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Introduction

 How to obtain a motion 

field

 Optical flow

 Apparent motion of the 

brightness pattern

 2D problem

 How to characterize and 

what information can be 

obtained from a motion 

field

 Structure from motion

 3D understanding from 2D
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Time-varying Image 

Processing

 Introduction

 Basic technologies

 Background subtraction

 Optical flow

 Structure from Motion (SfM)

 Space-time Image Analysis

 Applied technologies

 Introducing recent research cases

This time

Next time



Motion understanding #1
動き解析・動画像処理 第1話



Background 

Subtraction
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Background Subtraction

(Simplest Model)

Input image

Background image

Foreground image

|I – IBG| > Threshold ?

Using appropriate color space

(RGB, HSV, YCbCr, …)
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Problems in the Simplest 

Model

 Sensitive to lighting change

 Sunlight change

 Turning on/off lamp

 Camera’s auto exposure

 Same threshold for all 

pixels

 Objects moving periodically 

are identified as foreground

 Leaves of trees

 Signal lights, …

Intensity variance in background

Adaptive threshold
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Prior data

Normal Distribution Model 

in Background

Intensity histogram

(per-pixel)

m1, s1

m2, s2

|I – m| > k s ?

Per-pixel threshold

Another problem:

Still object appeared after is 

identified as foreground forever

t

Dynamic 
background update



10

Dynamic Background Update

 Potential Background 

(in the near future)

 Objects identified as 

foreground for long 

duration

 Non-moving objects

 Update process (Example)

 Foreground  Slightly mixed to Background

 Potential Background  Replace current Background
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Dynamic Background Update

(Example)
[OpenCV Programming Book]

Input BG FG

t

Working as the ordinary background subtraction

Initial State
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Dynamic Background Update

(Example)
[OpenCV Programming Book]

t

Input BG FG

The poster added has been identified as FG for long, and is not moving…

BG is updated



Optical Flow



Optical Flow Example

17

Time t+Dt

Solve motion field

For each pixel

Time t
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Taylor expansion

Optical Flow Constraint 

Equation

Optical flow constraint equation
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Brightness conservation

0 tyx IvIuI

For each pixel (x, y), 

Two unknown variables

With one constraint equation

Time t+Dt

Time t
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Solution 1: [Lucas&Kanade 1984]

Same Motion in Local Region
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A local region W moves in the mass

Sampling points (1, 2, 3, …) inside the region 

have the same u, v
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Solved as a (weighted) 

least squares method

Simultaneous equation

W
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Solution 1: [Lucas&Kanade 1984]

Same Motion in Local Region

0 tyx IvIuI for all (x, y) inside local region W
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2
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Limitation

 Defining the mass region to be small

 Solution (u, v) becomes unstable

 Defining the mass region to be large

 The assumption “Region move in the mass” will 

be fail

 These are trade-off’s
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min2222  yxyx vvuu

Solution 2: [Horn & Schunck 1981]

Motion Smoothness Constraint

Smoothness constraint:

Neighboring pixels have 

similar motions

0 tyx IvIuIOptical flow equation:

 
min

)()( 22222



  dxdyvvuuIvIuIe yxyxtyx 
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Solution 2: [Horn & Schunck 1981]

Motion Smoothness Constraint
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Example
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Limitation of the Optical Flow

 No solution in texture-

less regions

 Large error in non-

continuous region such 

as object boundary

 Difficulty in specifying 

unique correspondence 

(Aperture Problem)



3D Reconstruction 

from Moving Images
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Is it possible to reconstruct 3D 

structure only from video?

 Some other knowledge:

 When looking outside through a window of a train

 Telegraph poles  rapidly pass

 Mt. Fuji  can be seen during long time

 When looking at two poles; one is near, the other 
is far

 How do they appear in position, if the camera moves

 When camera pan …?

 When camera transition …?
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Johannson’s experiment

 Put LED on each joint of a 
human body and observe them 
in the dark room.

 While the human is still, an 
observer cannot recognize 
what the pattern is.

 Immediately after the human 
begins to move, a sequence 
gives not only a compelling 
perception of motion of a 3D 
body, but allows recognition of 
the sequence as depicting a 
walking person, and a 
description of the type of 
motion.
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“Structure from Motion” (SfM)

 Obtain 3D structure information from 2D 

image sequence

 Similar to stereo vision, however, 

AT THE SAME TIME,

 Obtain camera’s 3D motion (position and 

posture) from 2D image sequence

Recovering

3D Scene

Captured

in a Video
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“Structure from Motion” (SfM)

 Input:

 (More than) 3 orthographic or 

weak-perspective cameras

 (More than) 4 non-coplanar 

points in a rigid configuration 

on each images

 Output:

 3D position of the points

 3D pose/position of the 

cameras

? ?

?
?

??

