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The first example:

Representing an object

Cylinder 

(shape)

Cap (color) 

Plastic cover (texture)

Can we find some features that can be used to characterize the object?

Object representation in other fields

• Computer Graphics (CG) or 
Augmented Reality (AR)

- how to realistically render 
a synthetic image

• Computer Visualization

- how to make a visual form 
enabling the user to 
observe the invisible  
information 

bacterial protein 

A CG models mixed to real scene 

Computer Vision

Tries to answer the question:

What is where?

Object Representation in 
Computer Vision

• How to make a digital form enabling computer 
to understand visual information.

),7.0,2.0( 

),3.0,5.0(  ),2.0,5.0( 
Preserved in computer

Computer vision system

Object 

representation

Internal 

processing

High-level 

processing

Data acquisition
2D/3D Images

e.g.

Characterize objects with 

features (feature detection and 

description)

e.g.

Object Recognition, Tracking,

Retrieval an object from DB…

e.g.

Scene understanding, Face 

Recognition, tracking a car, 

localizing a picture …

e.g.

Our interest
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These objects are recognized by…

pixels? Colors? Textures? Shapes? …

Outline

• 2D representation (for RGB image)
– basics
– research in the state of arts

• Sparse representation
– basics
– research in the state of arts

• 3D representation
– basics
– research in the state of arts

• Beyond “what is where”: new trends in CV

Today’s 

class

Next class 

Part I: Basics on 2D representation

Problems on 2D representation

• Appearance of objects change in different conditions 

• Location and orientation

• scale or viewpoint

• noises and occlusions

• illumination conditions

A naive method for recognition 

Well 
matched?

Change size, location, 
orientation, 

illumination,..

Compare the images 
pixel by pixel 

NO

end

YES

Too time-

consuming

Object image

Input image

An efficient way: 

using the visual features 
(sparse and special)

• Local representation • Global representation

The shape of 

whole object
Structure (relations) 

of local features

- Appearance at each local 

part
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Local feature representation

Step1: Feature detection Step2: Feature description

finding the special points or 

areas

Characterizing each interest 

point with digital numbers 

(feature vector)

Interest point

feature vector

Example: template matching
[M. Özuysal, PAMI’10]

Affine 
Invariance

Harris, Stephens:
Harris Corner 

Detector

Lindeberg:
Scale-space 

theory

Schmid, Mohr:
Local grayvalue

invariant

Schmid, Mohr:
Harris/Hessian 
affine region

Ke, Sukthankar:
PCA-SIFT

Bay, Tuytelaars :
SURF

Feature 
Detector

Scale-
select

Rotation 
Invariance

Lowe:
SIFT

Robust to 
variation in scale, 

illumination

More 
robust

Higher 
speed

Balal:
HOG

Suitable 
for 

training

Csurca:
BOF

General 
object rec.

1988 1994 1997 1999 2002 2004 2006

Detection

Description

The history of contribution First step

Step1: feature detection
Step2: feature description

finding the special local areas
Characterizing each area 

with digital numbers

Image Feature Detection

Goal: finding interest points or areas on an image 
invariant to image size, orientation, view point, 
illumination…

Approaches:

• corner detection

• Scale invariant detection

• Rotation/orientation invariant detection

• Affine invariant detection

Corner definition

At a corner, the image intensity will change 
largely in multiple directions.

“flat” region:
no change in all 

directions

“edge”:
no change along 

the edge direction

“corner”:
significant change 

in all directions
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Harris: how to determine a corner

Algorithm:

Autocorrelation matrix of the image I(x,y);

Two eigenvalues (λ1, λ2) of M : principal curvatures of the 
point.

λ1≈0 and  λ2 ≈0： “Flat” (No feature)

λ1≈0 and λ2 >>0: “Edge”

λ1>>0 and λ2 >>0: “Corner”

Harris Corner 
(Harris, AVC1988)

Harris 
Detector

Problem arise when image size changes

We want to know the relative scale (size) of the region around the 

interest point, when images are zoomed in/out?

X O

Circle area in same size

A solution: Detecting scale invariant interest 
points

Difference-of-Gaussian (DoG):

Input image DoG image

blurred images

[Lowe, IJCV’04]

Gaussian 

filter

Gaussian 

filter

Constructing the scale (σ) space          

scale blurred images DoG images

Searching the 

maximum 

points in every 

3 DoG images

The result: 
finding the relative scale for each interest point



2014/10/21

5

Problem arise when the images are 
captured in different orientation

We need to know the orientation of each interest 

point!

