Computer Vision
Patch-based Object
Recognition (2)




i Contents

= Papers on patch-based object recognition
= Previous class: basic idea
= Bayes Theorem: probability background

= Papers in this class
« Hierarchy recognition
= Application for contour extraction




i Previous class

= What is object recognition?
= Basic idea of object recognition

s Recent research



i What is “Object Recognition’?

= Traditional definition

For an given object A, to determine
automatically if A exists in an input
image X and where A is located if A

exists.
= Ultimate issue (unsolved)

For an given input image X, to
determine automatically what Xis.



i An example of traditional issue

= What is this car?
= Is this car any of given cars in advance?
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& An example of ultimate issue

= What does this picture show?

= Street, 4 lanes for each direction, divided road, keeping
left, signalized intersection, daytime, in Tokyo,...




i Basic idea

= Make models from training images
= Find closest model for each input image

= You heed “good” model
= Objects are similar, so are models
» Objects are different, so are models
» Estimation of similarity is important
=« (More compact models are, better)




i Recent models

= Extract a lot of feature patches

= Configuration of the patches makes
model

= Why patches?
=« Object might be occluded
= Location of object is unknown
= No complete match in class recognition:
= Similarity among patches is easier

= Number is power



* Patch-based models

= Local features and its configuration

ture:a point in N-di

Configuration:relative position of features,

distribution of features, etc.



i Class and Specified object

= Recognition of specified object(s)
=« Model is different from any other object

= Class recognition

= Model is “similar” among objects in the
same class

= All objects in a class are not given




i Model in class recognition

= Clustering ° 4
‘ One class
Point can be model or feature .

(in high dim. vector space)




i Similarity Estimation

= Easy to estimate
= Images of the same dimension
= Points in the same vector space

s Hard to estimate
= Patch-based models
= Parts of images



i How to Estimate Similarity

= Distance (or correlation)
= Points in a vector (metric) space
= Distance is not always euclidian

O Probablllty
= Clustering can be parameterized with pdf
= SVM, answer for H>0 can be probability



i Recognition with probability?

= Assume an input image is given

= Does a car exist in the image?
= For human: easy to answer: Yes or No.
= For computer: might be hard to answer,
but the answer should be yes or no!

= Why you can apply probability for yes-
no question?




i Posterior probability

= Situation

= You have just rushed on Chuo line train at
Ochanomizu stn for Shinjuku direction.

« Itis not crowded.
= [Is it special rapid train?

= Discussion
= There is the timetable, the answer is known.
« If you don’t know it, what will your answer?



i Background

= Any Chuo line train is rapid or special rapid
= You have no idea on which train you get on

= Special rapid train is more crowded than
rapid train

= S0 you can say, “If I bet, I prefer rapid
train”

= If odds is 1-2, do you bet?



i Estimation

= Assume the followings are known
= Pr(train is special rapid)
= Pr(special rapid is not crowded)
= Pr(rapid is not crowded)

= You can calculate the probability that
your train is actually rapid.



* Bayes Theorem

= P(ANB)=P(B|A)P(A)=P(A|B)P(B)
= P(B|A)=P(A[B)P(B)/P(A)

Even if B happens
prior than A, P(B|A)
can be calculated

A:crowded B:rapid




i Answer for the example

= A:train is rapid

= B:train is not crowded

= P(A|B): Prob. of no-crowded train is rapid

= P(B)
=(prob. of rapid train is not crowded)
+(prob. of special rapid is not crowded)

= P(B|A)=(prob. of rapid train is not crowded)

= P(A|B)=P(B|A)P(A)/P(B) ... can be calculated



i For example...

