

Introduction

- How to obtain a motion field
	- Optical flow
	- Apparent motion of the brightness pattern
	- 2D problem
- How to characterize and what information can be obtained from a motion field
	- Structure from motion
	- 3D understanding from 2D

Time-varying Image Processing

- Introduction
- Basic technologies
	- Background subtraction
	- Optical flow
	- Structure from Motion (SfM)
	- Space-time Image Analysis
- Applied technologies
	- Introducing recent research cases

Motion understanding #1 動き解析・動画像処理 第**1**話

Background Subtraction (Simplest Model)

6

Foreground image

 $|I - I_{\rm BG}|$ > Threshold ?

Using appropriate color space (RGB, HSV, YCbCr, …)

Background image

Problems in the Simplest Model

- Sensitive to lighting change
	- Sunlight change
	- Turning on/off lamp
	- Camera's auto exposure
- Same threshold for all pixels
- Objects moving periodically are identified as foreground
	- Leaves of trees
	- Signal lights, …

Intensity variance in background Adaptive threshold

Normal Distribution Model in Background

Per-pixel threshold

$|I-\mu| > k \sigma$?

Another problem: Still object appeared after is identified as foreground forever

Dynamic background update

Dynamic Background Update

- Potential Background (in the near future)
	- Objects identified as foreground for long duration
	- Non-moving objects

- Update process (Example)
	- Foreground \rightarrow Slightly mixed to Background
	- Potential Background \rightarrow Replace current Background

Dynamic Background Update (Example) **[OpenCV Programming Book]**

t

Initial State

Working as the ordinary background subtraction

Dynamic Background Update (Example) [OpenCV Programming Book]

12

Input BG FG

t

The poster added has been identified as FG for long, and is not moving…

BG is updated

Optical Flow

Optical Flow Example

Time *t*

Time $t+\Delta t$

Solve motion field For each pixel

Optical Flow Constraint Equation

Time *t* $I(x, y, t)$

Time $t+\Delta t$

Brightness conservation

$$
I(x, y, t) = I(x + \Delta x, y + \Delta y, t + \Delta t)
$$

Taylor expansion
\n
$$
I(x + \Delta x, y + \Delta y, t + \Delta t)
$$
\n
$$
= I(x, y, t) + \frac{\partial I}{\partial x} \Delta x + \frac{\partial I}{\partial y} \Delta y + \frac{\partial I}{\partial t} \Delta t
$$
\n
$$
= I(x, y, t) + I_x u \Delta t + I_y v \Delta t + I_t \Delta t
$$

Optical flow constraint equation

$$
I_x \omega + I_y \omega + I_t = 0
$$

For each pixel (x, y), Two unknown variables *u*(*x*, *y*), *v*(*x*, *y*)With one constraint equation

Solution 1: [Lucas&Kanade 1984] Same Motion in Local Region

A local region Ω moves in the mass

Sampling points (1, 2, 3, …) inside the region have the same u, v

 (x, y) (x, y) *v x y u x y* Ω

Simultaneous equation

$$
I_x^1 u + I_y^1 v = -I_t^1
$$

$$
I_x^2 u + I_y^2 v = -I_t^2
$$

$$
I_x^3 u + I_y^3 v = -I_t^3
$$

$$
\vdots
$$

Solved as a (weighted) least squares method

Solution 1: [Lucas&Kanade 1984] Same Motion in Local Region

Or else,

$$
I_x u + I_y v + I_t = 0 \qquad \text{for all } (x, y) \text{ inside local region } \Omega
$$

$$
e = \iint_{\Omega} \{ I_x(x, y) u + I_y(x, y) v + I_t(x, y) \}^2 dx dy \to \min
$$

$$
\frac{\partial e}{\partial u} = 0 \qquad \qquad u \iint I_x^2 dx dy + v \iint I_x I_y dx dy = -\iint I_t I_x dx dy
$$

$$
\frac{\partial e}{\partial v} = 0 \qquad \qquad u \iint I_x I_y dx dy + v \iint I_y^2 dx dy = -\iint I_t I_y dx dy
$$

Limitation

• Defining the mass region to be small • Solution (u, v) becomes unstable

- Defining the mass region to be large
	- The assumption "Region move in the mass" will be fail

