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Object Representation II

Nov. 27. 2013

Bo Zheng

(zheng@cvl.iis.u-tokyo.ac.jp)

Computer vision class 2013

Outline

• 2D representation (for RGB image)
– basics
– research in the state of arts

• Sparse representation
– basics
– research in the state of arts

• 3D representation
– basics
– research in the state of arts

• Past & Future study on 3D vision

Last Class

(Nov. 20)

Today

Basic techniques on 3D 
representation

Types

Discrete Continuous

Parametric Point cloud in polar 
coordinate…

Splines (piecewise 
polynomial),…

Nonpar
ametric

Explicit 3D volumetric 
images, Polygon 
mesh,…

Explicit Polynomial…

implicit Signed Distance 
Field (SDF),…

Implicit Radial Basis 
Function & Algebraic 
surface…

Form 

Continuity

Parametric

Nonp
aram
etric

Explicit

implicit

222),( yxryxfz 

0),,( 2222  rzyxzyxf

Example: sphere representation

•Explicit representation

•Implicit representation

•Parametric representation

Examples of 
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3D mesh 
Explicit representation

3D mesh 

),( EVG V: vertices, E: edges / triangles / polygons

400,000 vertices and 130,000 triangles

Explicit representation

3D Volumetric Image

intensity),,( zyxI

Brain MR image 

Volumetric image

Explicit representation

•Explicit representation

•Implicit representation

•Parametric representation

Examples of

Quadric Surface

• A polynomial of 2nd order

0222222222  jziyhxgxyfzxeyzdczbyax

Ellipsoid

Hyperboloid 

of one sheet

Hyperboloid of 

two sheet

Cone

Elliptic 

parabo

loid

Hyperbolic 

paraboloid

Elliptic 

cylinder
Hyperbolic 

cylinder

parabolic 

cylinder

Implicit representation

0),,(
;,,
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kji

ijkn zyxazyxf
formulation

Implicit Polynomial Surface with higher 
degree



2013/11/26

3

3D 8-degree Polynomial

8-degree polynomial

Explicit representation

Implicit Radial Basis Function (RBF)
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 


N
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Low degree 

polynomial
Radial basis (xi: control point)

• Gaussian

• Thin-plate radial basis

22 /
)( ix

ex
 

)log()( 2 xxx 
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Examples of RBF Surface

Results Num. of points 
of Object

Num. of Con. 
Points

35152 11717

52251 17417

64646 16161

[Itoh, IEICE trans’06]

•Explicit representation

•Implicit representation

•Parametric representation

Examples of

Parametric curve/surface

– Manufactural design

– font（TrueType Font）

– Bézier curve/surface 
[Pierre Bézier in 1966 for car design]

Non-uniform rational B-spline (NURBS)

Rational B-spline basis functionsControl points

computer-aided design (CAD)
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A brief comparison

Short survey

Adaptively fitting implicit polynomials 
(IPs) to 2D/3D object shapes

B. Zheng, J. Takamatsu and K. Ikeuchi (UT)
IEEE trans. on Pattern Recognition and Machine 
Intelligent (PAMI), 2010

3D Polynomial: 

IP surface:

The zero level set of a polynomial function: f(x,y,z)=0.

What is Implicit Polynomial (IP)?

IP surface
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“Bunny” object

Advantage1: Algebraic Invariants 

IP representationGiven Object: 

“Bunny”

[Taubin, PAMI’91]

Invariants

functions of the polynomial coefficients that do not change 

after the shape Euclidean transformed (rotated or 

translated).

Then what can we do?

objects

IPs

Classify these objects

Inv.
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Orientation 

(pose) of an 

object can be 

easily extracted.

Advantage2: Pose estimation 
[Taubin, PAMI’91]

How? 

IP representationGiven an Object

IP fitting method

ba TT MMM 
Linear LS Method
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Given a polynomial for 

each point

=

[Blane, PAMI’00]

Obtain the coefficients a

through solving this linear 

equations

A naive method for finding the moderate 
degree of IP

too time-consuming!

= =  =

MM T bTMa
MM T

bTMa

MM T
bTMa

Finding the best coefficients without under-fitting nor over-fitting. 

Incremental fitting 
– solving the upper-triangular linear system

==1R
1a 1

~
b

2R
2a 2

~
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Computationally efficient

QR QR QR

Computational efficiency

Iteration num.
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Example

Iteration num.

D
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95.02 T

01.01 T

2D & 3D examples

Original Objects

Prior method using 

2-degree IP

Prior method using 

4-degree IP

Our method

2-degree IP 6-degree IP 12-degree IP

Comparison to degree-fixed method Comparison to prior methods

Objects Our method3L method  

[Blane, PAMI’00]

RR method  

[Tasdizen, IP’01]  

[Sahin, ICCV’05]

Applications 10% missing+ 

rotating

10% Missing + 

10% noising + 

rotating

0.0466    0.0598    0.0809    0.1115    0.1171

0.6552      0.6574

0.3691    0.4394    0.4876    0.4901   0.5012

0.7293 0.8156

right

wrong

right

wrong

Data retrieval from DB 



2013/11/26

7

37

Example 2: ultrasound image

8-degree IPUltrasound Scan

38

For one of the single frame

Cross section

180 msec

39

Another single frame

0 5 10 15 20
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Cross section

250 msec

40

Pose Estimation

41

Tracking Conclusion

• Adaptive IP fitting without under 

fitting nor over fitting.

