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Computer Vision
Patch-based Object 
Recognition (2)

Contents
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 Previous class: basic idea
 Bayes Theorem: probability background
 Papers in this class

 Hierarchy recognition
 Application for contour extraction

Previous class

 What is object recognition?

 Basic idea of object recognition

 Recent research

What is “Object Recognition”?
 Traditional definition

For an given object A, to determine 
automatically if A exists in an input 
image X and where A is located if A
exists. 

 Ultimate issue (unsolved)
For an given input image X, to 
determine automatically what X is.

An example of traditional issue
 What is this car?

 Is this car any of given cars in advance?

Input image Training images

An example of ultimate issue
 What does this picture show?

 Street, 4 lanes for each direction, divided road, keeping 
left, signalized intersection, daytime, in Tokyo,…



2013/11/11

2

Basic idea
 Make models from training images
 Find closest model for each input image

 You need “good” model
 Objects are similar, so are models
 Objects are different, so are models
 Estimation of similarity is important
 (More compact models are, better)

Recent models
 Extract a lot of feature patches
 Configuration of the patches makes 

model
 Why patches?

 Object might be occluded
 Location of object is unknown
 No complete match in class recognition:

 Similarity among patches is easier

 Number is power

Patch-based models

 Local features and its configuration
Feature：a point in N-dim vector space

Configuration:relative position of features,

distribution of features, etc.

Class and Specified object

 Recognition of specified object(s)
 Model is different from any other objects

 Class recognition
 Model is “similar” among objects in the 

same class
 All objects in a class are not given

Model in class recognition

 Clustering

 Support Vector Machine (20Q)

One class
Point can be model or feature
(in high dim. vector space)

Similarity Estimation

 Easy to estimate
 Images of the same dimension
 Points in the same vector space

 Hard to estimate 
 Patch-based models
 Parts of images
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How to Estimate Similarity

 Distance (or correlation)
 Points in a vector (metric) space
 Distance is not always euclidian

 Probability
 Clustering can be parameterized with pdf
 SVM, answer for H>0 can be probability

Recognition with probability?

 Assume an input image is given
 Does a car exist in the image?

 For human: easy to answer: Yes or No.
 For computer: might be hard to answer,

but the answer should be yes or no! 

 Why you can apply probability for yes-
no question?

Posterior probability  
 Situation

 You have just rushed on Chuo line train at 
Ochanomizu stn for Shinjuku direction.

 It is not crowded.
 Is it special rapid train?

 Discussion
 There is the timetable, the answer is known.
 If you don’t know it, what will your answer?

Background

 Any Chuo line train is rapid or special rapid
 You have no idea on which train you get on
 Special rapid train is more crowded than 

rapid train

 So you can say, “If I bet, I prefer rapid 
train”

 If odds is 1-2, do you bet?

Estimation

 Assume the followings are known
 Pr(train is special rapid)
 Pr(special rapid is not crowded)
 Pr(rapid is not crowded)

 You can calculate the probability that 
your train is actually rapid.

Bayes Theorem

 P(A∩B)=P(B|A)P(A)=P(A|B)P(B)
 P(B|A)=P(A|B)P(B)/P(A)

A B Even if B happens 
prior than A, P(B|A) 
can be calculated

A:crowded B:rapid
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Answer for the example
 A:train is rapid
 B:train is not crowded
 P(A|B): Prob. of no-crowded train is rapid
 P(B)

=(prob. of rapid train is not crowded)
+(prob. of special rapid is not crowded)

 P(B|A)=(prob. of rapid train is not crowded) 
 P(A|B)=P(B|A)P(A)/P(B) … can be calculated

For example…
 Assume special rapid runs 0,20,40 and rapid runs 

10, 30, 50; P(A)=0.5, P(Ac)=0.5
 P(rapid is not crowded)=P(B|A)=0.7
 P(special rapid is not crowded)=P(B|Ac)=0.2
 P(train is not crowded)=P(B)=P(A∩B)+P(Ac ∩B)

P(B|A) P(A)+ P(B|Ac) P(A)=0.7x0.5+0.2x0.5=0.45
 P(rushed train is rapid if it is not crowded)=P(A|B)
=P(B|A)P(B)/P(A)
=(0.7x0.45)/0.5=0.63