= Assume special rapid runs 0,20,40 and rapid runs
10, 30, 50; P(A)=0.5, P(A©)=0.5

= P(rapid is not crowded)=P(B|A)=0.7

= P(special rapid is not crowded)=P(B|A¢)=0.2

= P(train is not crowded)=P(B)=P(ANB)+P(Ac N B)
P(B|A) P(A)+ P(B|Ac) P(A)=0.7x0.5+0.2x0.5=0.45

= P(rushed train is rapid if it is not crowded)=P(A|B)

=P(B|A)P(B)/P(A)

=(0.7x0.45)/0.5=0.63




i Essence

= What you can investigate in advance is:

probability that train is not crowded
when it is rapid or special rapid

(general theory)
= What you like to know is:

probability that your train is rapid or not
when it is not crowded

(special case estimation)



i Apply for object recognition

= What you know in advance are:

the models of objects Xi (might be
class) will be like this if Xi appears in
given images

= What you like to know is:

The object X appears in this given
image if models of the possible object
in it are like this




i How to apply

= X1, X>,...,Xn :Objects to be recognized
= [:Input image

= Now you have I, are there any Xiin I?
P(Xi exists |Iis observed)
ocP(]is observed | Xiexists)P(Xi exists )

ocP (Iis observed | Xiexists) (if P(Xi exists )can
be considered to be constant for all /)



i First paper

» Semantic Hierarchies for
Recognizing Objects and Parts

= Boris Epshtein Shimon Ullman
= Weizmann Institute of Science, ISRAEL

» CVPR 2007



i Abstract

= Patch-based class recognition

= Hierarchy
= Automatic generation of hierarchy from images

= Experiment



* Hierarchies (Face case)
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Figure 1. Schematic illustration of a semantic hierarchy. A face
1s represented as a combination of parts and sub-parts. Each part
1s represented as a semantic equivalence set of different possible
appearances. The proposed scheme is the first to extract and
use semantic parts in feature hierarchies.



oFeatures(texture, SIFT...)

eTheir distribution (location)



i Hierarchies (Theory)

= [ree diagram

= Classification and parts (patches)
= How to construct hierarchies

= Training method



* Tree diagram
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Figure 2. (a) Class model (b) Non-class model. F, are the
observable features. X 1s the entire object, X, are object parts. and
C 15 the class node. During recogmition. the features F, are
observed mn the images, and the computanon mfers the most
likaly values of X X,




i Class Model

= Class X consists of Xi, Xij, Xijk ...

= Each X1 has A(X1), L(X1)
= A(X1) : view of X1
ex) open mouth if 1, closed mouth if 2,....

« If X1is an end, A(X1) corresponds to some
image feature Fr

= L(X1): location of X1
L(X1)=0 means X is occluded



i End of tree diagram

= If X1 is an end, A(X1) corresponds to
some image feature FI

= XI, F1 consists of NxK components

(S[1,1],...,S
whereiin S

1,N],...,S[K,1],...,S[K,N]),

i,j] corresponds to view

change of XI, j to its location
= For each i,j, give similarity of F and X



i What we have to do

= {F}: Features in an input image
= p(X|{F}) is what we like to know:
= Larger it is, more assured object X'is

= P(X|{F})=P({F}X)P(X)/P({F})
o<P({F}[X)P(X)
Calculate P(X), P({F}|X)



i Basic relation

= From construction of tree diagram,

P(XAFH=p(X)Np(Xi | Xi*)p(Fy|X) ...(1)

(Xi~ is the parent of Xi) /
<




i Calculation of P(X)

= P(A(X)=a, L(X)=I)
Probability of Object a is located at /

s Assume this distribution is uniform

= In the case of ID photo, /is not uniform
at all, but in this paper, assume this.



i P(Fi|A(Xi)=a,L(X)=I) part 1

s Prob. Of feature Fi is observed when Xi
looks like a and located /

= F=(5[1,1],...,S[N,K])
P(Fi|A(Xi)=a,L(Xi)=I)

=p(S[1,1],...,S[N,K]| A(Xi)=a,L(Xi)=I)...(2)
=[p(S[k,n]| A(Xi)=a,L(Xi)=I)

= Assume S[i,j] are independent




i P(Fi|A(Xi)=a,L(Xi)=I) part 2

= View and location are independent

=« Ph(S[a]): harmony with a

= Pm(S[a]): missharmony with a
p(S[1,1],...,S[N,K]| A(Xi)=a,L(Xi)=I)
=ph(S[a,|]INMPmM(S[k,n]) (k#a,n#l)...(3)

p(S[1,1],...,S[N,K]| L(Xi)=0) ;can’t be seen
= [MIPmM(S[k,n]) ...(4) ; independent with a



i P(Fi| A(Xi)=a,L(Xi)=1) part 3
P(Fi| A(X)=a,L(X)=I)
o< P(Fi|A(X)=a,L(X)=I) /P(Fi|L(X)=0) ...(5)
~ph(S[a,I1)/Pm(S[a,I])




i P(ACXi), LOXI) | ACK™), L(Xi™))
p(Xi | Xi~) is still unknown in
POXAFR)=pX)Mp(Xi | Xi~)p(F|X) -..(1)

