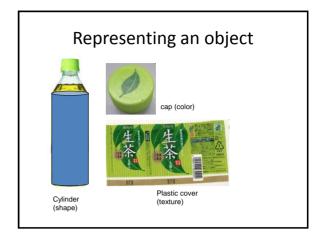
Computer vision winter class 2013

Object Representation I

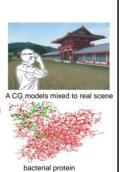
Nov. 20. 2013

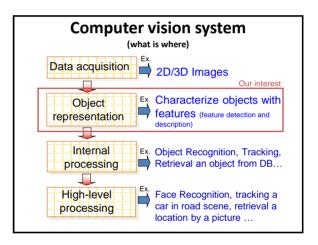
Bo Zheng zheng@cvl.iis.u-tokyo.ac.jp

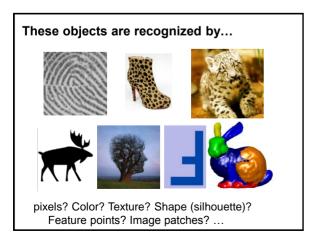


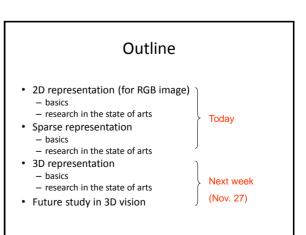
Objective in other fields

- Computer Graphics (CG) or Virtual Reality (VR)
 - how to realistically render a synthetic image
- Computer Visualization
 - how to make a visual form enabling the user to observe the invisible information



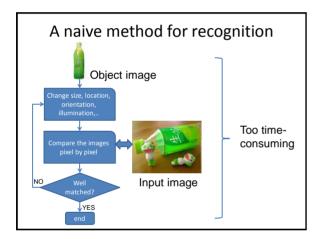


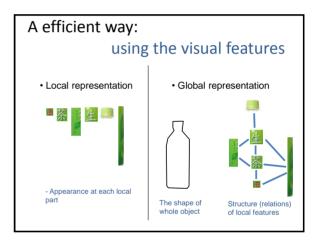




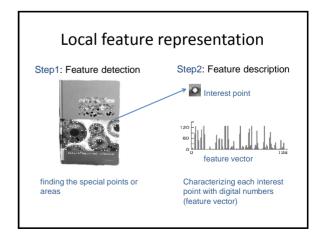
Part I Basics on 2D representation

Problems on 2D representation Object changes at different location and orientation Object changes in scale or viewpoint Often with noises and occlusions Object captured in different illuminant conditions

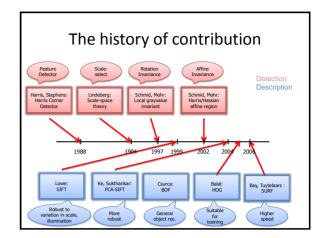




Local representation



Example: template matching [M. Özuysal, PAMI'10]



First step

Step1: feature detection finding the special local areas

Step2: feature description

Characterizing each area with digital numbers

Image Feature Detection

Goal: finding interest points or areas on an image invariant to image size, orientation, view point, illumination...

Approaches:

- · corner detection
- Scale invariant detection
- Rotation/orientation invariant detection
- Affine invariant detection

Corner definition

At a corner, the image intensity will change largely in multiple directions.

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris: how to determine a corner

Algorithm:

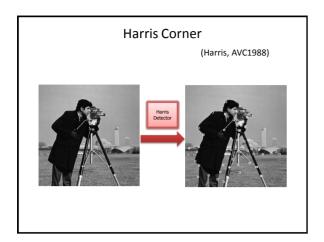
Autocorrelation matrix of the image I(x,y);

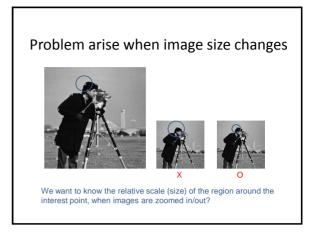
$$M = G(s) \otimes \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

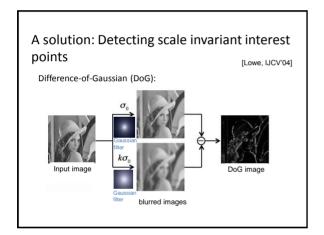
Two eigenvalues $(\lambda_{1,}\lambda_{2})$ of M : principal curvatures of the point.

