視覚情報処理論

Visual Information Processing

(学環)

コンピュータビジョン

(情•電子情報)

Computer Vision

三次元画像処理特論

(情・コンピュータ科学)

Three-Dimensional Image Processing

2013/12/11 (大) 16:40-18:10

池内 克史 (大学院情報学環 教授)

代理:

小野 晋太郎

(生產技術研究所 特任准教授、博士(情報理工学))

Time-varying Image Processing

- Introduction
- Basic technologies
- Background subtraction
- Optical flow
- Structure from Motion (SfM)
- Space-time Image Analysis
- Applied technologies
- Introducing recent research cases

Next time

Applied Technologies

Restoration & Summarization

Video

- Space-time Completion of Video (Y. Wexler)
- Completing deficits in video (based on color patch)
- Motion Field Transfer (T. Shiratori)
- Completing deficits in video (based on optical flow)
- Full-Frame Video Stabilization (Y. Matsushita)
- Restoring motion blurs in video
- Space-time Video Montage (H.W. Kang)
- Summarization

(in spatial, & in temporal) Jointing Videos

- Video Textures (A. Schodel)
- Temporal joint
- Creating infinite loop video by jointing similar frames
- Aligning Non-Overlapping Sequences (Y. Caspi)
- Spatial joint
- Relative position/pose between the videos are fixed
- Video Matching (P. Sand)
- Spatial joint
- Matching two videos looking same sequences, but captured in different opportunities

Others

- Space-Time Behavior Based Correlation (E.
- Shechtman) Finding similar behaviors in videos based on gradient
- Detecting Irregularities in Images and in Video (O. Boiman)
- **Motion Magnification (C. Liu)**
- Magnifying motions in a video
- Space-Time Super-Resolution (E. Shechtman)
- Raising resolution of a video, regarding the frames as affine transformation in a space-time volume
- Absolute-Scale SfM (Scaramuzza)

Space-time Volume

Space-time Volume

Volume Information from Space-Time

Use partial information

Temporal Video Editing (Peleg 2005)

- The same original video with different time flow
- Show result image along time front slice

Temporal Video Editing

Dynamic Mosaics (Peleg 2007)

One moving video camera is capturing a dynamic scene

Step 1. Video Alignment (Extrapolation) **Dynamic Mosaics(2)**

- Search similar blocks by SSD (sum of square differences)
- New frame can be extrapolated by past corresponding 3D-blocks
- new input frame Estimate the homography between new extrapolated frame and
- New input frame is aligned!!

Step 2. Evolve time front **Dynamic Mosaics(3)**

Normal Video

play

Result

for Texturing (Wang 2008) Spacetime Feature Matching

Ground-view image (Vehicle survey, Local)

3D residential map (Aerial survey, Global)

How can we get correspondence, and add a texture onto building walls?

for Texturing (Wang 2008) Spacetime Feature Matching

Omnidirectional Camera

omni-directional image

Depth Info

Cross-section (an elliptic curve)

Digital residential map

EPI Matching

Cross-section (a radius line)

Texture Mapping

Height info and texture

Problems in using EPI

of EPI Real example

disturb to recognize the building features stably Textures inside building (windows, etc.)

Using Structural Information Instead of Color Information

Grey value ∝ Height (elevation angle) to the building roof

Building Matching between Map and Image using THI

Matching Pattern

A: Corresponding 1 by 1
B: One noise between bldg.

C: Non-flat roof = two bldg.
D: One noise inside a bldg.

Matching Cost

Matching and Texturing Result

Camera center and distortion

Spatio-temporal coincidence of camera optical center

How to know t2, t3?

Result

Texture Mapping

Side faces

Video Completion

Video Completion

What's video completion?

- How is it useful?
- Restoration of damaged or vintage videos (Spatial completion)
- Restoration of corrupted internet video streams due to packet drops (Temporal completion)
- Post-production in the movie-making industry

(Y. Wexler* 2004, 2007) Space-time Completion of Video

- Find a small volume which accords with the hole from the whole volume
- Copy it to the hole, as a compensating patch-volume

How to Find the Patch

The optimal patch-volume

Reference database = The whole volume itself

around point p

A small cube

 $\operatorname{Coherence}(\mathcal{S}^*|\mathcal{T})$ $-\sum_{p \in \mathcal{S}^*} \max_{q \in \mathcal{T}} s\left(\overset{\vee}{W_p}, W_q\right)$

$$s(W_p, W_q) = e^{\frac{-d(W_p, W_q)}{2*\sigma^2}}$$

$$d(W_p,W_q) \; = \; \textstyle \sum_{(x,y,t)} ||W_p(x,y,t) \; \dot{-} \; W_q(x,y,t)||^2$$

Result

Erasing Raindrop [J. Sato et al. 2011]

Fig.1 雨滴付き画像と雨滴なし画像 (a) (b)

Erasing Raindrop [J. Sato et al. 2011]

Key Point:

The camera is mounted on a vehicle Always fixed to observe the mirror

We can know from which portion of ST-volume the raindrop can be inpainted.