= View and location are independent
PCA(Xi),L(Xi) [ACXi™),L(Xi™))

= p(AXi)|AXi~))p(L(Xi),L(Xi~)) ...(6)
s Calculate 1st term and 2nd term



i p(A(XI)|AXi™))

= Probability of what children can be if
the parent is known

= No theoretical method; determine
through training (explain later)

= Can be calculated in advance




i p(L(Xi),L(Xi™))

= Probability of child location when parent
location is known

= When L(Xi~)=0 (The parent can’t be seen)
= Uniform: P(L(Xi) =I, L(Xi~)=0 )=00/K
= P(L(Xi)=0, L(Xi~*)=0 =1- 00
s L(Xi~)#0
= P(L(Xi)=0, L(Xi~)=L) =1-01
» Gaussian: P((L(Xi)=I, L(Xi~)=L) is determined as
normal distribution of |

= These parameters are determined throughout
training




i Classification and parts

= Estimating p(C=1|F)
= P(C=1|F)/p(C=0]|F)
=P(F|C=1)P(C=1)/(P(F|C=0)P(C=0))
ocP(F|C=1)/P(F|C=0)
= Bottom up
= Top down




i Bottom up

= P(F|C=0) is constant.

= P(F|C=1) can be calculated by bottom-up
method

= F(Xi):evidence of subtree under node Xi
pF(X) X =k)=

=TI(¥ p(F(X,) X, =0)p(X, =1| X, = k)

(8)



i Top-down

= In bottom-up method, all probability of
edges in tree diagram is calculated

= Now P(X,F)can be calculated, thus

DY) =agmaxp(X.F|C=1]) (9)

can be calculated by top-down method



i Hierarchic structure

= Simple hierarchy (from one image)

= semantic hierarchy (add images)

= Any node can be hierarchic if necessary
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Figure 6. An example of simple hierarchy (top) and examples of

additional semantic features at different levels of the semantic
hierarchy.



&Example of hierarchic structure

B
ra ‘I_Jﬂ __m
—FTa

||
ETYLL
...-

b

—AAA
-
JE
—y

-hk
-.E
n’l‘
A RAL
ddaad

i
AP

_ L oF
y i

Al

L

-y 2

;N

—AAN

-1

Figure 7. Additional examples of the semantic hierarchies.



i Simple hierarchy

= Make node where a lot of features
appear

= Use one image or a few images



i Semantic nodes (1)

= [={Tn|n=1,2,...} Training images
Make semantic nodes from training images
= For each Tn, calculate
H(X)=D(X)=arg max p(X,F|C=1)
= L(Xi)=0 or probability is small but
L(Xi~)+0,
L(Xi)=arg max p(L(Xi)|L(Xi~))
A(Xi ) is the one located at L(Xi)




i Semantic nodes (2)

= Repeat previous step

= For each node, there become a list of
‘“‘unseen views”

= Remove isolated unseen views (such that
there are no similar views around it)

= For each node, find “effective” new views
and add them as views




i Semantic nodes (3)

= As adding new views, nodes can be
hierarchies

= Even some views can be similar,
hierarchies can distinguish each other



i Training

= Determine the parameters

= Initialize

Location: distance between the parent and a child is
in simple hierarchy, variance is half of the distance

0is 0.001
P(A(Xi)|A(Xi~)) is determined by counting

= For each training image, find H(X) and
optimal {Xi}, and tune parameters

= Repeat this



i Experiment

= Class recognition

s Parts detection



* Class Recognition

Figure 5. Examples of class images. Rows, from top to
Horses, motorbikes, cars, JAFFE dataset.