Essence
 What you can investigate in advance is:

probability that train is not crowded 
when it is rapid or special rapid
(general theory)

 What you like to know is:
probability that your train is rapid or not 
when it is not crowded
(special case estimation)

Apply for object recognition
 What you know in advance are:

the models of objects Xi (might be 
class) will be like this if Xi appears in 
given images

 What you like to know is:
The object X appears in this given 
image if models of the possible objects 
in it are like this

How to apply
 X1, X2,…,Xn ：Objects to be recognized
 Ｉ：Input image

 Now you have I,  are there any Xi in I? 
P(Xi exists |I is observed)

∝P(I is observed | Xi exists)P(Xi exists )
∝P (I is observed | Xi exists) (if P(Xi exists )can 

be considered to be constant for all i)

First paper
 Semantic Hierarchies for 

Recognizing Objects and Parts
 Boris Epshtein Shimon Ullman
 Weizmann Institute of Science, ISRAEL

 CVPR 2007 
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Abstract
 Patch-based class recognition

 Hierarchy

 Automatic generation of hierarchy from images

 Experiment

Hierarchies (Face case)

Model

•Features(texture, SIFT…)

•Their distribution (location)

Hierarchies (Theory)

 Tree diagram

 Classification and parts (patches)

 How to construct hierarchies

 Training method

Tree diagram

P(evidence|C=1
)

P(evidence|C=0
)

Class Model
 Class X consists of Xi, Xij, Xijk …
 Each XI has A(XI), L(XI)

 A(XI) : view of XI

ex) open mouth if 1, closed mouth if 2,….
 If XI is an end, A(XI) corresponds to some 

image feature FI

 L(XI): location of XI

L(XI)=0 means XI is occluded
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End of tree diagram
 If XI is an end, A(XI) corresponds to 

some image feature FI

 XI, FI consists of NxK components  
(S[1,1],…,S[1,N],…,S[K,1],…,S[K,N]), 
where i in S[i,j] corresponds to view 
change of XI, j to its location

 For each i,j , give similarity of F and X

What we have to do

 {F}: Features in an input image
 p(X|{F}) is what we like to know:

 Larger it is, more assured object X is

 P(X|{F})=P({F}|X)P(X)/P({F})
∝P({F}|X)P(X)

Calculate P(X), P({F}|X)

Basic relation

 From construction of tree diagram,

P(X,{F})=p(X)Πp(Xi | Xi~)p(Fk|Xk) …(1)

（Xi~ is the parent of Xi）

Calculation of P(X)

 P(A(X)=a, L(X)=l)
Probability of Object a is located at l

 Assume this distribution is uniform

 In the case of ID photo, l is not uniform 
at all, but in this paper,  assume this.

P(Fi|A(Xi)=a,L(Xi)=l)   part 1

 Prob. Of feature Fi is observed when Xi 
looks like a and located l

 Ｆ=(S[1,1],…,S[N,K]) 
P(Fi|A(Xi)=a,L(Xi)=l)
=p(S[1,1],…,S[N,K]| A(Xi)=a,L(Xi)=l)…(2)
=Πp(S[k,n]| A(Xi)=a,L(Xi)=l)
 Assume S[i,j] are independent

P(Fi|A(Xi)=a,L(Xi)=l) part 2

 View and location are independent
 Ph(S[a]): harmony with a
 Pm(S[a]): missharmony with a

p(S[1,1],…,S[N,K]| A(Xi)=a,L(Xi)=l)
=ph(S[a,l])ΠPm(S[k,n]) (k≠a,n≠l)…(3)

p(S[1,1],…,S[N,K]| L(Xi)=0) ;can’t be seen
= ΠPm(S[k,n]) …(4) ; independent with a
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P(Fi|A(Xi)=a,L(Xi)=l) part 3

P(Fi|A(Xi)=a,L(Xi)=l) 
∝ P(Fi|A(Xi)=a,L(Xi)=l) /P(Fi|L(Xi)=0) …(5)
=ph(S[a,l])/Pm(S[a,l])

p(A(Xi),L(Xi)|A(Xi~),L(Xi~))

p(Xi | Xi~) is still unknown in 
P(X,{F})=p(X)Πp(Xi | Xi~)p(Fk|Xk) …(1)