Orientation detection (in SIFT)
[Lowe, IJCV’04]

Count the 
numbers of 

gradients in 
all directions

Gradients (Ix, Iy)

Orientation Histogram

Orientation of 
the Keypoint

Orientation of 
the peak bin

Orientation detection (in SURF)
[H. Bay et al. ECCV06]

1, sliding the sector around center of feature.
2, sum up the harr filter responses in each sector.

3, finding the maximum summation.

Main Orientation

Rotate the Axis

Problem arise if the pictures are taken in 
different view points?

We need to know the affine-transformed 

information of each interest point.

X O

Harris/Hessian Affine Region

Hessian Affine:

Harris Affine:

[Mikolajczyk and Schmid, IJCV'04]

Others

EBR (Edge-based 
region):

MSER (Maximally 
stable extremal 

region):

[Matas et. al, BMVC'02]
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Second step

Step1: feature detection
Step2: feature description

finding the special local areas
Characterizing each area 

with digital numbers

Feature-Based Descriptors

Goal: to characterize local regions with some digital 
numbers (feature vector) for the image matching.

Popular Approaches: SIFT, SURF…

Interest region Interest region

?

Gradients Descriptor (SIFT)

[Lowe, IJCV’04]

Gradient magnitude 
in 8 directions in 

each subregion

Separating the 
patches into 16 

subregions

Feature Vector (8*16=128 Dimensions)

Speeded Up Robust Feature (SURF)
[Bay, ECCV2006]

• Approach: use Haar-Wavelet Responses to characterize the 
keypoints.

Haar-Wavelet types 
used for SURF

Input Image Haar-Wavelet 
Responses

Sum up the responses 
and their absolute value 

in each box 

4*4 subregions

v = (Σdx,Σdy,Σ|dx|,Σ|dy|)

16*4=64-D Feature Vector 

Speeded Up Robust Feature (SURF)
[Bay, ECCV2006]

Comparison of SIFT and SURF
(Bay, ECCV2006) 

Computation Time on an example image (800*640)

Accuracy:

recall=
number of true-matched 

total number of correspondences

1-precision=
number of false-matched 

total number of matched

Speed:
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Global representation

Bag of Features Constellation
HoG (Histogram of 

Oriented Gradients)

Shape descriptor

Example: Bag Of Features（BOF） for image 
understanding 

Separate into N clusters

Visual Word
(the center of the cluster)

Frequency of each word 
in a image

Local feature                                       

SIFT descriptor                                       

Code of face

Training

Training image set

(Csurka, 2004)

Research in the state of art

Critical Nets and Beta-Stable Features for 
Image Matching

Steve Gu, Ying Zheng and Carlo Tomasi

Department of Computer Science

Duke University

ECCV 2010, oral

idea
Net of FeaturesBag of Features
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Outline

• Beta-stable features detection

• Critical nets construction

• Application to Image matching

Review of DoG
[Lowe, IJCV’04]

Difference-of-Gaussian (DoG):

Input image DoG image

L(σ ) = G(σ ) ∗ I(x, y)

D(σ ) = L(kσ ) − L(σ )

blurred images

Scale space revisited

approximate Laplacian (DoG) images changed in different scales

Scale space revisited
Compute the number of ``convex’’ (bright) and ``concave’’ 

(dark) regions

Scale space revisited

The variation speed of the 

DoG over scale

Stable with 

length β

Beta-stable scale

• Scale k is called ``beta-stable’’ if : the number 
of convex regions remains a constant within a 
scale interval of length beta.

Fig. 3. From left to right: An image patch of a human eye and its DoG at 

scales 2 (middle) and 25 (right). Scale k = 25 is 10-stable.
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Beta-stable features

• The extrema of the DoG function computed at 
the smallest beta-stable scale

Fig. 4. From left to right: Original image; The 10-stable DoG image; SIFT 

features (green); 10-stable features. Red and blue dots are maxima and minima 

of L10.

