視覚情報処理論（学環）
Visual Information Processing
コンピュータビジョン（情・電子情報）
Computer Vision
三次元画像処理特論（情・コンピュータ科学）
Three-Dimensional Image Processing

2014/11/19（水） 16:30-18:00

池内 克史
大学院情報学環 教授

小野 晋太郎
生産技術研究所 特任准教授、博士（情報理工学）
Time-varying Image Processing

- Introduction

- Basic technologies
 - Background subtraction
 - Optical flow
 - Structure from Motion (SfM)
 - Space-time Image Analysis

- Applied technologies
 - Introducing recent research cases
Applied Technologies
Space-time Image Analysis

- Temporal Video Editing (Peleg 2005)
- Dynamic Mosaics (Peleg 2007)
- Space-Time Feature Matching for Texturing (Wang 2008)
- Space-Time Coincidence of Camera Center (Mikami 2006)
Video Restoration & Summarization

- **Space-time Completion of Video** (Y. Wexler)
 - Completing deficits in video (based on color patch)

- **Motion Field Transfer** (T. Shiratori)
 - Completing deficits in video (based on optical flow)

- **Full-Frame Video Stabilization** (Y. Matsushita)
 - Restoring motion blurs in video

- **Space-time Video Montage** (H.W. Kang)
 - Summarization
Jointing Videos (in spatial, & in temporal)

- **Video Textures (A. Schodel)**
 - Temporal joint
 - Creating infinite loop video by jointing similar frames

- **Aligning Non-Overlapping Sequences (Y. Caspi)**
 - Spatial joint
 - Relative position/pose between the videos are fixed

- **Video Matching (P. Sand)**
 - Spatial joint
 - Matching two videos looking same sequences, but captured in different opportunities
Others

- **Space-Time Behavior Based Correlation (E. Shechtman)**
 - Finding similar behaviors in videos based on gradient
- **Detecting Irregularities in Images and in Video (O. Boiman)**

- **Motion Magnification (C. Liu)**
 - Magnifying motions in a video
- **Space-Time Super-Resolution (E. Shechtman)**
 - Raising resolution of a video, regarding the frames as affine transformation in a space-time volume
- **Absolute-Scale SfM (Scaramuzza)**
Space-time Image Analysis
Space-time Volume
Information from Space-Time Volume

Use partial information

Trajectory
Slice
3D-block/shape
Temporal Video Editing (Peleg 2005)

- The same original video with different time flow
- Show result image along time front slice

Time front

Demolition
Temporal Video Editing

Rigging a Swimming Competition
Dynamic Mosaics (Peleg 2007)

One moving video camera is capturing a dynamic scene

Step 1. Video alignment (Extrapolation)

Step 2. Evolve time front

Static mosaic image
Dynamic Mosaics(2)
Step 1. Video Alignment (Extrapolation)

- Search similar blocks by **SSD** (sum of square differences)
- New frame can be extrapolated by past corresponding 3D-blocks
- Estimate the homography between new extrapolated frame and new input frame
- New input frame is aligned!!
Dynamic Mosaics(3)
Step 2. Evolve time front

Normal Video

Mosaic Video

Static mosaic (Still panorama)
Result
Space-Time Feature Matching for Texturing (Wang 2008)

Ground-view image (Vehicle survey, Local)

3D residential map (Aerial survey, Global)

How can we get correspondence, and add a texture onto building walls?
Spacetime Feature Matching for Texturing (Wang 2008)

Input
THI with recognized bands

Vehicle Camera

DP

Digital map

Vehicle path

Textured result

Output

Corresponding result
Omnidirectional Camera
Spatio-temporal volume of omni-directional image
Cross-section (an elliptic curve)
Digital residential map

Correspondence between map and image
EPI Matching

Video data

Matching

EPI
Cross-section (a radius line)
Texture Mapping

- Height info and texture
Problems in using EPI

Textures inside building (windows, etc.) disturb to recognize the building features stably
Temporal Height Image (THI)
[Wang Jinge 2008]

Space-Time Image including Structural Information

Grey value \propto Height (elevation angle) to the building roof
Using Structural Information Instead of Color Information

Temporal Height Image

Grey value \propto Height (elevation angle) to the building roof

Much clearer building features
Building Matching between Map and Image using THI

Map

Image

Matching Pattern

Real image (i)
Digital map (j)

Case A: Corresponding 1 by 1
Case B: One noise between bldg.
Case C: Non-flat roof = two bldg.
Case D: One noise inside a bldg.