• More globally stable and locally 

accurate
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Outline

• 2D representation (for RGB image)
– basics
– research in the state of arts

• Sparse representation
– basics
– research in the state of arts

• 3D representation
– basics
– research in the state of arts

• Past & Future study on 3D vision

Last Class

(Nov. 7)

Today

Past & future of 3D vision

Input Gradient Output

Machine Perception of Three-Dimensional Solids, 

Larry Roberts, PhD Thesis, MIT, 1963.

Shape from Shading, 

Ikeuchi & Horn, MIT AI Memos 232, 1970.

A computer algorithm for reconstructing a scene from two projections, 

Longuet-Higgins, Nature, 1981.

Essential Matrix

3x3 Matrix mapping points to epipolar lines

• corresponding points x, x’ satisfy  x’  Q x = 0

• camera matrices can be computed from Q

Structure-from-motion by factorization [Tomasi & Kanade, ICCV90]

From Volume to Surface mesh

• Start at voxel containing surface

• Add polygon(s) based on configuration table

- earlier: 1970’s Hummel & Zucker, 3D edge finding

• March to next voxel

Marching Cubes  

[Lorensen & Cline, 

SIGGRAPH’ 87]
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Iterative Closest Points (ICP)

- Besl, McKay, “A Method for Registration of 3-D Shapes,” PAMI 1992

- Chen, Medioni, "Object Modelling by Registration of Multiple Range Images," International Journal 

of  Image and Vision Computing, 1992.

- Z. Zhang, Iterative point matching for registration of free-form curves,  Research Report 1658, 

INRIA  Sophia-Antipolis.

- T. Oishi, 3DIM 05

Range scan merging 

[Curless, SIGGRAPH96; 

Hilton, ECCV96]

Bayon Digital Archival 

Project:  IKEUCHI Lab, 

2003

City-scale SfM

• ~200K images, one day of processing

• 3 cities:  Rome, Venice, Dubrovnik
Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz and 

Richard Szeliski, “Building Rome in a Day,” Communications of the ACM, Vol. 54, No. 10, Pages 105-

112, October 2011.

Colosseum in Roma (2,106 images, 819,242 points)
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Dubrovnik (4,619 images, 3,485,717 points)

2011:  Kinect- Body pose from single depth image

• Fastest selling
Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore, Kipman, Blake, 

Real-Time Human Pose Recognition in Parts from a Single Depth Image, CVPR

Kinect Fusion: Microsoft research’2011

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David 

Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohli, 

Jamie Shotton, Steve Hodges, and Andrew 

Fitzgibbon, KinectFusion: Real-Time Dense Surface Mapping 

and Tracking, in IEEE ISMAR, IEEE, October 2011

Blocks World Revisited: 
[ECCV10 best paper awarded] 
Abhinav Gupta, Alexei A. Efros and Martial Hebert, Blocks 

World Revisited: Image Understanding Using Qualitative 

Geometry and Mechanics, European Conference on 

Computer Vision, 2010. 

Goal

Hard Combinatorial 

Optimization

Blocks World Revisited:
Image Understanding Using Qualitative 

Geometry and Mechanics

Abhinav Gupta, Alexei A. Efros, and Martial Hebert

Carnegie Mellon University

http://research.microsoft.com/apps/pubs/default.aspx?id=155378
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Scene Understanding

Sky

Building

Tree

Building

Ground

No information about the structure of the scene
• Geometric Layout (Occlusion/Depth Relationships)
• Free Space

Bag of Segments

Ground

Surface Layout Density Map

Ground

Bag of Segments

Catalogue

Round  1

Surface Layout Density Map

Ground

Bag of Segments

Catalogue

Round  1

Surface Layout Density Map

Ground

Bag of Segments

Catalogue

Round  1

Surface Layout Density Map

Ground

Bag of Segments

Catalogue

Round  2

Surface Layout Density Map
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Catalogue

Hoiem et al. (2005)

Static and Physically Stable World

Fitting Cuboids

Building 3D Blocks World

Input Images

Toy Blocks World Rendering

More Results

All results and preliminary version of code (Coming Soon):
http://www.cs.cmu.edu/~abhinavg/blocksworld

http://www.cs.cmu.edu/~abhinavg/blocksworld
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Past & future of 3D vision

Reconstructing the Museums: 
[ECCV12 Best Student Paper Award] 

Jianxiong Xiao and Yasutaka Furukawa

Reconstructing the World's Museums

The Goal

• Global texture-mapped 3D model

• Optimize for aerial viewing

• Enable effective indoor navigation

System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints

System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints

www.GoogleArtProject.com

System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints

System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints
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System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints

System Pipeline

1. Take pictures inside the rooms

2. Reconstruct the 3D shape

3. Render from aerial viewpoints

Results Effective 
Navigation

Physical relation: 
[ECCV12 oral paper] 
Nathan Silberman, Derek Hoiem, Pushmeet Kohli, Rob 

Fergus, “Indoor Segmentation and Support Inference from 

RGBD Images”, ECCV 2012 

Goal: Infer Support for Every 
Region
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Why infer physical support?