• These are trade-off's

Solution 2: [Horn & Schunck 1981] Motion Smoothness Constraint

Optical flow equation:

$$
I_x u + I_y v + I_t = 0
$$

Smoothness constraint: Neighboring pixels have similar motions

$$
u_x^2 + u_y^2 + v_x^2 + v_y^2 \rightarrow \min
$$

$$
e = \iint \left\{ (I_x u + I_y v + I_t)^2 + \lambda (u_x^2 + u_y^2 + v_x^2 + v_y^2) \right\} dx dy
$$

\n
$$
\to \min
$$

Solution 2: [Horn & Schunck 1981] Motion Smoothness Constraint

$$
\begin{cases}\n\frac{\partial e}{\partial u} = 0 \\
\frac{\partial e}{\partial v} = 0\n\end{cases}\n\begin{cases}\nu(x, y) = \overline{u}(x, y) - I_x \frac{I_x \overline{u}(x, y) + I_y \overline{v}(x, y) + I_t}{4\lambda + I_x^2 + I_y^2} \\
v(x, y) = \overline{v}(x, y) - I_y \frac{I_x \overline{u}(x, y) + I_y \overline{v}(x, y) + I_t}{4\lambda + I_x^2 + I_y^2} \\
\overline{u}(x, y) = \frac{1}{4} \{u(x+1, y) + u(x-1, y) + u(x, y+1) + u(x, y-1)\} \\
\overline{v}(x, y) = \frac{1}{4} \{v(x+1, y) + v(x-1, y) + v(x, y+1) + v(x, y-1)\}\n\end{cases}
$$

4

Solved by iterative calculus ("Relaxation method")

$$
u^{(k+1)} = u^{(k)} - I \frac{I_x \overline{u}^{(k)} + I_y \overline{v}^{(k)} + I_t}{4\lambda + I_x^2 + I_y^2}
$$

$$
u_0 \to u_1 \to \cdots
$$

Example

Limitation of the Optical Flow

- No solution in textureless regions
- Large error in noncontinuous region such as object boundary
- Difficulty in specifying unique correspondence (Aperture Problem)

3D Reconstruction from Moving Images

Is it possible to reconstruct 3D structure only from video?

- Some other knowledge:
	- When looking outside through a window of a train

- Telegraph poles \rightarrow rapidly pass
- \bullet Mt. Fuji \rightarrow can be seen during long time
- When looking at two poles; one is near, the other is far
	- How do they appear in position, if the camera moves
	- When camera *pan …?*
	- When camera *transition …?*

Johannson's experiment

Put LED on each joint of a human body and observe them in the dark room.

- While the human is still, an observer cannot recognize what the pattern is.
- Immediately after the human begins to move, a sequence gives not only a compelling perception of motion of a 3D body, but allows recognition of the sequence as depicting a walking person, and a description of the type of motion.

- Obtain 3D structure information from 2D image sequence
	- \rightarrow Similar to stereo vision, however, AT THE SAME TIME,
- Obtain camera's 3D motion (position and posture) from 2D image sequence

"Structure from Motion" (SfM)

Input:

- (More than) 3 *orthographic* or *weak-perspective* cameras
- (More than) 4 non-coplanar points in a rigid configuration on each images
- Output:
	- 3D position of the points
	- 3D pose/position of the cameras

Camera Projection Model

Basic Idea

Camera projection model (orthographic)

Want to know motion (the camera parameters) and structure (X, Y) for all points and image frames

 \rightarrow min

Unknown

Simplification by variable transformation

- Real world origin: Centroid of 3D points
- Image plane origin: Centroid of 2D points

'', \parallel '2 $\overline{}$ $\overline{}$ \int \setminus $\overline{}$ $\overline{}$ $\overline{}$ \int \setminus $\overline{}$ \mathbf{r} \mathbf{r} \setminus $\bigg($ \int \setminus *Z Y X*

Hereafter, X' is described as X

 \rightarrow min

SfM Theorem: Tomasi–Kanade Factorization

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ J II

))

 \int

Unknown

It can be minimized if and only if we can find the unknown M and X, Y, Z that can decompose the W, a set of the known u, v, as follows:

Points

 $\overline{}$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ \setminus $\bigg($ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \int \setminus L \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \setminus $\bigg($ $=$ *n n n mx* J_{my} J_{mz} mx *l*_{my} *l*_{mz} *x* J_{1y} J_{1z} x ι_{1y} ι_{1z} Z_1 Z_2 \cdots Z_n Y_1 Y_2 \cdots Y_n X_1 X_2 \cdots X_n j_{mx} j_{mx} j i_{mx} i_{mx} i j_{1x} j_{1y} j i_{1x} i_{1y} *i* \cdots \cdots \cdots \vdots \vdots \vdots 1 Z_2 $1 \t 2$ $1x$ J_{1y} J_{1z} \parallel \mathbf{A}_1 \mathbf{A}_2 v_{1y} v_{1y} v_{1y}

min

Observation Matrix Motion Matrix Shape Matrix

Motion Matrix (camera pose)

 $\overline{}$ $\overline{}$ $\overline{}$

 \setminus

 \int

Ideally it can be decomposed $(Rank W = 3),$ but not because of $\begin{array}{l} i \ j \end{array}$ *i*
Ideally it can be
decomposed
(Rank W = 3),
but not because o
observation noise

 $\frac{1}{\epsilon}$

j Ļ

W M S

SfM Theorem: Tomasi–Kanade Factorization

34

It is known that as a computational technique, *Singular Value Decomposition (SVD)* can give the optimal approximation.

SfM Theorem: Tomasi–Kanade Factorization

A can be solved by $|\vec{i}| = |\vec{j}| = 1$ $\vec{i} \perp \vec{j}$ \overrightarrow{z} \overrightarrow{z} \overrightarrow{z} . \overrightarrow{z}

SfM in Perspective Projection

- Projection depth should be obtained
- Set initial value, and iteratively update it
- 1. Depth=1
- 2. Factorize
- 3. Structure and Motion are obtained
- 4. New projection depth
- 5. Back to 2 …

Input Video

Tracking Result

Tracking Result

Four out of the 180 frames of the real house image stream.

The features selected in the first frame of the real house stream.

A front view of the three reconstructed walls, with the original image intensities mapped onto the resulting surface.

40

Tracks of 60 randomly selected features from the real house stream.

Top and side views of the i_f and j_f vectors identifying the camera rotation for the real house stream .

A view from above of the three reconstructed walls, with image intensities mapped onto the surface.

Structure from Motion Example

Space-Time Image

More Images (moving camera) Space-Time Image

Typical image separation

Close sampling image separation

Information from Space-Time Volume

50

Use partial information

Moving camera: Initial position

Moving camera: If the camera moves…

$$
m \equiv \frac{-\Delta v}{\Delta u} = \frac{-F_0 \Delta t}{-\frac{h_0}{D} \Delta X} = -\frac{F_0}{h_0} \cdot \frac{D}{V} \propto \frac{D}{V}
$$

Same as stereo vision (Do you remember?)

Spatio-temporal solid of data.

Right-to-left motion.

Slice of the solid of data.

General stereo configuration.

Sliced solid of data.

Right-to-left motion with solid.

Frontal view of the EPI.

A second EPI.

EPI from forward motion.

Forward motion.

Applications

Spatio-temporal coincidence of camera optical center

How to know t2, t3?

65 Cam.¹² 1 ab c c a b *t1* t_2 EPI_1 EPI_2 time **Temporal adjustment using EPI (Software-based camera sync.)** $Cam. 11²$

Result

Spacetime Feature Matching for Texturing

Ground-view image (Vehicle survey, Local)

3D residential map (Aerial survey, Global)

How can we get correspondence, and add a texture onto building walls?

Spacetime Feature Matching for Texturing

Output

Corresponding result

Omnidirectional Camera

Spatio -temporal volume of omni -directional image

Cross -section (an elliptic curve)

Panorama image

Texture Mapping

• Height info and texture

Texture Mapping

Side faces

Problems in using EPI

77

Textures inside building (windows, etc.) disturb to recognize the building features stably

Using Structural Information Instead of Color Information

Building Matching between Map and Image using THI

Matching Pattern

B: One noise between bldg.

D: One noise inside a bldg.

Matching Cost

Aspect similarity Height-transition similarity

Real Image Map Real Image Map

Matching and Texturing Result

Summary

- **•** Introduction
- Basic technologies
	- Background subtraction
	- Optical flow
	- Structure from Motion (SfM)
	- Space-time Image Analysis