Result (motorbikes)

Motorbikes detection
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Result (Horses)

Horses detection
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Result (Cars)

Cars detection
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Result

ROC difference: Semantic vs. Simple Hierarchy
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* Parts Detection

Flgme 5.V a11ab111ty of the object parts detected by the semantic
hierarchy.



Result (Parts detection)

Part Simple Semantic
hierarchy hierarchy
39.1% 25.7%
41.9% 36.0%
51.8% 19.2%
4.87% 4.3%
18% 3.4%
28.85% 5.14%
0.93% 0%

- 22.5% 4.2%

Bes [32% 0%

Table 1. Percentage of incorrectly detected or missed parts.




i Summary

s Semantic hierarchies
= Recognize a lot of parts

= Parts can be hierarchical if it becomes too
complicated

= Better than simple hierarchies

= Hierarchies are automatically generated
even in complicated cases




i Final paper

= Accurate Object Localization with
Shape Masks

= Marcin Marszaek Cordelia Schmid
= INRIA, LEAR - LJK

» CVPR 2007



i Abstract

= Extract shape of an object class
= “spin-off” method for class recognition
= Robust against bad images

= Make mask image from an input image

= Mask image consists of not 0, 1 but
probability (0.0-1.0)






(c) people



i Contents

= Technique
= Distance between masks

= Framework
= Training method
= Recognition method

s EXperiment
= Conclusion




i Technique

s Local feature and localization
= Local feature
= Localization with features

s Mask
= Similarity of mask images

= Classification of masks using SVM




i Local feature and localization

= Local features
= Invariant against translation, rotation and/or scale
= Scale invariant and normalization

= Localization using local features
= Local feature 6 in image 1 and 2 are similar
= pl: normalized translation of feature 6 in image 1
= p2: normalized translation of feature 6 in image 2
= Localization between two images: p12=p1-1 p2



* Localization

= P12: left to right (scale-up and translation)

P12

'Q/PZ,
O

Image 1 normalized Image 2



i Shape mask similarity

= Similarity between binary masks

o \Q; M Rtl,I B > min(Qp, Rp)
" |QLURL T Y. max(Qs, Ry)

= Similarity between probability masks

ob(Qb, Rp) (3)

_ J min(Q, R)
Tillgell = [ max(Q, R) @
= fQ+§'RC" C‘:./min(Q,R) (5)

= Localized similarity

05(3,7) = 0,(C; 0 P;j,€;) = 04(G;y G5 © Pys) (6)



i Mask classification using SVM

= Classify the view in the shape

= Inside—Hi={Hij}, Hij=#of feature ]
= Any feature is one of v features
« V-dim vector for each image

= Hi’s can be classified with 20Q method

= SVM(Support Vector Machine)
« Automatically generate “good” questions



‘_L Mask classification using SVM

= Distance(similarity) between Hi and Hj is
defined as follows

K(H;, H;) = e~ DUH:.H;) (7)
|4
1 (Rin — D
D _ mn JH 8
2 ; i, 1 Wi ()

Where A is average of all D(Hi,Hj)



i End of technique

= Similarity between two shape masks

= Similarity between two views in shape
mask

= Make training and recognition



‘L Framework

= [raining

= Recognition



Training procedure
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Figure 2. Overview of the training procedure. The main operation
blocks are executed iteratively.



i 1.Feature extraction

= Any feature can be one of V features

= In training, object area is known
= Features outside of shape is ignored

» For each feature /in the shape is recorded
along with normalized parameter pJ




i 2. Similarity

= TWO masks are similar if
= Shape masks are similar
= Local features with their location are similar

= More precisely,

=« If local feature /in image 1 and local feature j
in image 2 is similar, localize two image with
Pij

= Similar if mask simlarity =0.85
= Try all combination of similar local features



i 3.Voting shape masks

s Method 2 takes lots of time

= For any pair (x,y) of shape masks,

= Vote 1 to point (x,y) if they are similar for
some pJjj

= Vote will be large if local features with their
location are similar

= Merge closest pair (X,y) (explain later)
= Repeat until no more merging




* Key point of the vote

(a) Hypothesis evaluation



i 4.Location of merged mask

= New location of the mask merged with
two masks

= For all pairs (i,j) of the same feature,
= Localize two masks using Pij
» Calculate similarity as follows

