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Introduction oo

e How to obtain a motion e How to characterize and

field what information can be
Optical flow obtained from a motion
Apparent motion of the field
brightness pattern Structure from motion
2D problem 3D understanding from 2D
AN /
_ N/
PR
RN




Time-varying Image
Processing

e Introduction

e Basic technologies
Background subtraction
Optical flow
Structure from Motion (SfM)
Space-time Image Analysis

e Applied technologies
Introducing recent research cases

> This time
- Next time




Motion understand
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Background
Subtraction




Background Subtraction
(Simplest Model)

[ 9 . _“".“ "'..“ AR

Foreground image

|l — Igg| > Threshold ?

Using appropriate color space
(RGB, HSV, YCbCr, ...)




Problems in the Simplest
Model Seee

e Sensitive to lighting change
Sunlight change
Turning on/off lamp
Camera’s auto exposure

e Same threshold for all
pixels
e Objects moving periodically
are identified as foreground
Leaves of trees
Signal lights, ...

Intensity variance in background
Adaptive threshold



Normal Distribution Model sese.
In Background $43-

Intensity histogram
(per-pixel)

Prior data

ul, ol

] —

Another problem: _
Still object appeared after is Eynl?mlc 4 und
identified as foreground forever ackground upadate



Dynamic Background Update

e Potential Background
(in the near future)

Objects identified as
foreground for long
duration

Non-moving objects

e Update process (Example)
Foreground - Slightly mixed to Background
Potential Background - Replace current Background




Dynamic Background Update | ssss-
(Example) 33

[OpenCV Programming Book]

Input BG FG

. Captore

Initial State

!""“"-;_— .
Working as the ordinary background subtraction



Dynamic Background Update | ssss-
(Example) 33T

[OpenCV Programming Book]

Input BG FG

sl

BG is updated



Optical Flow




Optical Flow Example
Time t Time t+At o

Solve motion field
For each pixel




Optical Flow Constraint sese
. o0
Equation 4
Brightness conservation ¢ o
Time { 1(X, y,1) = L(X+AX, Y+ Ay, t + At)
Taylor expansion
(%, y.9 [ (X+AX, Y+ Ay, T +At)
ol ol ol
:I(x,y,t)+&Ax+@Ay+aAt
=1(x,y,t)+ LLUAt+ 1 vAt+ 1 At

. + _ _ :
Time t+At Optical flow constraint equation

AX = UAL

?Ay:vAt |>@ﬂ>®+ It =0

For each pixel (X, y),
I (X+AX, y + Ay, t+At) Two unknown variables U(X,Y), V(X,Y)
With one constraint equation




000
Solution 1: [Lucas&Kanade 1984] sese
Same Motion in Local Region °tce
® O
A local region £2 moves in the mass
Sampling points (1, 2, 3, ...) inside the region
have the same u, v
Simultaneous equation
| | | 'u+ |y1V =1} Solved as a (weighted)
O least squares method

2

2 2
UM Ixu+|yv__|t
3 3
v ey Lu+ 1, v=—I,

3




Solution 1: [Lucas&Kanade 1984]
Same Motion in Local Region

Or else,

| U+ |yV +1, =0 for all (x, y) inside local region 2
-

e= HQ {Ix(x, Vu+1, (X y)v+ 1, (X, y)}zdxdy—> min
-

% _ 5 u“Ifdxdy+v”lxlydxdy=—”Itlxdxdy

ou §>
%:0 u”leydxdy+v”I§dxdy:—”Itlydxdy



Limitation

e Defining the mass region to be small
Solution (u, v) becomes unstable

e Defining the mass region to be large

The assumption “Region move in the mass” will
be fall

e These are trade-off’'s



Solution 2: [Horn & Schunck 1981]
Motion Smoothness Constraint

Optical flow equation: IXu + |yv 4+ |t =0

Smpothngss c.onstralnt: uf n u2 +Vf 12 s min
Neighboring pixels have y y
similar motions

<

e :H{(Ixu + 1, V+1)% + A(u; +us +vy +v§)}dxdy

— min



Solution 2: [Horn & Schunck 1981] sess
Motion Smoothness Constraint °tce

e LX)+ 1,V(X, y) + 1,

u(x,y)=u(xy)—1,

TR
@:O VO Y) = V(X y) | La(x, y)+1,v(x,y)+1,
LoV \ PIERE YT AA+ 17 +1]

N

a(x,y) =%{u(x+1, y)+u(x—=1y)+u(x, y+1)+u(x,y-1)}

v(X,Y) :%{v(x +1,y) +V(X =1, y) +V(X, Yy +1) +v(x,y —1)}

7 (K) 7 (K)
U™ +1 v+ 1

2 2

AA+ 1+ 1,

Solved by iterative calculus

(k+1) _ (k)
(“Relaxation method”) u =u‘’ —|

uo%ul%...