Matching Cost

Aspect similarity
Height-transition similarity

Real Image
Map

Real Image
Map
Matching and Texturing Result

Accurate map (Asahi) gave better result.
Space-Time Coincidence of Camera Center

[Image: Diagram showing objects A, B, and C with camera views a, b, and c, and an omni-directional image with -180° to 180° coverage.]
Space-Time Coincidence of Camera Center

How to know t_2, t_3?

Space-time agreement

Spatial disagreement
Temporal adjustment using EPI (Software-based camera sync.)
Result
Video Completion
Video Completion

- What’s video completion?

- How is it useful?
 - Restoration of damaged or vintage videos (Spatial completion)
 - Restoration of corrupted internet video streams due to packet drops (Temporal completion)
 - Post-production in the movie-making industry
Space-time Completion of Video
(Y. Wexler* 2004, 2007)

- Find a small volume which accords with the hole from the whole volume
- Copy it to the hole, as a compensating patch-volume
How to Find the Patch

The optimal patch-volume

Reference database = The whole volume itself

A small cube around point p

$$\text{Coherence}(S^*|T) = \sum_{p \in S^*} \max_{q \in T} s(W_p, W_q)$$

$$s(W_p, W_q) = e^{-\frac{d(W_p, W_q)}{2*\sigma^2}}$$

$$d(W_p, W_q) = \sum_{(x,y,t)} ||W_p(x, y, t) - W_q(x, y, t)||^2$$
Result
Erasing Raindrop
[J. Sato et al. 2011]

Fig.1 雨滴付き画像と雨滴なし画像.
Erasing Raindrop
[J. Sato et al. 2011]

Key Point:
The camera is mounted on a vehicle
Always fixed to observe the mirror

We can know from which portion of ST-volume the raindrop can be inpainted.

Epipolar Geometry:
(Details in “Stereo Vision”, Nov./Dec.)
Detecting the Raindrop

1. Restore the masked area
2. Restore the whole image by shifting the mask
3. Subtract the restored image from the original image

(a) 入力画像 (b) マスク (c) 補間画像
画像

Fig.5 画像補間を用いた雨滴検出
Result

(a) 入力画像
(b) マスク補間画像
(c) 差分画像
(d) 検出した雨滴
(e) 雨滴除去結果

Fig.7 サイドミラーの雨滴の検出，除去結果
Video Completion by Motion Field Transfer (Shiratori 2006)

Conventional

Filling-in holes by non-parametric sampling of video patches

Proposed
Why motion?

• Color-based method: Requires similar color & motion
• Motion-based method: Requires only similar motion

More chance to fill-in a hole!

Motion can be copied from video portions with different appearance.
Method

- **Motion Field Transfer**
 - Fill-in a hole by transferring the most similar *motion patches*

- **Color Propagation**
 - Propagate color from boundary using motion field in the hole
Result
Result

Image sequence with a hole (motion field is computed.)

After Motion Field Transfer

After Color Propagation (Final result)

Ground Truth
Application: Object Removal
Application: Object Removal
Application: Frame Interpolation
Application: Frame Interpolation(2)
Full-Frame Video Stabilization (Y. Matsushita 2006)

bullet Motion inpainting (propagating local motion into the missing image areas)

Figure 5: Motion inpainting. Motion field is propagated on the advancing front ∂M into M. The color similarities between p_t and its neighbors q_t are measured in the neighboring frame I_t after warped by local motion of q_t, and they are used as weight factors for the motion interpolation.
Result
Removing Foreground Objects
[Kuribayashi 2009]

Wrong texture mapping
Pedestrian’s privacy

Google Earth

Google Street View
Idea

Urban scene is constructed by plane structure

Color Median ⇒
Input
Plane-Plane Registration

- SIFT + Homography + RANSAC
Registered
Epipolar Plane Image

- The cross section which put image and cut in epipolar line

Registered images

Background

Foreground obstacles
Removal result
Removing Foreground Objects
[Uchiyama 2010]