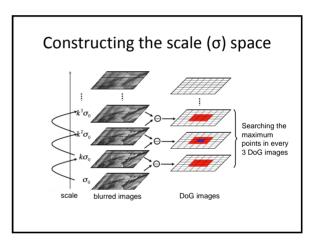
 $\lambda_1 \approx 0$ and $\lambda_2 \approx 0$: "Flat" (No feature)

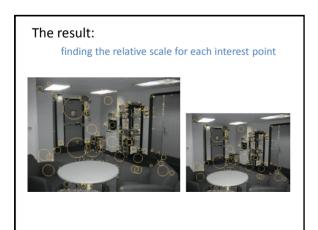
 $\lambda_1 \approx 0$ and $\lambda_2 >> 0$: "Edge" $\lambda_1 >> 0$ and $\lambda_2 >> 0$: "Corner"

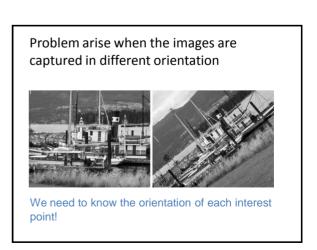


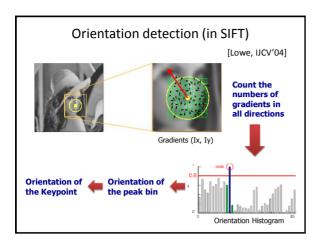


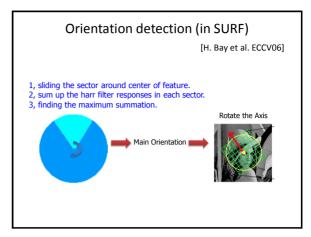


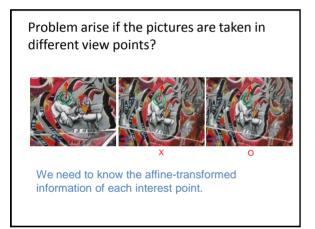


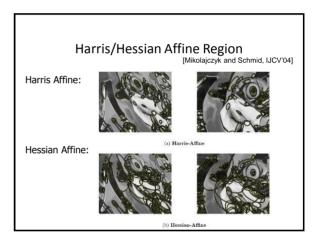


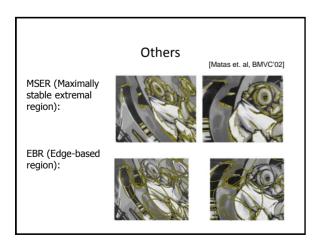


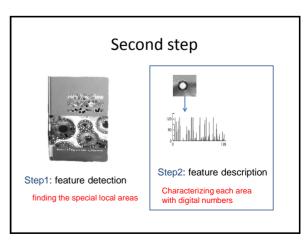


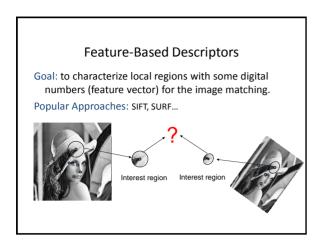


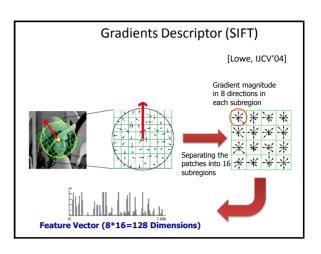


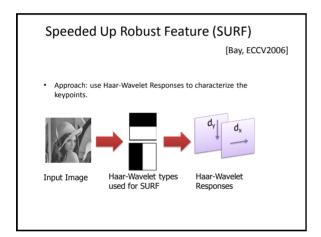


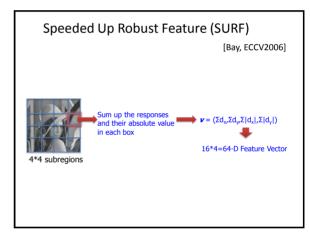










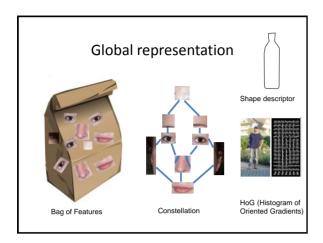


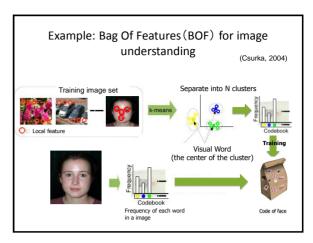
Comparison of SIFT and SURF
(Bay, ECCV2006)

Accuracy:

| number of true-matched | total number of correspondences | number of correspondences | number of false-matched | total number of matched | tot

Global Descriptor



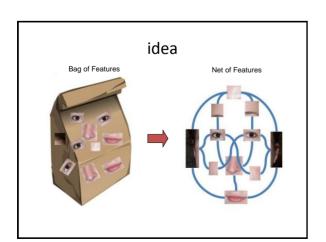


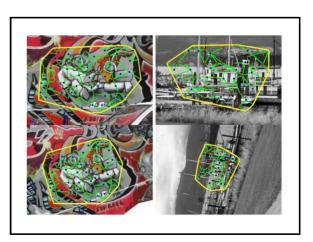
Part II Research in the state of art

Critical Nets and Beta-Stable Features for Image Matching

ECCV 2010, oral

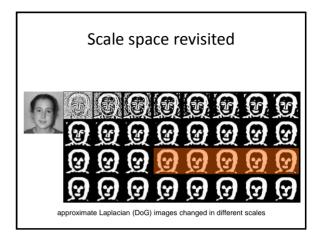
Steve Gu, Ying Zheng and Carlo Tomasi Department of Computer Science Duke University