Fig.2 並進カメラの自己エピポーラ幾何

Fig.4 欠損点の補間のための時空パッチ

Epipolar Geometry: (Details in *"Stereo Vision"*, Nov./Dec.)

Detecting the Raindrop

- Restore the masked area
- Restore the whole image by shifting the mask
- 3. Subtract the restored image from the original image

Fig.6 マスク画像の補間を利用した雨滴検出

Result

(c) 差分画像

(d) 検出した雨滴

(e) 雨滴除去結果

Fig.7 サイドミラーの雨滴の検出,除去結果

Video Completion by Motion Field Transfer (Shiratori 2006)

45

Conventional

Filling-in holes by nonparametric sampling of video patches

Proposed

Why motion?

- Color-based method : Requires similar <u>color</u> & <u>motion</u>
- Motion-based method: Requires only similar motion

More chance to fill-in a hole!

Motion can be copied from video portions with different appearance

Method

- Motion Field Transfer
- Fill-in a hole by transferring the most similar motion patches
- Color Propagation
- Propagate color from boundary using motion field in the hole

Result

Result

Application: Object Removal

Application: Frame Interpolation(2)

(Y. Matsushita 2006) **Full-Frame Video Stabilization**

Motion inpainting (propagating local motion into the missing image areas)

used as weight factors for the motion interpolation. ing frame $I_{t'}$ after warped by local motion of \mathbf{q}_t , and they are tween \mathbf{p}_t and its neighbors \mathbf{q}_t are measured in the neighborthe advancing front $\partial \mathcal{M}$ into \mathcal{M} . The color similarities be-Figure 5: Motion inpainting. Motion field is propagated on

Result

[Kuribayashi 2009] Removing Foreground Objects

Google Earth

Wrong texture mapping Pedestrian's privacy

Google Street View

Input

Plane-Plane Registration

SIFT + Homography + RANSAC

Registered

obstacles

Epipolar Plane Image

The cross section which put image and cut in epipolar line

Removal result

[Uchiyama 2010] Removing Foreground Objects

No need for assuming that the scene is composed of a set of planar structure

Use multiple video stream,
Stitch the background region
(Foreground = Moving object)

Frame-to-frame matching is already done by DP

Figure 2. Omni-directional camera image containing no moving object is obtained from many images captured at the same place in a different timing independently.

Background Selection

- Idea: Background is
- Observed most often throughout all video streams
- 2. Consistent between neighboring sub-windows

$$\underset{\mathbf{v} \in \{\mathbf{v}_1, \dots, \mathbf{v}_N\}}{\operatorname{arg min}} \sum_{i=1}^{N} |\mathbf{v} - \mathbf{v}_i|$$

i: stream ID

000

[Uchiyama 2010] Removing Foreground Objects

(a) Before removal: input image (target image)

(b) After removal: output image

Figure 7. Result of the proposed method. Although a pedestrian, vehicles and a bicycle are observed in the input image (a), they were removed in the output image (b).

Video Summarization

Video Synposis [Rav-Acha 2006]

Figure 1. The input video shows a walking person, and after a period of inactivity displays a flying bird. A compact video synopsis can be produced by playing the bird and the person simultaneously.

Figure 2. In this space-time representation of video, moving objects created the "activity strips". The upper part represents the original video, while the lower part represents the video synopsis.

(a) The shorter video synopsis S is generated from the input video I by including most active pixels. To assure smoothness, when pixel A in S corresponds to pixel B in I, their "cross border" neighbors should be similar.

(b) Consecutive pixels in the synopsis video are restricted to come from consecutive input pixels.

Result

http://www.vision.huji.ac.il/video-synopsis/

Figure 6. An example when a short synopsis can describe a longer sequence with no loss of activity and without the stroboscopic effect. Three objects can be time shifted to play simultaneously. (a) The schematic space-time diagram of the original video (top) and the video synopsis (bottom). (b) Three frames from original video. (c) One frame from the synopsis video.

(c)

Space-time Video Montage (H.W. Kang 2006)

- Video summarization based on space-time analysis
- Define "important" portions inside a volume
- Leave them, exclude others

Details

Saliency? (顯播年)

Butterfly

Person

Butterfly Saliency Map

Person Saliency Map

[MathWorks (MATLAB)]

Simple example:

Difference between Original image and Gauss-filtered image

Result

Result

Video Joint

(Irani 2006) Feature-Based Video Alignment

Problem formulation:

and temporal deviation ∆t Cameras are static \rightarrow Estimate homography H(3x3)

$$\vec{P}(H,\Delta t) = \arg\min_{trajectories} \sum_{trajectories} \|(x_1, y_1, t) - H(x_2, y_2, t + \Delta t)\|^2$$

Feature-Based Video Alignment: An example

One frame of Video 1

Before alignment

Behavior Analysis

Correlation (E. Shechtman* 2005, 2007) Space-Time Behavior Based

- Extract similar behavior
- By calculating correlation between portion & portion inside a S-T volume

Short template video

Motion matching

Long input video

Space-Time Behavior Based Correlation [Irani et al. 2005 (CVPR)]

Template Video

Features:

- 3D-block matching in Space-Time Volume
- Recognize different behaviors simultaneously!