?
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Camera Projection Model

Camera

Perspective
Weak-

Perspective

Orthographic 

(Parallel)

General model Good if the scene

depth is not varied

Good if the scene

depth is very large



Basic Idea
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Camera projection model

(orthographic)
1

2

m

1Image plane

2D Points

q=(u, v)

Real world

3D points

p=(X, Y, Z)

2
3

p

Simplification by variable transformation

• Real world origin: Centroid of 3D points

• Image plane origin: Centroid of 2D points
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SfM Theorem:

Tomasi–Kanade Factorization
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SfM Theorem:

Tomasi–Kanade Factorization

It is known that as a computational technique,

Singular Value Decomposition (SVD) can give

the optimal approximation.
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or smaller singular 

values and vectors
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SfM Theorem:

Tomasi–Kanade Factorization
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SfM in Perspective Projection

 Projection depth should be obtained

 Set initial value, and iteratively update it

1. Depth=1

2. Factorize

3. Structure and Motion are obtained

4. New projection depth 

5. Back to 2 …

6.
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Input Video
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Tracking Result
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Tracking Result
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Four out of the 180 frames 

of the real house image stream.

Tracks of 60 randomly selected

features from the real house stream.

The features selected in the first frame

of the real house stream.

Top and side views of the if and jf vectors

identifying the camera rotation for the real house 

stream .

A front view of the three reconstructed walls,

with the original image intensities mapped onto 

the resulting surface.

A view from above of the three reconstructed

walls, with image intensities mapped onto the 

surface.

E

x

a

m

p

l

e
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Example



Space-Time Image
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Typical image

separation

Close sampling

image separation

More Images (moving camera) 

 Space-Time Image
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Space-time Volume

Sequence

frame n frame n+1 frame n+2 frame n+3

v

u
t

・・・ ・・・

Space-time Volume
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Information from Space-Time 

Volume

Use partial information

Trajectory Slice 3D-block/shape

Example: 

EPI (Epipolar Plane Image)
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1px

Moving camera:

Initial position
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t1

ta

tn

Moving camera:

If the camera moves…
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t1

ta

tn

q

EPI (Epipolar Plane Image)
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)( t

Horizontal

line camera

One Frame

Const. Speed
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EPI (Epipolar Plane Image)

DmV 



58

D

0h

1u 2u

Image 

Plane

1C 2CXD

X

P

Lateral motion geometry

X
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Same as stereo vision

(Do you remember?)
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Spatio-temporal solid of data.

Slice of the solid of data.

General stereo configuration.

Right-to-left motion.

Sliced solid of data.
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Right-to-left motion with solid.

Frontal view of the EPI.

A second EPI.

EPI from forward motion.

Forward motion.



Applications
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A C

A C

Objects

A B

Camera center and distortion

180 180

Omni-Directional Image

ba c

a

b

c Distorted
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t1 t2 t3

180 180

b2a1 c3

b1

c1

a1
b2

c3

Omni-Directional Image

Spatio-temporal coincidence 

of camera optical center

How to know t2, t3?

Time

P
o
s
itio

n
 o

f 
o
p
tic

a
l c

e
n
te

rs

O t2 t3t1

Space-time 

agreement

Spatial disagreement 
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Cam. 2

1

b

c

a

c

a

b

t1
t2

EPI2EPI1

time

Temporal adjustment using EPI

(Software-based camera sync.)

Cam. 1



67

Result
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Spacetime Feature Matching 

for Texturing  (Wang 2008)

Ground-view image

(Vehicle survey, Local)

3D residential map

(Aerial survey, Global)

How can we get correspondence, and 

add a texture onto building walls?
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Spacetime Feature Matching 

for Texturing  (Wang 2008)

Input THI with recognized bands

Corresponding result

Textured 

result

DP

Vehicle

Camera

Digital map

Vehicle 

path

Output
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Problems in using EPI

Real example 

of EPI

Textures inside building (windows, etc.) 

disturb to recognize the building features stably
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Input image

EPI

THI

Using Structural Information 

Instead of Color Information

Temporal Height Image

Grey value ∝ Height (elevation angle) 

to the building roof

Much clearer 

building features
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Building Matching between 

Map and Image using THI

0 1 2 3

1 2 3 4 50

Map

Image

1

2

3M
a
p
 (N

o
 n

o
is

e
)

1 2 3 4 5

i

j

Real Image (with noise)

Case A

3 4

1 2

Case B

2 4

1 2

3

Case C

3 4

22

Case D

2

2 4

3
Real image (i)

Digital map (j)

A： Corresponding 1 by 1

B： One noise between bldg.

C： Non-flat roof = two bldg.

D： One noise inside a bldg.

Real Image Map Real Image Map

Matching Pattern

Matching Cost

Aspect similarity Height-transition similarity
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Matching and Texturing Result

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8  9  10  11  12  13

B
a

n
d

s
 i

n
 M

a
p

 T
H

I 
(j

)

Bands in Real-image THI (i)

DP matching result in Scene 2

Zmap

Asahi

Truth

Zmap

Asahi

Truth

Zmap

Asahi

Truth

Accurate map (Asahi) 

gave better result
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Omnidirectional Camera
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Spatio-temporal volume of 

omni-directional image
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Cross-section 

(an elliptic curve)
D

ep
th

 In
fo
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Digital residential map

Correspondence between map and image
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2D digital map3D city map

Video data
Matching

EPI

ＥＰＩ Matching
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Cross-section (a radius line)

Panorama image
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Texture Mapping

 Height info and texture
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Texture Mapping

 Side faces
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Summary

 Introduction

 Basic technologies

 Background subtraction

 Optical flow

 Structure from Motion (SfM)

 Space-time Image Analysis