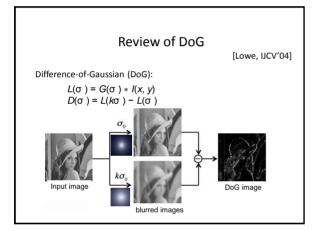


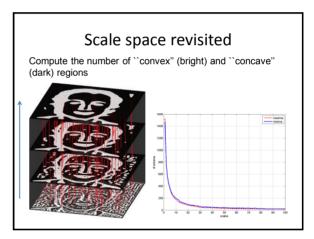


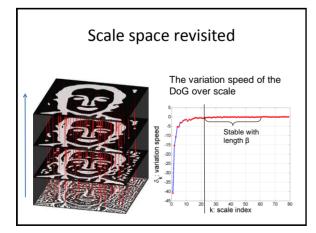
Outline

- · Beta-stable features detection
- · Critical nets construction
- · Application to Image matching









Beta-stable scale • Scale k is called ``beta-stable'' if: the number of convex regions remains a constant within a scale interval of length beta. Fig. 3. From left to right: An image patch of a human eye and its DoG at scales 2 (middle) and 25 (right). Scale k = 25 is 10-stable.

Beta-stable features

• The extrema of the DoG function computed at the smallest beta-stable scale

Fig. 4. From left to right: Original image; The 10-stable DoG image; SIFT features (green); 10-stable features. Red and blue dots are maxima and minima

Critical Nets

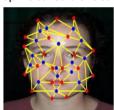
Ascending paths

- Define practically repeatable connections between beta-stable features
- · Connection:

17	24	1	8	15
23	5	7	14	16
(4) —	→ 6	13	20	22
10	12 18	19	21	3
11	18	(25)	2	9

Definition of Critical Nets

- A minimum A is connected to a maximum B if an ascending path goes from A to B
- Such a graph is called a critical net



Critical Nets

• **Observation 1**: ascending paths are invariant under ``monotonic'' changes

• Observation 2:

the higher the values of a point, the lower the probability this point can expand further