No need for assuming that the scene is composed of a set of planar structure

Use multiple video stream, Stitch the background region (Foreground = Moving object)

Frame-to-frame matching is already done by DP

Figure 2. Omni-directional camera image containing no moving object is obtained from many images captured at the same place in a different timing independently.
Background Selection

Idea: Background is
1. Observed most often throughout all video streams
2. Consistent between neighboring sub-windows

Vector median (Color median)

\[
\arg \min_{\mathbf{v} \in \{\mathbf{v}_1, \ldots, \mathbf{v}_N\}} \sum_{i=1}^{N} |\mathbf{v} - \mathbf{v}_i|
\]

\(i: \text{stream ID}\)
Removing Foreground Objects
[Uchiyama 2010]

(a) Before removal: input image (target image)

(b) After removal: output image

Figure 7. Result of the proposed method. Although a pedestrian, vehicles and a bicycle are observed in the input image (a), they were removed in the output image (b).
Video Summarization
Video Synopsis
[Rav-Acha 2006]

Figure 1. The input video shows a walking person, and after a period of inactivity displays a flying bird. A compact video synopsis can be produced by playing the bird and the person simultaneously.

Figure 2. In this space-time representation of video, moving objects created the “activity strips”. The upper part represents the original video, while the lower part represents the video synopsis.
(a) The shorter video synopsis S is generated from the input video I by including most active pixels. To assure smoothness, when pixel A in S corresponds to pixel B in I, their “cross border” neighbors should be similar.
(b) Consecutive pixels in the synopsis video are restricted to come from consecutive input pixels.
Result

http://www.vision.huji.ac.il/video-synopsis/

Figure 6. An example when a short synopsis can describe a longer sequence with no loss of activity and without the stroboscopic effect. Three objects can be time shifted to play simultaneously. (a) The schematic space-time diagram of the original video (top) and the video synopsis (bottom). (b) Three frames from original video. (c) One frame from the synopsis video.
Space-time Video Montage
(H.W. Kang 2006)

- Video summarization based on space-time analysis
- Define “important” portions inside a volume
- Leave them, exclude others
Details
Saliency?
(顕著性)

Simple example:
Difference between Original image and Gauss-filtered image
Result
Result
Feature-Based Video Alignment
(Irani 2006)

Problem formulation:
Cameras are static \rightarrow Estimate homography $H(3\times3)$
and temporal deviation Δt

Search corresponding trajectories

$$\tilde{P}(H, \Delta t) = \arg\min_{\text{trajectories}} \sum \| (x_1, y_1, t) - H(x_2, y_2, t + \Delta t) \|^2$$
Feature-Based Video Alignment: An example

One frame of Video 1

Before alignment

One frame of Video 2

After alignment
Behavior Analysis
Space-Time Behavior Based Correlation (E. Shechtman* 2005, 2007)

- Extract similar behavior
- By calculating correlation between portion & portion inside a S-T volume
Space-Time Behavior Based Correlation
[Irani et al. 2005 (CVPR)]

Template Video

The five different templates used:

- **T1**: Arm waving
- **T2**: Clapping
- **T3**: Jumping
- **T4**: Walking
- **T5**: Fountain

Features:
- 3D-block matching in Space-Time Volume
- Recognize different behaviors simultaneously!
Space-Time Behavior Based Correlation Property of Space-Time patch

Space-time gradients of color value P

$$\nabla P_i = (P_{xi}, P_{yi}, P_{ti})$$

$$(u, v, w)$$

$$\nabla P \begin{bmatrix} u \\ v \\ w \end{bmatrix} = 0$$

$$\begin{bmatrix} p_{x1} & p_{y1} & p_{t1} \\ \vdots \\ p_{xn} & p_{yn} & p_{tn} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times 1}$$
Detecting Irregularities in Images and in Video (O. Boiman* 2005)

A portion which is not similar to any portion inside the database volume

Irregular
Others
Absolute Scale in SfM from a Single Vehicle Mounted Camera

- **SfM (Structure from Motion) from a single camera:**
 - The absolute scale is unknown