Critical Nets

Definition of Critical Nets

• A minimum A is connected to a maximum B if 
an ascending path goes from A to B

• Such a graph is called a critical net

Ascending paths

• Define practically repeatable connections 
between beta-stable features

• Connection:

Critical Nets

• Observation 1: ascending paths are invariant 
under ``monotonic’’ changes

• Observation 2:

the higher the values of a point, the lower the 
probability this point can expand further

Image Matching
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Example of dual SIFT descriptors

Note: using the edge information, no need to 

detect the scale and orientation

Matching results Comparison

Fig. 7. Top left: SIFT; Top right: the 10-stable features and the matching result 

without using the critical net connections; Bottom: same 10-stable features, but

with matching based on the critical net where dual SIFT descriptors are used.

Compared to SIFT

• Reduce the number of parameters

–No need to determine the histogram peaks

–No need to assign multiple directions

• Richer local descriptor ( dark-bright pattern )

• And better repeatability in matching
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Other Contributions 

• Critical nets are simple graphs that are 
invariant under affine and monotonic changes

• A more reliable geometrical reference: 
rotation and scale

Homepage of this research:

Download

1)  Papers

2)  Matlab code

http://www.cs.duke.edu/~steve/cnet.html

Part II: Sparse representation

An Example: sparse representation

Elements in dictionary

Selecting a small number 

of the elements to 

represent an object

[Wu, IJCV’09]

Sparse coding 

=

L

N  s



x



D

(unknown)

22

20
..min 


 xDts

Selected 

coefficients

Dictionary Sparse 

representation

Linear 

equations:

How to solve the problem

22

20
..min 


 xDts

NP-hard !

Greedy methods Relaxation methods

finding a representation with the smallest 

number of bases from an dictionary

process all the coefficients 

simultaneously

build up the approximation 

coefficients one by one

xD


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Greedy methods

2
min xD 


Solve Instead 

Greedy methods
- Matching Pursuit (MP) [Mallat et al, Signal Pro. 1993]

- OMP [Mallat et al, constructive approximation, 1997]

- OMP [Tropp Info. T. 2006]

- StOMP, SP, CoSaMP…

22

20
..min 


 xDts

Ex. Basis PursuitRelaxation methods

Solve Instead

[Chen, Donoho, Saunders (‘95)]

Linear programming or interior point methods

- BP [Donoho, Info. Theory 2006]

- l1 minimization [Candes et al, Info. Theory 2006]

- an interior method for l1-regularized least squares [Kim et al., Signal Pro.] 

22

20
..min 


 xDts

22

21
..min 


 xDts

1

2

2
min 


 xD

Why sparse is good?

Briefly review applications

Image representation- Gabor wavelets

[Mendels et al. (‘06)]

20 bases 200 bases

544,000 point 

cloud 8000 control points

[Carr et al. (SIGGRAPH 01)]

Shape representation- using RBF basis

Original ‘Barbara’ image Separated texture Recovered image

Denoising - DCT wavelets

[Mairal, Elad & Sapiro, (‘06)]
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Result

[Mairal, Elad & Sapiro, (‘08)]

Image completion

recovered image30% pixels removed

[Mairal, Bach, Ponce, Sapiro & Zisserman, (‘09)]

Inpainting – using learned dictionary

Image with overlapped texts

[Mairal, Bach, Ponce, Sapiro & Zisserman, (‘09)]

Inpainting – using learned dictionary

Inpainting result

Robust Face Recognition
[J. Wright and Y.Ma, PAMI’09]

Adding the redundant bases to the dictionary

• Sparse representation

• Occlusion compensation

Occlusion infoDictionary

Object Tracking
[X. Mei and H. Ling, ICCV09]

+

Object Tracking
[X. Mei and H. Ling, ICCV09]
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More recently

• Matrix factorization 

– Low rank minimization

– Sparse PCA

– Robust PCA

…

Research in the state of arts

Learning Active Basis Model for Object 
Detection and Recognition

Y. N. Wu, Z.Z. Si, H. Gong and S.-C. Zhu (UCLA)

International Conference on Computer Vision (ICCV) 2007

International Journal of computer vision (IJCV) 2009

Journal paper

• Design a deformable template to 
model a set of images of a certain 
object category. 

• The template can be learned from 
example images.

Motivation

ix

yx

e
yx

yxG ]}[
2

1
exp{),(

2

2

2

2




Each element can be formed by a Gabor wavelet:

, , ,{ }x y s aB

location scale orientation

Dictionary construction using 
Gabor wavelets

}1{ ,...,n,iBi 

selected from a dictionary of Gabor wavelet elements
1

,
n

i i

i

I c B ε


 

Linear additive image model

Image reconstruction by matching pursuit.