Image Matching

Example of dual SIFT descriptors

Note: using the edge information, no need to detect the scale and orientation

Matching results Comparison

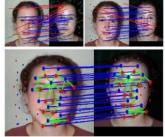
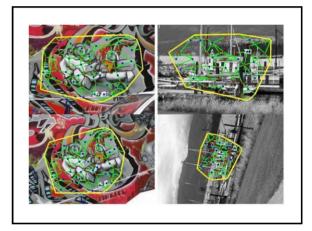
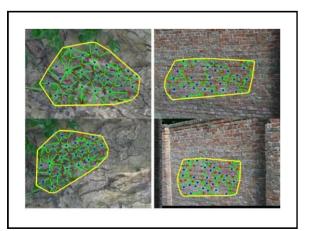


Fig. 7. Top left: SIFT; Top right: the 10-stable features and the matching result without using the critical net connections; Bottom: same 10-stable features, but with matching based on the critical net where dual SIFT descriptors are used.

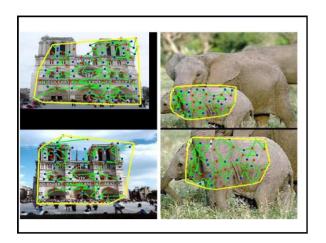
Compared to SIFT

- Reduce the number of parameters
 No need to determine orientation
- Richer local descriptor (pair wised points)
- And better repeatability in matching









Other Contributions

- · Critical nets are simple graphs that are invariant under affine and monotonic changes
- A more reliable geometrical reference: rotation and scale

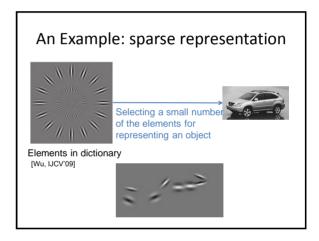
Homepage of this research:

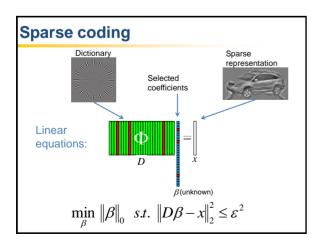
http://www.cs.duke.edu/~steve/cnet.html

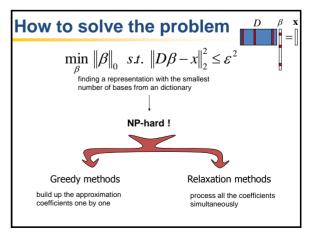
Download

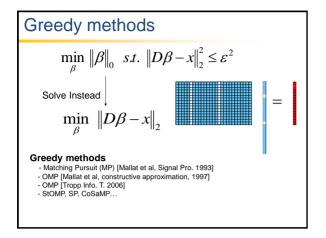
- Papers
 Matlab code

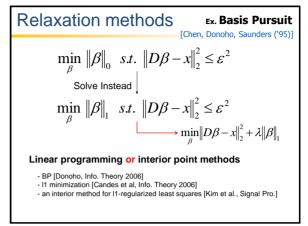
Part II Sparse representation

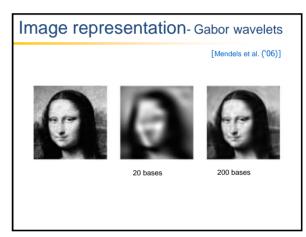


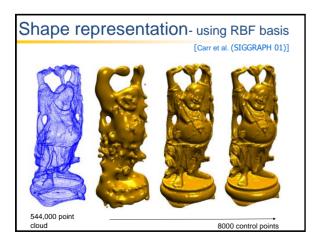


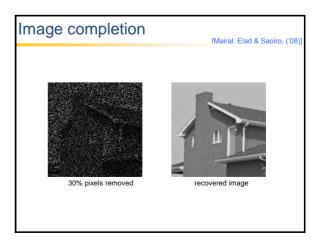












More recently

- · Matrix factorization
 - Low rank minimization
 - Sparse PCA
 - Robust PCA

. . .