- **When the camera is mounted on a wheeled vehicle:**
 - The absolute scale can be recovered
 - Very accurately, and fully automatically

- **Because**
 - Wheeled vehicles undergo local circular motion

[Scaramuzza 2009]
Idea

Offset from non-steering axle

No offset from non-steering axle

Gives absolute scale [ICCV09]

Simplify motion estimation [ICRA09]
Motion Model of nonholonomic vehicles

- "Nonholonomic"
 Controllable DOF < Effective DOF

- **Example:**
 - Cars, bikes, wheel chairs, …
 - Most mobile robots, …

- Controllable: 2 DOF
 Acceleration (1) + Steering (1)

- Effective: 3 DOF
 Position (2) + Orientation (1)

- **Ackermann Steering Principle**

 Wheel of the vehicle follows a circular course
Variable Definition

Translation: λ
Rotation: φ_C

Translation: ρ
Rotation: φ_V
Circular Motion (no offset)

\[\phi_c = \phi_v = \frac{\theta}{2} \]
Circular Motion (with offset)

Parameters can be estimated from image feature correspondences

\[\lambda = \frac{2L \sin\left(\frac{\theta}{2}\right)}{\sin(\varphi_c - \frac{\theta}{2})} \]

\[\rho = \frac{L \sin(\varphi_c) - L \sin(\varphi_c - \theta)}{\sin(\varphi_c - \frac{\theta}{2})} \]

\[E = \lambda \begin{bmatrix} 0 & \cos(\theta - \varphi_c) & 0 \\ -\cos(\varphi_c) & 0 & \sin(\varphi_c) \\ 0 & \sin(\theta - \varphi_c) & 0 \end{bmatrix} \]
Motion Estimation

\[p'^T E p = 0 \]

\[E = \lambda \begin{bmatrix} 0 & \cos(\theta - \varphi_c) & 0 \\ -\cos(\varphi_c) & 0 & \sin(\varphi_c) \\ 0 & \sin(\theta - \varphi_c) & 0 \end{bmatrix} \]

- **Method 1: Least-squares**
 - \(f(\cos(), \cos(), \sin(), \sin()) = 0 \)
 - At least 3 point correspondences to find a solution

- **Method 2: Nonlinear**
 - Taylor expansion \(g(\theta, \varphi) = 0 \) & Newton’s iterative method
 - At least 2 point correspondences to find a solution

Known (image feature correspondences)
Finding Sections of Circular Motion in a Camera Path

- Algorithm:
 - Compute camera motion estimate up to scale
 - Compute absolute scale (ρ) from θ, φ_c, L
 - Identify sections for which $\rho > 0$
 - Identify sections for which the circular motion is satisfied
 - Compute curvatures of two neighboring sections: k_i, k_{i+1}
 - Check circular motion criterion: \[
 \frac{|k_i - k_{i+1}|}{k_i} < 10\%
 \]
 - Consider correct absolute scale for sections for which $|\theta| > \theta_{thresh}$

Also
Check curvature values: 0.03 m\(^{-1}\) ~ 0.5 m\(^{-1}\)

(2 m ~ 33 m in radius)
Simulation Data (+Gaussian noise): Relative Error of Absolute Scale

- The accuracy of the scale estimate increases with θ
- The error becomes smaller than 5% for $\theta > 10^\circ$
Real Experiment

- Offset: 0.9 m
- Omnidirectional camera (curved mirror)
- 640x480, 10 fps
- 10 ~ 45 km/h
- 3 km travel

Ground truth: wheel odometry
Real Data

Comparison between visual odometry and ground truth

<table>
<thead>
<tr>
<th>$\theta_{thresh}[^\circ]$</th>
<th># detected</th>
<th># correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>461</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>153</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Within 30% of wheel odometry measurements
References

- http://research.microsoft.com/users/yasumat
- http://research.microsoft.com/~ywexler
- http://people.csail.mit.edu/celiu/motionmag
- http://www.gvu.gatech.edu/perception/projects/ videotexture
- http://www.wisdom.weizmann.ac.il/~irani
- http://people.csail.mit.edu/sand/vid-match