0£(2,7) = 0,460 Bz, () = 0,06:,6: 0 Pi;) (6)

= Pij: (i,j)=arg max o(1,j) is determined



i 5.Merge shape masks

= Merge to “larger” mask
= Localized two images with Pij

= Merge weighted average

= No detail is described, but probably depending on
the number of masks merged before, merging will
be executed.
= View of the new shape mask is changed,
hence, shape mask distance from the new
shape mask is re-calculated



i 6.Merging local features

= Local features are also merged

= Local features in the shape will be
similar

= Local features are merged with the

same way as local shape (weighted
average)

= Repeat until merging can be



i 7. Remove singleton

= Singleton: after merging procedure,
image X'is not merged with any other
images, then X'is called a singleton

= This kind of image might be an outlier
hence we remove all singletons



i 8. Training SVM

= SVM is also trained

= SVM is trained for each object class
= Should be trained for each view
= Number of each view was small



‘L Recognition
H[ Compute sparse local features ]

(Cast hypotheses J
A4

[ Evaluate hypotheses]

[Cluster hypotheses J

[Filter decisions ]%

Figure 4. Overview of the recognition procedure. The main oper-
ation block 1s executed in a pipe to reduce memory requirements.




* Recognition framework

(b) Evidence collection



i 1.Local features

= Extract local features from an input
image

= Any feature is assumed as one of V-
features



i 2. Hypothesis

= Local feature i in an input image

= Local feature j in an trained mask
= Localize Pjj

= Hypothesis appears that a mask is
located at some location

= Too large number of hypothesis!



i 3.Hypothesis evaluation

= H can be calculated in the shape area
= H is also classified with SVM
s Confidence is calculated




* Hypothesis evaluation

(a) Hypothesis evaluation



i 4. Cluster Hypothesis

s Occlusion decreases confidence
= View and location of local feature is used

= Lots of shape mask hypothesis
= Necessity of clustering

= Similar hypothesis should be clustered
= New mask depending on confidence

1 5 WO + WB
2= Ot ¥

Wo =00 + 8 (py)



* Evidence collection

(b) Evidence collection



i 5.Decision

s 10 decrease false Positive

= Assume that there is only outside
occlusion

= No self-occlusion
= No detailed description

= Not only confidence, but also accept
hypothesis whose confidence is spread
into whole mask




i Experiment
= Graz-02 dataset

= Effect of aspect clustering

= Comparison with Shotton’s method



i Examples of Graz-02 dataset

(c) people



i Recognition Result

object class cars people | bicycles

no hypothesis evaluation || 40.4% | 28.4% | 46.6%
no evidence collection 503% | 40.3% 48.9%
our full framework 538% | 44.1% | 61.8%

Table 1. Pixel-based RPC EER measuring the impact of hypothesis
evaluation and evidence collection.



i Extracted Shape Masks

Confidence: 3. 561.8

Figure 7. Results on Graz-02 dataset. Note the precise object shape estimations despite occlusions and background clutter. Multiple object
instances are detected with subsequent hypotheses as is shown in the bottom row (4 left most columns).



Figure 5. Several car aspects detected by agglomerative clustering.



* Right-hand side
= [




Effect of aspect clustering
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Figure 6. Recognition rate for cars given as recall in a function of
FP per image. We can observe the impact of aspect clustering.



‘L Comparison (Houses)

Shotton [21] 92.1%
Our framework (7" = 0.85, with singletons) | 94.6 %
Our framework (1" = 0.7, no singletons) 94.6 %

Table 2. RPC EER for Weizmann horse dataset.




Extracted Shape (Houses)

Figure 8. Results on Weizmann horses dataset. Note that the shape
masks are very accurate: the horse articulations are visible.



i Summary of this paper

= Global feature: Shape mask
= Local feature: view of features

= Generation of class mask
= Good result for clean images



i Conclusion

= Big Data (Number is power, shown in
20Q) in case of class recognition

= Based on the power of number
= Bag of features
= Deep Learning

= Based on theory (—next generation?)
= View similarity, location similarity
= Intelligent structure such as hierarchy