Research in the state of arts

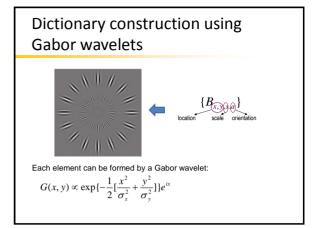
Journal paper

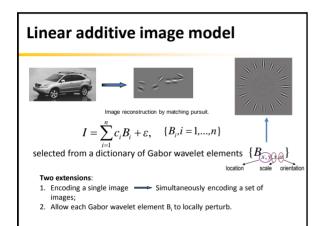
Y. N. Wu, Z.Z. Si, H. Gong and S.-C. Zhu (UCLA) International Conference on Computer Vision (ICCV) 2007 International Journal of computer vision (IJCV) 2009

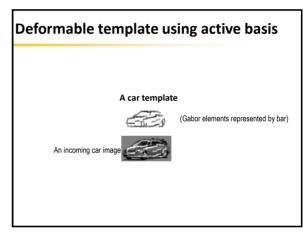
Learning Active Basis Model for Object Detection and Recognition

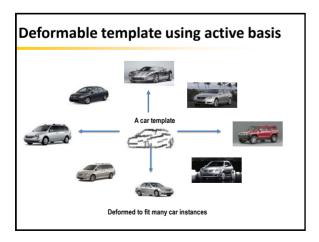
Motivation

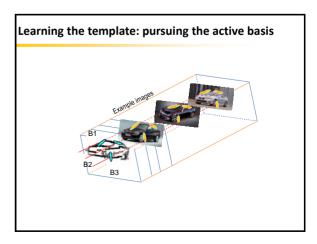
- Design a deformable template to model a set of images of a certain object category.
- The template can be learned from example images.

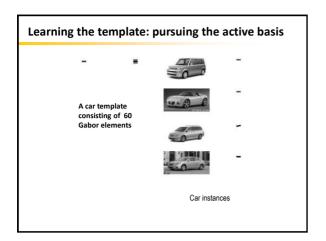




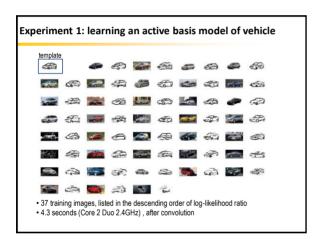


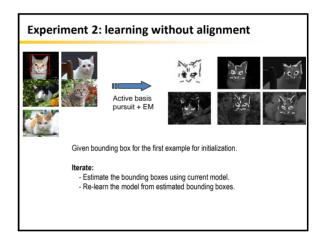


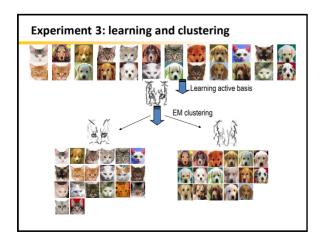


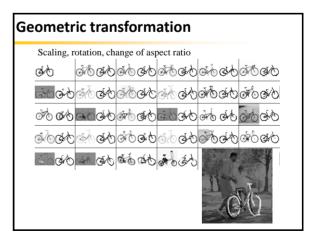


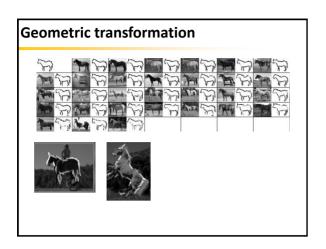
Experimental results





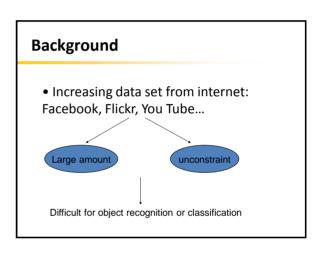


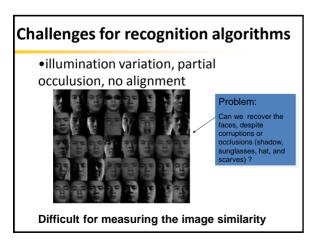


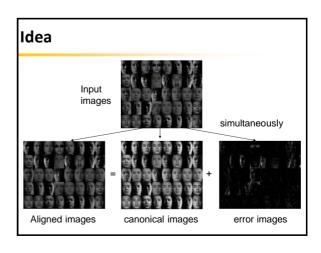


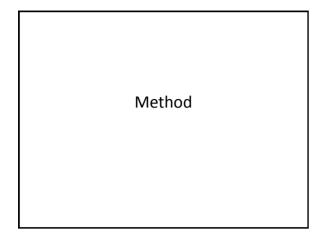
Main contributions 1. An active basis model as deformable template. 2. An active bases pursuit algorithm for fast learning. 3. Robust for template matching Homepage of this research: http://www.stat.ucla.edu/~ywu/ActiveBasis.html Download 1) Training and testing images 2) Matlab and mex-C source codes