Two extensions:
1. Encoding a single image               Simultaneously encoding a set of 

images;
2. Allow each Gabor wavelet element Bi to locally perturb.

, , ,{ }x y s aB

location scale orientation
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Deformable template using active basis

A car template

An incoming car image:

(Gabor elements represented by bar)

Deformable template using active basis

A car template

Deformed to fit many car instances

Learning the template: pursuing the active basis

B1

B3
B2

Learning the template: pursuing the active basis

Car instances

A car template 
consisting of  60 
Gabor elements

Experimental results

• 37 training images, listed in the descending order of log-likelihood ratio

• 4.3 seconds (Core 2 Duo 2.4GHz) , after convolution

Experiment 1: learning an active basis model of vehicle

template
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Experiment 2: learning without alignment

Active basis 

pursuit + EM

Given bounding box for the first example for initialization.

Iterate:

- Estimate the bounding boxes using current model.

- Re-learn the model from estimated bounding boxes.

Experiment 3: learning and clustering 

Learning active basis

EM clustering

Geometric transformation

Scaling, rotation, change of aspect ratio

Geometric transformation

1.  An active basis model as deformable template.

2. An active bases pursuit algorithm for fast learning.

3. Robust for template matching

Main contributions

Homepage of this research:

http://www.stat.ucla.edu/~ywu/ActiveBasis.html

Download

1)  Training and testing images

2)  Matlab and mex-C source codes

RASL: Robust Alignment by Sparse and 
Low-rank Decomposition for Linearly 

Correlated Images

Yigang Peng1, Arvind Ganesh2, John Wright3, 
Wenli Xu1 and Yi Ma 2,3

1 TNLIST and Dept. of Automation, Tsinghua Univ.

2 Dept. of Electrical and Computer Engg., UIUC

3 Visual Computing Group, MSRA

CVPR 2010, oral

http://www.stat.ucla.edu/~ywu/ActiveBasis.html
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• Increasing data set from internet: 
Facebook, Flickr, You Tube…

Background 

Large amount unconstraint

Difficult for object recognition or classification

•illumination variation, partial 
occulusion, no alignment

Challenges for recognition algorithms

Difficult for measuring the image similarity

Problem: 

Can we  recover the 

faces, despite 

corruptions or 

occlusions (shadow, 

sunglasses, hat, and 

scarves) ?

Idea

Input 

images

simultaneously

Aligned images canonical images error images

= +

Method

Image vectorization

iI

resampling vectorization

Assumption

If               are taken from same object, 

well-aligned and without corruption, 

they are linearly correlated. Then A

should be low-rank. 

00

1 ,..., nII
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Challenge 1: corruption

D

= +

A E

Challenge 2: misalignment

D

= +

A E

Challenge 2: misalignment

D*t

= +

A E

Problem definition

D A

D A E 0A

Formulation

D A

D A E 0A

The number of nonzeros

Both the low-rank and                       minimizations are 

nonconvex and discontinuous!

Optimization problem:

N-P problem

The problem is N-P hard

The number of nonzeros
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Convex relaxation

Instead they optimize the problem as:

Transformation linearization

The current problem:

The constraint is nonlinear, due to the dependence of the 

transformations.

When the change in tau is small, we can approximate this 

constraint by linearizing about the current estimate of tau.

Solution:

Transformation linearization Transformation linearization

































































p

i

im

i

im

i

im

p

i

i

i

i

i

i

p

i

i

i

i

i

i

i

III

III

III

J







21

2

2

2

1

2

1

2

1

1

1

1 p

i R

1 n

i R

Difference of transformation parameter

The i-th Standard basis

Transformation linearization

Solvable problem: by convex programming

transform images
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Next problem

•Semi-

definite 

program

•Thousands 

or millions of 

variables

Using APG (accelerated proximal 
gradient) algorithm [2,22,17]

Fast solved by Accelerated Proximal Gradient (APG) [1,22,17]

Experimental results

Result 1 synthesized image

Nature image
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Average image Aligning handwritten digits

Aligning planar surfaces Contributions

• Robustness to corruption and occlusion

• Robustness to misalignment

Homepage of this research:

Download

1)  Papers

2)  Sample code in Matlab

http://perception.csl.illinois.edu/matrix-rank/rasl.html

http://perception.csl.illinois.edu/matrix-rank/rasl.html
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