Space-Time Behavior Based Correlation Property of Space-Time patch

Space-time gradients of color value *P*

of color value
$$P$$

$$\nabla P_i = (P_{xi}, P_{yi}, P_t)$$

(u, v, w)

 $\lceil n \rceil$

Small patch

in input video

Same size as T

Template video

 $\begin{bmatrix} p_{xn} & p_{yn} & p_{tn} \end{bmatrix} \begin{bmatrix} w \end{bmatrix} \begin{bmatrix} \dot{0} \\ 0 \end{bmatrix}_{nx1}$

and in Video (O. Boiman* 2005) Detecting Irregularities in Images

similar to any which is not A portion the database volume portion inside

Irregular

Others

Single Vehicle Mounted Camera Absolute Scale in SfM from a

[Scaramuzza 2009]

- The absolute scale is unknown
- When the camera is mounted on a wheeled vehicle:
- The absolute scale can be recovered
- Very accurately, and fully automatically

Because

Wheeled vehicles undergo local circular motion

ldea

Offset from non-steering axle

Gives absolute scale [ICCV09]

No offset from non-steering axle

Simplify motion estimation [ICRA09]

Motion Model of nonholonomic

- vehicles
- "Nonholonomic"

Controllable DOF < Effective DOF

Ackermann Steering Principle

Example:

- Cars, bikes, wheel chairs, ...
- Most mobile robots, ...
- Controllable: 2 DOF

Acceleration (1) + Steering (1)

Effective: 3 DOF

Position (2) + Orientation (1)

Wheel of the vehicle follows a circular course

Variable Definition

Circular Motion (no offset)

Circular Motion (with offset)

image feature correspondences Parameters can be estimated from

$$\lambda = \frac{2L\sin(\frac{\theta}{2})}{\sin(\varphi_c - \frac{\theta}{2})}$$

$$\rho = \frac{L\sin(\varphi_c) - L\sin(\varphi_c - \theta)}{\sin(\varphi_c - \frac{\theta}{2})}$$

$$E = \lambda \begin{bmatrix} 0 & \cos(\theta - \varphi_c) & 0 \\ -\cos(\varphi_c) & 0 & \sin(\varphi_c) \\ 0 & \sin(\theta - \varphi_c) & 0 \end{bmatrix}$$

Core equations

Motion Estimation

Known (image feature correspondences)

 $p'^T E p = 0$

$$p'^T E p = 0$$

$$E = \lambda \begin{bmatrix} 0 \\ -\cos(\varphi_c) \\ 0 \end{bmatrix}$$

$$\cos(\theta - \varphi_c) \quad 0 \\
0 \quad \sin(\varphi_c) \\
\sin(\theta - \varphi_c) \quad 0$$

- Method 1: Least-squares
- $f(\cos(), \cos(), \sin(), \sin()) = 0$
- At least 3 point correspondences to find a solution
- **Method 2: Nonlinear**
- Taylor expansion $g(\theta, \phi) = 0$ & Newton's iterative method
- At least 2 point correspondences to find a solution

Motion in a Camera Path Finding Sections of Circular

Algorithm:

- Compute camera motion estimate up to scale
- Compute absolute scale (ρ) from θ , φ_c , L
- Identify sections for which $\rho > 0$
- Identify sections for which the circular motion is satisfied
- * Compute curvatures of two neighboring sections: k_i , k_{i+1}
- * Check circular $\frac{|k_i k_{i+1}|}{k_i} < 10\%$
 - ar motion
 - criterion:
- Consider correct absolute scale for sections for which $|\theta| > \theta_{thresh}$

Also

Check curvature values: 0.03 m⁻¹ ~ 0.5 m⁻¹

 $(2 \text{ m} \sim 33 \text{ m in radius})$

Simulation Data (+Gaussian noise): Relative Error of Absolute Scale

- The accuracy of the scale estimate increases with $oldsymbol{ heta}$
- The error becomes smaller than 5% for 0>10°

Real Experiment

Ground truth: wheel odometry

Offset: 0.9 m

Omnidirectional camera (curved mirror)

640x480, 10 fps

 $10 \sim 45 \text{ km/h}$

3 km travel

Real Data

Comparison between visual odometry and ground truth

	8	8	30
measurements	65	153	10
wheel odometry	193	461	5
Within 30% of	# correct —	# detected	$resh[^{\circ}]$

References

- http://research.microsoft.com/users/yasumat
- http://research.microsoft.com/~ywexler
- http://people.csail.mit.edu/celiu/motionmag
- http://www.gvu.gatech.edu/perception/projects/v ideotexture
- http://www.wisdom.weizmann.ac.il/~irani
- http://people.csail.mit.edu/sand/vid-match