 View and location are independent
p(A(Xi),L(Xi)|A(Xi~),L(Xi~))
= p(A(Xi)|A(Xi~))p(L(Xi),L(Xi~)) …(6)
 Calculate 1st term and 2nd term

p(A(Xi)|A(Xi~))

 Probability of what children can be if 
the parent is known

 No theoretical method; determine 
through training (explain later)

 Can be calculated in advance

p(L(Xi),L(Xi~))
 Probability of child location when parent 

location is known
 When L(Xi~)=0 (The parent can’t be seen)

 Uniform: P(L(Xi) =l, L(Xi~)=0 )=δ0/K
 P(L(Xi)=0, L(Xi~)=0  =1- δ0

 L(Xi~)≠0
 P(L(Xi)=0, L(Xi~)=L)  =1- δ1

 Gaussian: P((L(Xi)=l, L(Xi~)=L) is determined as 
normal distribution of l

 These parameters are determined throughout 
training

Classification and parts

 Estimating p(C=1|F)
 P(C=1|F)/p(C=0|F)

=P(F|C=1)P(C=1)/(P(F|C=0)P(C=0))
∝P(F|C=1)/P(F|C=0)

 Bottom up
 Top down

Bottom up

 P(F|C=0) is constant. 
 P(F|C=1) can be calculated by bottom-up 

method
 F(Xi):evidence of subtree under node Xi
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Top-down

 In bottom-up method, all probability of 
edges in tree diagram is calculated

 Now P(X,F)can be calculated, thus

can be calculated by top-down method

Hierarchic structure

 Simple hierarchy (from one image)

 semantic hierarchy (add images)

 Any node can be hierarchic if necessary

Example Example of hierarchic structure

Simple hierarchy

 Make node where a lot of features 
appear

 Use one image or a few images

Semantic nodes (1)

 T={Tn|n=1,2,…} Training images
Make semantic nodes from training images

 For each Tn, calculate
H(X)=D(X)=arg max p(X,F|C=1)

 L(Xi)=0 or probability is small but 
L(Xi~)≠0,
L(Xi)＝arg max p(L(Xi)|L(Xi~))
A(Xi ) is the one located at L(Xi)
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Semantic nodes (2)

 Repeat previous step
 For each node, there become a list of 
“unseen views”

 Remove isolated unseen views (such that 
there are no similar views around it)

 For each node, find “effective” new views 
and add them as views

Semantic nodes (3)

 As adding new views, nodes can be 
hierarchies

 Even some views can be similar, 
hierarchies can distinguish each other

Training
 Determine the parameters
 Initialize

Location: distance between the parent and a child is 
in simple hierarchy, variance is half of the distance  

δis 0.001
P(A(Xi)|A(Xi~)) is determined by counting

 For each training image, find H(X) and 
optimal {Xi}, and tune parameters

 Repeat this

Experiment

 Class recognition

 Parts detection

Class Recognition Result (motorbikes)
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Result (Horses) Result (Cars)

Result Parts Detection

Result (Parts detection) Summary

 Semantic hierarchies
 Recognize a lot of parts
 Parts can be hierarchical if it becomes too 

complicated

 Better than simple hierarchies
 Hierarchies are automatically generated 

even in complicated cases
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Final paper
 Accurate Object Localization with 

Shape Masks
 Marcin Marszaek Cordelia Schmid
 INRIA, LEAR - LJK

 CVPR 2007 

Abstract

 Extract shape of an object class
 “spin-off” method for class recognition
 Robust against bad images

 Make mask image from an input image
 Mask image consists of not 0, 1 but 

probability (0.0-1.0)

Aim Examples of input images

Contents

 Technique
 Distance between masks

 Framework
 Training method
 Recognition method

 Experiment
 Conclusion

Technique

 Local feature and localization
 Local feature
 Localization with features

 Mask
 Similarity of mask images

 Classification of masks using SVM
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Local feature and localization
 Local features

 Invariant against translation, rotation and/or scale
 Scale invariant and normalization

 Localization using local features
 Local feature θ in image 1 and 2 are similar
 p1: normalized translation of feature θ in image 1
 p2: normalized translation of feature θ in image 2
 Localization between two images: p12=p1-1 p2

