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Computer Vision
Patch-based Object 
Recognition (2)

Contents

 Papers on patch-based object recognition
 Previous class: basic idea
 Bayes Theorem: probability background
 Papers in this class

 Hierarchy recognition
 Application for contour extraction

Previous class

 What is object recognition?

 Basic idea of object recognition

 Recent research

What is “Object Recognition”?
 Traditional definition

For an given object A, to determine 
automatically if A exists in an input 
image X and where A is located if A
exists. 

 Ultimate issue (unsolved)
For an given input image X, to 
determine automatically what X is.

An example of traditional issue
 What is this car?

 Is this car any of given cars in advance?

Input image Training images

An example of ultimate issue
 What does this picture show?

 Street, 4 lanes for each direction, divided road, keeping 
left, signalized intersection, daytime, in Tokyo,…
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Basic idea
 Make models from training images
 Find closest model for each input image

 You need “good” model
 Objects are similar, so are models
 Objects are different, so are models
 Estimation of similarity is important
 (More compact models are, better)

Recent models
 Extract a lot of feature patches
 Configuration of the patches makes 

model
 Why patches?

 Object might be occluded
 Location of object is unknown
 No complete match in class recognition:

 Similarity among patches is easier

 Number is power

Patch-based models

 Local features and its configuration
Feature：a point in N-dim vector space

Configuration:relative position of features,

distribution of features, etc.

Class and Specified object

 Recognition of specified object(s)
 Model is different from any other objects

 Class recognition
 Model is “similar” among objects in the 

same class
 All objects in a class are not given

Model in class recognition

 Clustering

 Support Vector Machine (20Q)

One class
Point can be model or feature
(in high dim. vector space)

Similarity Estimation

 Easy to estimate
 Images of the same dimension
 Points in the same vector space

 Hard to estimate 
 Patch-based models
 Parts of images
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How to Estimate Similarity

 Distance (or correlation)
 Points in a vector (metric) space
 Distance is not always euclidian

 Probability
 Clustering can be parameterized with pdf
 SVM, answer for H>0 can be probability

Recognition with probability?

 Assume an input image is given
 Does a car exist in the image?

 For human: easy to answer: Yes or No.
 For computer: might be hard to answer,

but the answer should be yes or no! 

 Why you can apply probability for yes-
no question?

Posterior probability  
 Situation

 You have just rushed on Chuo line train at 
Ochanomizu stn for Shinjuku direction.

 It is not crowded.
 Is it special rapid train?

 Discussion
 There is the timetable, the answer is known.
 If you don’t know it, what will your answer?

Background

 Any Chuo line train is rapid or special rapid
 You have no idea on which train you get on
 Special rapid train is more crowded than 

rapid train

 So you can say, “If I bet, I prefer rapid 
train”

 If odds is 1-2, do you bet?

Estimation

 Assume the followings are known
 Pr(train is special rapid)
 Pr(special rapid is not crowded)
 Pr(rapid is not crowded)

 You can calculate the probability that 
your train is actually rapid.

Bayes Theorem

 P(A∩B)=P(B|A)P(A)=P(A|B)P(B)
 P(B|A)=P(A|B)P(B)/P(A)

A B Even if B happens 
prior than A, P(B|A) 
can be calculated

A:crowded B:rapid
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Answer for the example
 A:train is rapid
 B:train is not crowded
 P(A|B): Prob. of no-crowded train is rapid
 P(B)

=(prob. of rapid train is not crowded)
+(prob. of special rapid is not crowded)

 P(B|A)=(prob. of rapid train is not crowded) 
 P(A|B)=P(B|A)P(A)/P(B) … can be calculated

For example…
 Assume special rapid runs 0,20,40 and rapid runs 

10, 30, 50; P(A)=0.5, P(Ac)=0.5
 P(rapid is not crowded)=P(B|A)=0.7
 P(special rapid is not crowded)=P(B|Ac)=0.2
 P(train is not crowded)=P(B)=P(A∩B)+P(Ac ∩B)