Example

LN OpticalFlow B




Limitation of the Optical Flow

e NO solution In texture-
less regions

e Large error in non-
continuous region such
as object boundary

e Difficulty in specifying

unique correspondence
(Aperture Problem) r W F




3D Reconstruction
from Moving Images




Is It possible to reconstruct 3D
structure only from video?

e Some other knowledge:

When looking outside through a window of a train
e Telegraph poles - rapidly pass
e Mt. Fuji = can be seen during long time

When looking at two poles; one is near, the other
IS far

e How do they appear in position, if the camera moves
e When camera pan ...?
e When camera transition ...?



Johannson’s experiment

e Put LED on each joint of a
human body and observe them
In the dark room.

e While the human is still, an
observer cannot recognize
what the pattern is.

:: e Immediately after the human

' begins to move, a sequence
gives not only a compelling
perception of motion of a 3D
body, but allows recognition of
the sequence as depicting a
walking person, and a
description of the type of
motion.




“Structure from Motion’ (SfM)

3D Scene In a Video

Recovering J Captured

e Obtain 3D structure information from 2D
Image sequence
- Similar to stereo vision, however,
AT THE SAME TIME,

e Obtain camera’s 3D motion (position and
posture) from 2D image sequence




o
o
“Structure from Motion” (SfM) |:
e Input: 2
(More than) 3 orthographic or A ?{_; )7
weak-perspective cameras ?
(More than) 4 non-coplanar
points in a rigid configuration
on each images - -

e Output:
3D position of the points

3D pose/position of the
cameras
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Camera Projection Model sesse

@) l @)
w7 N
Poae e R

General model Good if the scene Good if the scene
depth is not varied depth is very large




Real world
3D points

p=(X, Y, Z).1

Basic Idea

Image plane

Camera projection model

(orthographic)
p
u X N
— g:rrgrir:ters Y + ;c):aarrgr?wreaters
v J
\Z)

Want to know

motion (the camera parameters)
and structure (X, Y)

for all points and image frames

Simplification by variable transformation
* Real world origin: Centroid of 3D points
« Image plane origin: Centroid of 2D points

u X 2 . X\
8 O ML [ 5 G e

— min Unknown s min



StM Theorem:

Tomasi—Kanade Factorization |

(X

[Hm

All points K VA
All frames Unknown
U, | U, - Uj lx
Vig | Vi o0 Vg, Jux
uml um2 umn ImX
Y Y Y Jonx

L ml m2

Observation Matrix

W

2

— min
i1y i1z

by e [ X

Yl

imy imz Zl
Jmy e

Motion Matrix
(camera pose)

M

It can be minimized

if and only if we can find
the unknown M and X, Y, Z
that can decompose the W,
a set of the known u, v,

as follows:
><2 ><n
Y2 Yn
ZZ Zn

Shape Matrix

S

|deally it can be
decomposed
(Rank W = 3),

but not because of
observation noise



SfM Theorem:
Tomasi—Kanade Factorization | 252

It is known that as a computational technique,
Singular Value Decomposition (SVD) can give
the optimal approximation.

W =UDV' — W'=U,_.D, .V, '

Skipping 4th largest

07 Largest singular value 03 or smaller singular
0, 2nd largest D, = o, values and vectors
D= O, 3rdlargest O;

Qu,t W’ is the nearest to W,

with its rank 3.



StM Theorem:

Tomasi—Kanade Factorization

_ T T
W =UDV - U 2mx3 D3><3V3><n
MA A™'S

U, U, U, e by g
v, Vi, v, o by

; j> 1 1| 3x3
Uy U Ui imx imy imz
Voo Vo, Vo Jox  Jny e
A can be solved by L]

the “metric constraint’, i.e.

[TH =1

< H><

N

[N




SfM In Perspective Projection

Projection depth should be obtained
Set initial value, and iteratively update it

Depth=1

Factorize

Structure and Motion are obtained
New projection depth

Back to 2 ...

a k~ 0 DN PRF




Input Video s




Tracking Result tes




Tracking Result



@ —T 3 © X [T

Tracks of 60 randomly selected
features from the real house stream.

Four out of the 180 frames
of the real house image stream. e

- Wi
The features selected in the first frame Top and side views of the i;and j; vectors
of the real house stream. identifying the camera rotation for the real house
stream .
A front view of the three reconstructed walls, A view from above of the three reconstructed
with the original image intensities mapped onto walls, with image intensities mapped onto the

the resulting surface. surface.