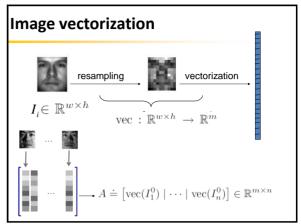
RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images CVPR 2010, oral Yigang Peng¹, Arvind Ganesh², John Wright³, Wenli Xu¹ and Yi Ma ^{2,3} 1 TNLIST and Dept. of Automation, Tsinghua Univ. 2 Dept. of Electrical and Computer Engg., UIUC 3 Visual Computing Group, MSRA

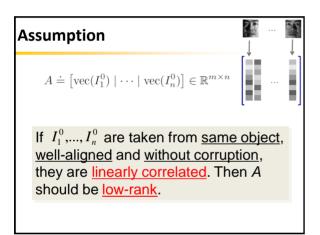


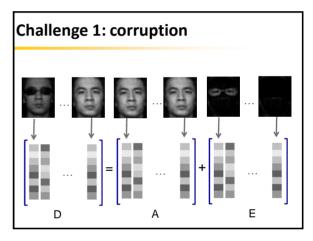


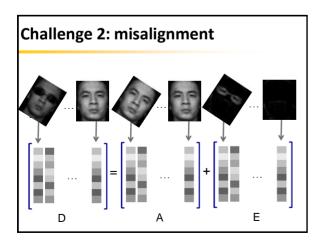


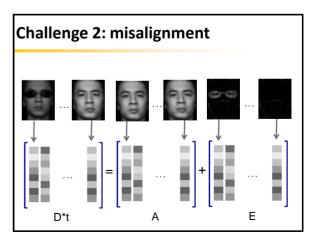


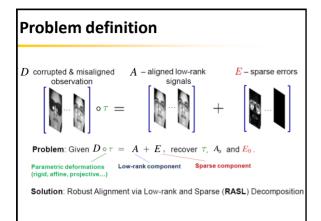


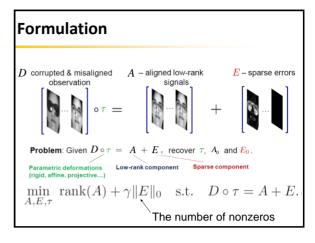


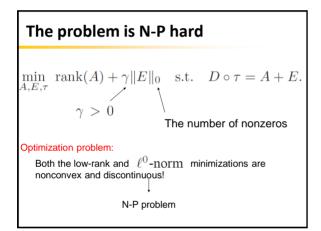


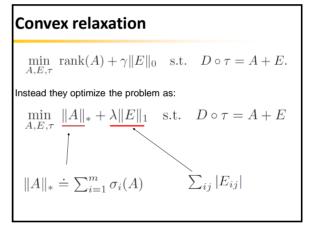




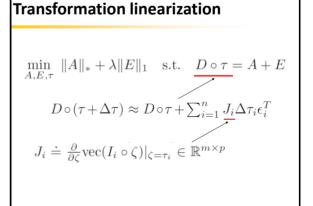








Transformation linearization $\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{s.t.} \quad \underline{D \circ \tau} = A + E$ The constraint is nonlinear, due to the dependence of the transformations. Solution: When the change in tau is small, we can approximate this constraint by linearizing about the current estimate of tau.