P(B|A) P(A)+ P(B|Ac) P(A)=0.7x0.5+0.2x0.5=0.45
 P(rushed train is rapid if it is not crowded)=P(A|B)
=P(B|A)P(B)/P(A)
=(0.7x0.45)/0.5=0.63

Essence
 What you can investigate in advance is:

probability that train is not crowded 
when it is rapid or special rapid
(general theory)

 What you like to know is:
probability that your train is rapid or not 
when it is not crowded
(special case estimation)

Apply for object recognition
 What you know in advance are:

the models of objects Xi (might be 
class) will be like this if Xi appears in 
given images

 What you like to know is:
The object X appears in this given 
image if models of the possible objects 
in it are like this

How to apply
 X1, X2,…,Xn ：Objects to be recognized
 Ｉ：Input image

 Now you have I,  are there any Xi in I? 
P(Xi exists |I is observed)

∝P(I is observed | Xi exists)P(Xi exists )
∝P (I is observed | Xi exists) (if P(Xi exists )can 

be considered to be constant for all i)

First paper
 Semantic Hierarchies for 

Recognizing Objects and Parts
 Boris Epshtein Shimon Ullman
 Weizmann Institute of Science, ISRAEL

 CVPR 2007 
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Abstract
 Patch-based class recognition

 Hierarchy

 Automatic generation of hierarchy from images

 Experiment

Hierarchies (Face case)

Model

•Features(texture, SIFT…)

•Their distribution (location)

Hierarchies (Theory)

 Tree diagram

 Classification and parts (patches)

 How to construct hierarchies

 Training method

Tree diagram

P(evidence|C=1
)

P(evidence|C=0
)

Class Model
 Class X consists of Xi, Xij, Xijk …
 Each XI has A(XI), L(XI)

 A(XI) : view of XI

ex) open mouth if 1, closed mouth if 2,….
 If XI is an end, A(XI) corresponds to some 

image feature FI

 L(XI): location of XI

L(XI)=0 means XI is occluded
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End of tree diagram
 If XI is an end, A(XI) corresponds to 

some image feature FI

 XI, FI consists of NxK components  
(S[1,1],…,S[1,N],…,S[K,1],…,S[K,N]), 
where i in S[i,j] corresponds to view 
change of XI, j to its location

 For each i,j , give similarity of F and X

What we have to do

 {F}: Features in an input image
 p(X|{F}) is what we like to know:

 Larger it is, more assured object X is

 P(X|{F})=P({F}|X)P(X)/P({F})
∝P({F}|X)P(X)

Calculate P(X), P({F}|X)

Basic relation

 From construction of tree diagram,

P(X,{F})=p(X)Πp(Xi | Xi~)p(Fk|Xk) …(1)

（Xi~ is the parent of Xi）

Calculation of P(X)

 P(A(X)=a, L(X)=l)
Probability of Object a is located at l

 Assume this distribution is uniform

 In the case of ID photo, l is not uniform 
at all, but in this paper,  assume this.

P(Fi|A(Xi)=a,L(Xi)=l)   part 1

 Prob. Of feature Fi is observed when Xi 
looks like a and located l

 Ｆ=(S[1,1],…,S[N,K]) 
P(Fi|A(Xi)=a,L(Xi)=l)
=p(S[1,1],…,S[N,K]| A(Xi)=a,L(Xi)=l)…(2)
=Πp(S[k,n]| A(Xi)=a,L(Xi)=l)
 Assume S[i,j] are independent

P(Fi|A(Xi)=a,L(Xi)=l) part 2

 View and location are independent
 Ph(S[a]): harmony with a
 Pm(S[a]): missharmony with a

p(S[1,1],…,S[N,K]| A(Xi)=a,L(Xi)=l)
=ph(S[a,l])ΠPm(S[k,n]) (k≠a,n≠l)…(3)

p(S[1,1],…,S[N,K]| L(Xi)=0) ;can’t be seen
= ΠPm(S[k,n]) …(4) ; independent with a
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P(Fi|A(Xi)=a,L(Xi)=l) part 3