Y X I
0000
00000
0000
'YXXX)
o000
o000
e o



Space-Time Image




More Images (moving camera) | ssss-
- Space-Time Image H-

Typical image Close sampling
separation Image separation



Space-time Volume +3

Sequence =

frame'n frame nt1 frameé nt2 frame n+3

Space—time Volume
i




Information from Space-Time
Volume

Use partial information

|
\\ (/ -
- J\

Trajectory Slice 3D-block/shape

g Example:
EPI (Epipolar Plane Image)




Moving camera: $H4-
Initial position eles




Moving camera: $H4-
If the camera moves... $34-




EPI (Epipolar Plane Image)




EPI (Epipolar Plane Image) Seese

Horizontal
line camera




000
0000
] o000
Lateral motion geometry 33
AU =U, —U, ! - TP
_hy X hy(AX +X) : 3
D D - ?
D L | .
LW > ety
D ' — : ?
i L '/ Image
- hy | Plane
Av = F At ool | »
. :
_—Av  —F/At F DOC D
= — - L — Same as stereo vision
AU — %0 AX h, V. V (Do you remember?)



Spatio-temporal solid of data.
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Right-to-left motion.
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Sliced solid of data.




Right-to-left motion with solid.
A second EPI.

/»~ ~Epipalar Plane

/ T e :
// f
. R ,
A,
\ / ?’: A
EPI from forward motion. ’ g | S o
/ -;-i"*"

Forward motion.



Applications

o RPN

RSITY OF T¢




Camera center and distortion | 232,

v Distorted
—180° 180°

AR C [ a X b X c

Omni-Directional Image




Spatio-temporal coincidence
of camera optical center

Space-time
agreement

1/ <t

\

Jo uonisog

SJ91ua9 [eando

O//\

_ t_1 t, tg Timé
Omni-Directional Image Spatial disagreement

| | a1 © b2 O c3

:> How to know t2, t3?



Temporal adjustment using EPI

(Software-based camera sync.)

|

Cam.
Cam.

EPI,

EPI,

b

'Y X SlS)
0000
00000
0000
'YXXX)
o000

time



Result 3




Spacetime Feature Matching | ssss-
for Texturing (wang 2008) 443

Ground-view image 3D residential map
(Vehicle survey, Local) (Aerial survey, Global)

How can we get correspondence, and
add a texture onto building walls?



Spacetime Feature Matching
for Texturing (wang 2008)

Vehicle _m=
Camera | g <y

@ = = |DP

Digital map !
Input THI with recognized bands
'
Vehicle 7 ‘ !
path I
Textured [ Y
result ‘: ) |

Output Corresponding result




Problems in using EPI ses

Real example
of EPI

Textures inside building (windows, etc.)
disturb to recognize the building features stably



Using Structural Information
Instead of Color Information °les

Input image

_7 — N
_ Much clearer
Temporal Height Image building features

Grey value o< Height (elevation angle)
to the building roof



Building Matching between

Map and Image using THI

Map 0|1 /2\3\‘

I o
= 3
| o o
2 2

M 1 2 3 4 5

Real Image (with noise)

Matching Pattern

Real image (i)

3

1

Digital map (j)
Case A

3

I

Case B

o
=T

Case C Case D

A: Corresponding 1 by 1
B: One noise between bldg.

Matching Cost

Aspect similarity

<“—>

I

<>

Real Image

Map

C: Non-flat roof = two bldg.
D: One noise inside a bldg.

Height-transition similarity

s~
R

-

Real Image

Map



Matching and Texturing Result | 2:::.

Asahi
Zmap
= Truth

IS

(2]

Bands in Map THI (j)
» o

\

Accurate map (Asahi)
gave better result

N

[

1 2 3 4 5 6 7 8 9 10 11 12 13
Bands in Real-imaae THI (i)




Omnidirectional Camera




Spatio-temporal volume of $44-
omni-directional image -




Cross-section
(an elliptic curve)
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Digital residential map

Correspondence between map and image

2




EPI Matching - o ese’




'Y X e
o000

Cross-section (a radius line)| ss:::

Panorama image



Texture Mapping 43

e Height info and texture




Texture Mapping

e Side faces

: s 1 7 “ -.,rl"“-;:“«
: 4 - a :«' 2 phatofeidad g )
‘ v é N + = 3 i&
S | g 3 e
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Summary

e Introduction

e Basic technologies
Background subtraction
Optical flow
Structure from Motion (SfM)
Space-time Image Analysis