Localization
 P12: left to right (scale-up and translation)

Image 1 Image 2normalized

P12

P1 P2

Shape mask similarity

 Similarity between binary masks

 Similarity between probability masks

 Localized similarity

Mask classification using SVM

 Classify the view in the shape
 Inside→Hi={Hij}, Hij=#of feature j

 Any feature is one of v features
 V-dim vector for each image

 Hi’s can be classified with 20Q method
 SVM(Support Vector Machine)
 Automatically generate “good” questions

Mask classification using SVM
 Distance(similarity) between Hi and Hj is 

defined as follows

Where A is average of all D(Hi,Hj)

End of technique

 Similarity between two shape masks

 Similarity between two views in shape 
mask

 Make training and recognition



2013/11/11

13

Framework

 Training

 Recognition

Training procedure

Find similar pairs

Merge similar 
features

1.Feature extraction

 Any feature can be one of V features
 In training, object area is known

 Features outside of shape is ignored
 For each feature i in the shape is recorded 

along with normalized parameter pi

2. Similarity
 Two masks are similar if

 Shape masks are similar
 Local features with their location are similar

 More precisely,
 If local feature i in image 1 and local feature j

in image 2 is similar, localize two image with 
Pij

 Similar if mask simlarity ≧0.85
 Try all combination of similar local features

3.Voting shape masks

 Method 2 takes lots of time
 For any pair (x,y) of shape masks,

 Vote 1 to point (x,y) if they are similar for 
some pij

 Vote will be large if local features with their 
location are similar

 Merge closest pair (x,y) (explain later)
 Repeat until no more merging

Key point of the vote
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4.Location of merged mask

 New location of the mask merged with 
two masks

 For all pairs (i,j) of the same feature,
 Localize two masks using Pij
 Calculate similarity as follows

 Pij: (i,j)=arg max of(I,j) is determined

5.Merge shape masks
 Merge to “larger” mask
 Localized two images with Pij
 Merge weighted average

 No detail is described, but probably depending on 
the number of masks merged before, merging will 
be executed.

 View of the new shape mask is changed, 
hence, shape mask distance from the new 
shape mask is re-calculated

6.Merging local features
 Local features are also merged
 Local features in the shape will be 

similar
 Local features are merged with the 

same way as local shape (weighted 
average)

 Repeat until merging can be

７．Remove singleton
 Singleton: after merging procedure, 

image X is not merged with any other 
images, then X is called a singleton

 This kind of image might be an outlier 
hence we remove all singletons

8. Training SVM

 SVM is also trained

 SVM is trained for each object class
 Should be trained for each view
 Number of each view was small

Recognition
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Recognition framework 1.Local features

 Extract local features from an input 
image

 Any feature is assumed as one of V-
features

2. Hypothesis

 Local feature i in an input image
 Local feature j in an trained mask

 Localize Pij

 Hypothesis appears that a mask is 
located at some location

 Too large number of hypothesis!

3.Hypothesis evaluation

 H can be calculated in the shape area
 H is also classified with SVM
 Confidence is calculated

Hypothesis evaluation 4. Cluster Hypothesis

 Occlusion decreases confidence
 View and location of local feature is used

 Lots of shape mask hypothesis
 Necessity of clustering

 Similar hypothesis should be clustered
 New mask depending on confidence
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Evidence collection 5.Decision

 To decrease false Positive
 Assume that there is only outside 

occlusion
 No self-occlusion

 No detailed description
 Not only confidence, but also accept 

hypothesis whose confidence is spread 
into whole mask

Experiment

 Graz-02 dataset

 Effect of aspect clustering

 Comparison with Shotton’s method

Examples of Graz-02 dataset

Recognition Result Extracted Shape Masks
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Clustering sample Right-hand side

Effect of aspect clustering Comparison (Houses)

Extracted Shape (Houses) Summary of this paper

 Global feature: Shape mask
 Local feature: view of features

 Generation of class mask
 Good result for clean images
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Conclusion
 Class recognition from still image
 Model of view, location and similarity

 View similarity, location similarity
 View similarity can be clustered

 Bag of features
 Comparison with 20Q: Number is power

 Intersection of many features is unique
 Probability is used for similarity instead of 

yes, no