Transformation linearization

$$J_{i} = \begin{bmatrix} \frac{\partial I_{i1}}{\partial \tau_{i}^{1}} & \frac{\partial I_{i1}}{\partial \tau_{i}^{2}} & \frac{\partial I_{i1}}{\partial \tau_{i}^{p}} \\ \frac{\partial I_{i2}}{\partial \tau_{i}^{1}} & \frac{\partial I_{i2}}{\partial \tau_{i}^{2}} & \frac{\partial I_{i2}}{\partial \tau_{i}^{p}} \\ \frac{\partial I_{im}}{\partial \tau_{i}^{1}} & \frac{\partial I_{im}}{\partial \tau_{i}^{2}} & \frac{\partial I_{im}}{\partial \tau_{i}^{p}} \end{bmatrix} \in \mathbb{R}^{m \times p}$$

 $\Delta au_{\cdot} \in R^{p imes 1}$ Difference of transformation parameter

 $\mathcal{E}_i \in R^{n imes 1} \longrightarrow ext{The } i ext{-th Standard basis}$

Transformation linearization

$$\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{s.t.}$$

$$D \circ \tau + \sum_{i=1}^n J_i \Delta \tau_i \epsilon_i^T = A + E$$

Solvable problem: by convex programming

Algorithm 1 (Outer loop of RASL)

INPUT: Images $I_1, \ldots, I_n \in \mathbb{R}^{w \times h}$, initial transformations $\underline{\tau}_1, \ldots, \underline{\tau}_n$ in certain parametric group \mathbb{G} , weight $\lambda > 0$.

WHILE not converged DO step 1: compute Jacobian matrices w.r.t. transformation:

$$J_i \leftarrow \frac{\partial}{\partial \zeta} \left(\frac{\operatorname{vec}(I_i \circ \zeta)}{\|\operatorname{vec}(I_i \circ \zeta)\|_2} \right) \Big|_{\zeta = \tau_i}, \quad i = 1, \dots, n;$$

step 2: warp and normalize the images: transform images

$$D \circ \tau \leftarrow \left[\frac{\operatorname{vec}(I_1 \circ \tau_1)}{\|\operatorname{vec}(I_1 \circ \tau_1)\|_2} \middle| \dots \middle| \frac{\operatorname{vec}(I_n \circ \tau_n)}{\|\operatorname{vec}(I_n \circ \tau_n)\|_2} \middle| ;$$

step 3: solve the linearized convex optimization:

$$(A^*, E^*, \Delta \tau^*) \leftarrow \underset{A \to \Delta \tau}{\operatorname{arg min}} \|A\|_* + \lambda \|E\|_1$$

s.t.
$$D \circ \tau + \sum_{i=1}^{n} J_i \Delta \tau_i \epsilon_i^T = A + E;$$

step 4: update transformations: $\tau \leftarrow \tau + \Delta \tau^*$; END WHILE

OUTPUT: solution A^* , E^* , τ to problem (5).

Next problem

 \ldots, τ_n in certain parametric group \mathbb{G} , weight $\lambda > 0$. WHILE not converged DO step 1: compute Jacobian matrices w.r.t. transformation:

 $J_i \leftarrow \frac{\partial}{\partial \zeta} \left(\frac{\operatorname{vec}(I_i \circ \zeta)}{\|\operatorname{vec}(I_i \circ \zeta)\|_2} \right) \Big|_{\zeta = \tau_i}, \quad i = 1, \dots, n;$

$$J_i \leftarrow \frac{\partial}{\partial \zeta} \left(\frac{\operatorname{vec}(I_i \circ \zeta)}{\|\operatorname{vec}(I_i \circ \zeta)\|_2} \right) \Big|_{\zeta = \tau_i}, \quad i = 1, \dots, n;$$

step 2: warp and normalize the images:

$$D \circ \tau \leftarrow \left[\frac{\operatorname{vec}(I_1 \circ \tau_1)}{\|\operatorname{vec}(I_1 \circ \tau_1)\|_2} \middle| \dots \middle| \frac{\operatorname{vec}(I_n \circ \tau_n)}{\|\operatorname{vec}(I_n \circ \tau_n)\|_2} \right];$$

step 3: solve the linearized convex optimization:

$$(A^*, E^*, \Delta \tau^*) \leftarrow \underset{A, E, \Delta \tau}{\operatorname{arg \, min}} \|A\|_* + \lambda \|E\|_1$$

program •Thousands or millions of s.t. $D \circ \tau + \sum_{i=1}^{n} J_i \Delta \tau_i \epsilon_i^T = A + E_i$ variables

·Semi-

definite

step 4: update transformations: $\tau \leftarrow \tau + \Delta \tau^*$; END WHILE

OUTPUT: solution A^* , E^* , τ to problem (5).

