Computer vision class 2014

Object Representation II

Oct. 28. 2014 Bo Zheng (zheng@cvl.iis.u-tokyo.ac.jp)

Types Continuity Discrete Continuous Form Basic techniques on 3D Parametric Point cloud in polar Splines (piecewise coordinate... polynomial),... representation 3D volumetric Explicit Polynomial... Nonpar Explicit images, Polygon ametric mesh,.. Signed Distance Implicit Radial Basis implicit Field (SDF),... Function & Algebraic surface...

Implicit Radial Basis Function (RBF) $f(\mathbf{x}) = v(\mathbf{x}) + \sum_{i=1}^{N} \lambda_i \phi(\mathbf{x} - \mathbf{x}_i) = 0$ Low degree Radial basis (xi: control point)
$\begin{array}{c} \text{polynomial} \\ \hline \textbf{e.g.}, \boldsymbol{\nu}(\boldsymbol{x}) \\ \hline \boldsymbol{\psi}(\boldsymbol{x}) = \boldsymbol{c}_0 + \boldsymbol{c}_1 \boldsymbol{x} + \boldsymbol{c}_2 \boldsymbol{y} + \boldsymbol{c}_3 \boldsymbol{z} \\ \hline \textbf{e.g.}, \boldsymbol{\phi}(\boldsymbol{x}) \\ \hline \textbf{s.Gaussian} \end{array}$
$\phi(x) = e^{x^2/\sigma_t^2}$ Thin-plate radial basis $\phi(x) = x^2 \log(x)$

A brief comparison

	Explicit	Parametric	Implicit
Data Interpolation	Difficult	Easy Easiest	
Smoothness	NO	Yes	Yes
Compact Representation	NO	Yes	Yes
Visualization	Easy	Easy	difficult
Surface Operations	Bad	Good	Very Good
Topology Preserving Deformation	Difficult	Easy	Easiest
Local Shape Control	Yes	Yes	No
Gradient Computation	Bad	Good	Good

A Brief Introduction on Implicit Polynomial (IP)

B. Zheng, J. Takamatsu and K. Ikeuchi (UT) IEEE trans. on Pattern Recognition and Machine Intelligent (PAMI), 2010

Adaptively fitting implicit polynomials (IPs) to 2D/3D object shapes

Comparison to prior methods					
Objects	3L method [Blane, PAMI'00]	RR method [Tasdizen, IP'01] [Sahin, ICCV'05]	Our method		
		6	6		

8

The Goal

- Global texture-mapped 3D model
- Optimize for aerial viewing
- Enable effective indoor navigation

System Pipeline

- 1. Take pictures inside the rooms
- 2. Reconstruct the 3D shape
- 3. Render from aerial viewpoints

1. Take pictures inside the rooms

- 2. Reconstruct the 3D shape
- 3. Render from aerial viewpoints

System Pipeline

- 1. Take pictures inside the rooms
- 2. Reconstruct the 3D shape
- 3. Render from aerial viewpoints

System Pipeline

- 1. Take pictures inside the rooms
- 2. Reconstruct the 3D shape
- 3. Render from aerial viewpoints

Why infer physical support?

Interacting with objects may have physical consequences!

Two observations

- The world can be represented by voxels (volumetric pixels).
- Mechanics is an important cue for reasoning the objects in a static scene.

Related work

- Geometric methods
 - 3D segmentation [Attene, VC06]
 - Manhattan assumption [Furukawa, CVPR09]
- Physics reasoning
 - "Block world revisit" [Gupta, ECCV10]
 - Support relations inference [Silberman, ECC12]
- Cognitive science – Probabilistic representation [Hamrick, CogSc11]
- Physics engine?

Our contribution

- Geometric reasoning
 - Segmentation + volumetric completion
 (2.5D -> volumetric)
- Physical reasoning
 - novel model of intuitive physical stability
 - A novel stability optimization

Summary

- Geometric reasoning

 Segmentation + volumetric completion
 (2.5D -> volumetric)
- Physical reasoning
 - novel model of intuitive physical stability
 - A novel stability optimization

Scene Understanding: Potential Falling Risk for Objects by Inferring Human Action and Natural Disturbance

Discussion: Human v.s. Machine?

- There is no ground truthPeople have big variance on safety understanding

3D vision Signals (raw data) e.g. Denoising processing past e.g. Feature detection Information and description e.g. Examplar-based Knowledge recognition e.g. Reasoning by various Cognition knowledge

