method

- Non-linear: Levenberg-Marquat method etc.
- Linear:
 - Point-to-Point: Closed form solution [Horn][Umeyama]
 - Point-to-Plane: Linealization by assumption of small angles[Neugebauer]

Closed form solution

$$e^{2}(R, \mathbf{t}, c) = \frac{1}{3} \sum_{j=1}^{3} ||\mathbf{y}_{ji} - (cR\mathbf{x}_{j} + \mathbf{t})||^{2}$$

Rotation $R = USV^{T}$
Translation $\mathbf{t} = \mu_{y} - cR\mu_{x}$
Scaling $c = \frac{1}{\sigma_{x}^{2}} \operatorname{tr}(DS)$

Linealization

Neugebauer '97]Assumption: rotation angles are enough small

$$\overline{\varepsilon} = \arg\min_{\vec{\delta}} \sum_{i \neq j,k} \left\| A_{ijk} \vec{\delta} - s_{ijk} \right\|^{2}$$

$$\begin{pmatrix} \vec{\delta} = (m_{0} \cdots m_{n-1}) \\ m_{i} = (c_{1i} \quad c_{2i} \quad c_{3i} \quad t_{xi} \quad t_{yi} \quad t_{zi}) \\ s_{ijk} = \vec{n}_{ik} \cdot (\vec{x}_{ik} - \vec{y}_{ijk}) \\ A_{ijk} = \left(\underbrace{0...0}_{6i \times 1} \underbrace{C_{ijk}}_{6 \times 1} \underbrace{0...0}_{6i \times 1} \right) + \left(\underbrace{0...0}_{6j \times 1} \underbrace{-C_{ijk}}_{6 \times 1} \underbrace{0...0}_{6i \times 1} \underbrace{-C_{ijk}}_{6i \times 1} \underbrace{0...0}_{6i \times 1} \underbrace{-C_{ijk}}_{-n_{ik}} \underbrace{0...0}_{-n_{ik}} \right)$$

Alignment result (Nara Great Buddha)

Alignment result (Bayon)

Modeling procedures