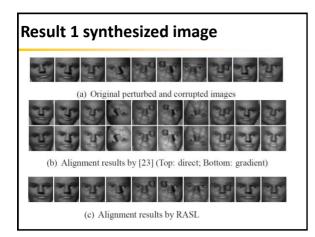
Using APG (accelerated proximal gradient) algorithm [2,22,17]

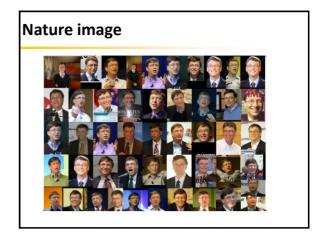
$$\min_{A,E,\Delta\tau} \|A\|_* + \lambda \|E\|_1 \text{ s.t. } D \circ \tau + \sum_{i=1}^n J_i \Delta \tau_i \epsilon_i^T = A + E$$

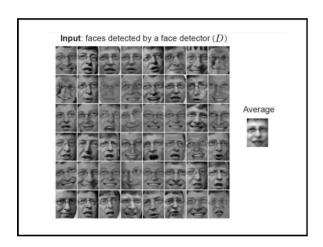
$$f(A, E, \Delta \tau) \doteq \frac{1}{2} \| A + E - D \circ \tau - \sum_{i=1}^{n} J_i \Delta \tau_i \epsilon_i^T \|_F^2$$

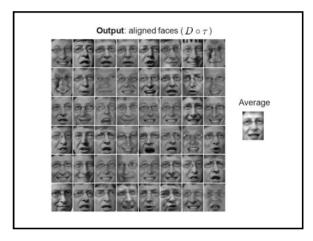
Fast solved by Accelerated Proximal Gradient (APG) [1,22,17]

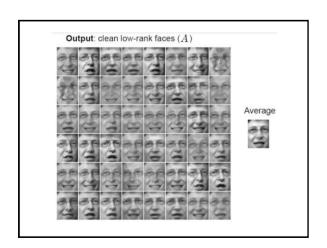
Experimental results

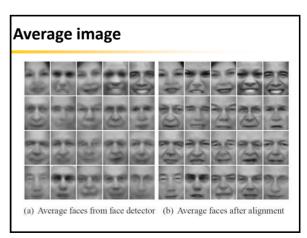


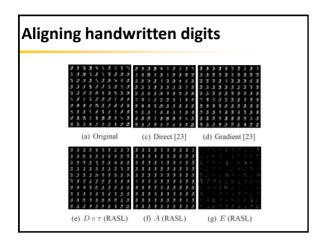


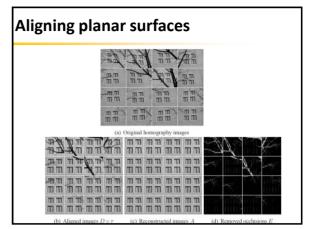












Contributions

- Robustness to corruption and occlusion
- · Robustness to misalignment

Homepage of this research:

http://perception.csl.illinois.edu/matrix-rank/rasl.html

Download

- 1) Papers
- 2) Sample code in Matlab

Readings

- David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91-110
- H. Bay, T. Tuytelaars, L. V. Gool, "SURF: Speeded Up Robust Features," ECCV 2006
- S. Gu, Y. Zheng and C. Tomasi, "Critical Nets and Beta-Stable Features for Image Matching," ECCV2010
- Y. N. Wu, Z.Z. Si, H.f. Gong and S.-C. Zhu: Learning Active Basis Model for Object Detection and Recognition. International Journal of Computer Vision 90(2): 198-235 (2010)
- Y.G. Peng, A. Ganesh, J. Wright, W. Xu and Y. Ma, "RASL: Robust Alignment via Sparse and Low-Rank Decomposition for Linearly Correlated Images," CVPR 2010.
- J.P. Shi, X. Ren, G. Dai, J.D. Wang, Z.H. Zhang: "A non-convex relaxation approach to sparse dictionary learning," CVPR 2011.

Thank you for your attention!