Interacting with objects may have physical 

consequences!

High Quality Semantic Labels

Bed

Pillow 1 Pillow 2

Headboard

Nightstand

Lamp

Window

Dresser

Picture 1

Wall 1
Wall

Picture 3

Doll 1

Doll 2

Floor

Picture 2

Pillow 3

High Quality Support Labels

Support from behindSupport from below Support from hidden 

region

Experiments

Results
Ground Truth Regions

Floor

Furniture

Prop

Structure

Results
Ground Truth Regions

Correct Prediction
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Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Support from below

Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Support from hidden region

Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Support from hidden region

Results
Ground Truth Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Support from hidden region
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Results
Automatically Segmented Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Support from hidden region

Results
Automatically Segmented Regions

Correct Prediction

Incorrect 

Prediction

Support from behind

Support from below

Support from hidden region

Conclusion

• Algorithm for inferring Physical Support
• Novel Integer Program Formulation
• 3D Cues for segmentation

Dataset:
– http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2

.html

Code:
– http://cs.nyu.edu/~silberman/projects/indoor_scene_

seg_sup.html

Past & future of 3D vision

Dr. Steve Seitze: [Google talks, 2012]
2013:  Digital Michelangelo from a few photos

2015:  Models of everything

2020:  Inverse CAD

2030:  computer > human

3D vision

Signals (raw data) 

processing

Information

Knowledge

Cognition 
(future)

e.g. Denoising

e.g. Feature detection 

and description

e.g. Examplar-based 

recognition

e.g. Reasoning by various 

knowledge

past

past

past

Beyond Point Clouds: Scene 
Understanding by Reasoning Geometry 

and Physics

B. Zheng1),   Y. Zhao2),   Joey. C. Yu2),   K. Ikeuchi1),  &   S. –C. Zhu2)

1) The University of Tokyo, Japan,     2) University of California, Los Angeles,USA
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Two observations

• The world can be represented by voxels
(volumetric pixels).

• Mechanics is an important cue for reasoning 
the objects in a static scene.

Gravity

- The useful information for 

scene understanding.

Our goal

Input: 3D point cloud

Related work

• Geometric methods
– 3D segmentation [Attene, VC06]

– Manhattan assumption [Furukawa, CVPR09]

• Physics reasoning
– “Block world revisit” [Gupta, ECCV10]

– Support relations inference [Silberman, ECC12]

• Cognitive science
– Probabilistic representation [Hamrick, CogSc11]

• Physics engine? 

Our contribution

• Geometric reasoning

– Segmentation + volumetric completion

(2.5D -> volumetric)

• Physical reasoning

– novel model of intuitive physical stability

– A novel stability optimization

Geometric 
reasoning

Physical 
reasoning

3D point 
cloud

• 3D segmentation

• volumetric completion

• stability maximization

Pipeline of our method
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Region growing segmentation 
& convex connection merging

Current issue

Segmentation result Solution: volumetric completion

Holes Holes filled

Volumetric completion Result of volumetric completion

Geometric 
reasoning

Physical 
reasoning

3D point 
cloud

• stability maximization

• support relations

Pipeline of our method

Geometric 
reasoning

Physical 
reasoning

3D point 
cloud

• 3D segmentation

• volumetric completion

• stability maximization

Pipeline of our method
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Object Stability

“unstable” “stable” – local minimum

Definition of stability

Given small energy, The less energy released, the stabler

Swendsen-wang cut (SWC)   [A. 

Babu’ 03]

Experimental result

Results of single depth image

Point cloud segmentation Our method

Results of single depth image

Point cloud segmentation Our method
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Segmentation comparison

• NYU dataset v2 (1449 labeled depth images) 

depth labeled

Large scale indoor scene

Large scale indoor scene
Precision of physical relation 

inference

• Dataset (15 labeled indoor scene data) 

Summary

• Geometric reasoning

– Segmentation + volumetric completion

(2.5D -> volumetric)

• Physical reasoning

– novel model of intuitive physical stability

– A novel stability optimization

machine v.s. human
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3D vision

Signals (raw data) 

processing

Information

Knowledge

Cognition 
(in future)

e.g. Denoising

e.g. Feature detection 

and description

e.g. Examplar-based 

recognition

e.g. Reasoning by various 

knowledge

past

past

past

Machine > Human in 2030s?

Thank you for your listening!

Notice:  Classroom change

Dec 4 (16:40-18:10)   E.Bld.2 Room #221

12月４日(５限) 工２号館２２１号講義室


