Computer vision class 2014

Object Representation I

Oct. 22. 2014 Bo Zheng zheng@cvl.iis.u-tokyo.ac.jp

Object representation in other fields • Computer Graphics (CG) or Augmented Reality (AR) - how to realistically render a synthetic image • Computer Visualization - how to make a visual form enabling the user to observe the invisible information

Harris: how to determine a corner

Algorithm: Autocorrelation matrix of the image I(x,y);

$$M = G(s) \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Two eigenvalues $(\lambda_{1,}\lambda_{2})$ of M : principal curvatures of the point.

 $\begin{array}{ll} \lambda_1 \approx 0 & \text{ and } \lambda_2 \approx 0:\\ \lambda_1 \approx 0 & \text{ and } \lambda_2 >> 0:\\ \lambda_1 >> 0 & \text{ and } \lambda_2 >> 0: \end{array}$

"Flat" (No feature) "Edge" "Corner"

The result: finding the relative scale for each interest point

Problem arise when the images are captured in different orientation

We need to know the orientation of each interest point!

Outline

- Beta-stable features detection
- Critical nets construction
- Application to Image matching

Beta-stable features

• The extrema of the DoG function computed at the smallest beta-stable scale

Fig. 4. From left to right: Original image; The 10-stable DoG image; SIFT features (green); 10-stable features. Red and blue dots are maxima and minima of L10.

Definition of Critical Nets

- A minimum A is connected to a maximum B if an ascending path goes from A to B
- Such a graph is called a critical net

Ascending paths

- Define practically repeatable connections between beta-stable features
- Connection:

17	24	1	8	15
23	5	7	14	16
4	→ 6	13	20	22
10	12	19	21	3
11	18		2	9
		_		

Example of dual SIFT descriptors

Note: using the edge information, no need to detect the scale and orientation

Matching results Comparison

Fig. 7. Top left: SIFT; Top right: the 10-stable features and the matching result without using the critical net connections; Bottom: same 10-stable features, but with matching based on the critical net where dual SIFT descriptors are used.

Compared to SIFT

- Reduce the number of parameters

 No need to determine the histogram peaks
 No need to assign multiple directions
- Richer local descriptor (dark-bright pattern)
- And better repeatability in matching

Other Contributions

- Critical nets are simple graphs that are invariant under affine and monotonic changes
- A more reliable geometrical reference: rotation and scale

Homepage of this research:

http://www.cs.duke.edu/~steve/cnet.html

Download 1) Papers 2) Matlab code

12

More recently

- Matrix factorization
 - Low rank minimization
 - Sparse PCA
 - Robust PCA
 - ...

Research in the state of arts

 Journal paper

 Y. N. Wu, Z.Z. Si, H. Gong and S.-C. Zhu (UCLA)

 International Conference on Computer Vision (ICCV) 2007

 International Journal of computer vision (IJCV) 2009

 Learning Active Basis Model for Object Detection and Recognition

Geometric transformation							
Scaling, r	otation, ch	ange of asp	pect ratio				
GO	01000	ୌଡ଼ ହୁଡ଼ି ହ	070 CFO	0600	070 CHD		
GOGO	্র্পৃ প্রকৃ	5/00/0	A A A	o de da	<i>উ</i> ঠি <i>উ</i> ঠ		
076 0 76	a o o to	\$*\$ \$*O	G D B D	oto oto	6000		
<u> </u>	AD (%)	ġ\$\$@\$	্রিক	0 6 6 O	ୢ୶ଡ଼ୡଡ଼		
640	THE CAR	මේ ක් ර	* 6 E t		NO		

Main contributions

- 1. An active basis model as deformable template.
- 2. An active bases pursuit algorithm for fast learning.
- 3. Robust for template matching Homepage of this research:

http://www.stat.ucla.edu/~ywu/ActiveBasis.html

Download 1) Training and testing images 2) Matlab and mex-C source codes

RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images

CVPR 2010, oral

Yigang Peng¹, Arvind Ganesh², John Wright³, Wenli Xu¹ and Yi Ma ^{2,3}

- 1 TNLIST and Dept. of Automation, Tsinghua Univ.
- 2 Dept. of Electrical and Computer Engg., UIUC
- 3 Visual Computing Group, MSRA

Input: faces detected by a face detector (D)Average -

Readings

- David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110 H. Jager, T. Tuytelaars, L. V. Gool, "SURF: Speeded Up Robust Features," ECCV 1.
- 2. 2006
- 3.
- S. Gu, Y. Zheng and C. Tomasi, "Critical Nets and Beta-Stable Features for Image Matching," ECCV2010
 Y. N. Wu, Z.Z. Si, H.f. Gong and S.-C. Zhu: Learning Active Basis Model for Object Detection and Recognition. International Journal of Computer Vision 90(2): 198-235 (2010) 4.
- Y.G. Peng, A. Ganesh, J. Wright, W. Xu and Y. Ma, "RASL: Robust Alignment via Sparse and Low-Rank Decomposition for Linearly Correlated Images," CVPR 5. 2010.
- B. Zheng, Y.-Q. Sun, J. Takamatsu, and K. Ikeuchi, "A Feature Descriptor by Difference of Polynomials", IPSJ Trans. on Computer Vision and Applications (CVA), Vol.5, 80-84, 2013. 6.