P(Fi|A(Xi)=a,L(Xi)=l) 
∝ P(Fi|A(Xi)=a,L(Xi)=l) /P(Fi|L(Xi)=0) …(5)
=ph(S[a,l])/Pm(S[a,l])

p(A(Xi),L(Xi)|A(Xi~),L(Xi~))

p(Xi | Xi~) is still unknown in 
P(X,{F})=p(X)Πp(Xi | Xi~)p(Fk|Xk) …(1)

 View and location are independent
p(A(Xi),L(Xi)|A(Xi~),L(Xi~))
= p(A(Xi)|A(Xi~))p(L(Xi),L(Xi~)) …(6)
 Calculate 1st term and 2nd term

p(A(Xi)|A(Xi~))

 Probability of what children can be if 
the parent is known

 No theoretical method; determine 
through training (explain later)

 Can be calculated in advance

p(L(Xi),L(Xi~))
 Probability of child location when parent 

location is known
 When L(Xi~)=0 (The parent can’t be seen)

 Uniform: P(L(Xi) =l, L(Xi~)=0 )=δ0/K
 P(L(Xi)=0, L(Xi~)=0  =1- δ0

 L(Xi~)≠0
 P(L(Xi)=0, L(Xi~)=L)  =1- δ1

 Gaussian: P((L(Xi)=l, L(Xi~)=L) is determined as 
normal distribution of l

 These parameters are determined throughout 
training

Classification and parts

 Estimating p(C=1|F)
 P(C=1|F)/p(C=0|F)

=P(F|C=1)P(C=1)/(P(F|C=0)P(C=0))
∝P(F|C=1)/P(F|C=0)

 Bottom up
 Top down

Bottom up

 P(F|C=0) is constant. 
 P(F|C=1) can be calculated by bottom-up 

method
 F(Xi):evidence of subtree under node Xi
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Top-down

 In bottom-up method, all probability of 
edges in tree diagram is calculated

 Now P(X,F)can be calculated, thus

can be calculated by top-down method

Hierarchic structure

 Simple hierarchy (from one image)

 semantic hierarchy (add images)

 Any node can be hierarchic if necessary

Example Example of hierarchic structure

Simple hierarchy

 Make node where a lot of features 
appear

 Use one image or a few images

Semantic nodes (1)

 T={Tn|n=1,2,…} Training images
Make semantic nodes from training images

 For each Tn, calculate
H(X)=D(X)=arg max p(X,F|C=1)

 L(Xi)=0 or probability is small but 
L(Xi~)≠0,
L(Xi)＝arg max p(L(Xi)|L(Xi~))
A(Xi ) is the one located at L(Xi)
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Semantic nodes (2)

 Repeat previous step
 For each node, there become a list of 
“unseen views”

 Remove isolated unseen views (such that 
there are no similar views around it)

 For each node, find “effective” new views 
and add them as views

Semantic nodes (3)

 As adding new views, nodes can be 
hierarchies

 Even some views can be similar, 
hierarchies can distinguish each other

Training
 Determine the parameters
 Initialize

Location: distance between the parent and a child is 
in simple hierarchy, variance is half of the distance  

δis 0.001
P(A(Xi)|A(Xi~)) is determined by counting

 For each training image, find H(X) and 
optimal {Xi}, and tune parameters

 Repeat this

Experiment

 Class recognition

 Parts detection

Class Recognition Result (motorbikes)
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Result (Horses) Result (Cars)

Result Parts Detection

Result (Parts detection) Summary

 Semantic hierarchies
 Recognize a lot of parts
 Parts can be hierarchical if it becomes too 

complicated

 Better than simple hierarchies
 Hierarchies are automatically generated 

even in complicated cases
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Final paper
 Accurate Object Localization with 

Shape Masks
 Marcin Marszaek Cordelia Schmid
 INRIA, LEAR - LJK

 CVPR 2007 

Abstract

 Extract shape of an object class
 “spin-off” method for class recognition
 Robust against bad images

 Make mask image from an input image
 Mask image consists of not 0, 1 but 

probability (0.0-1.0)

Aim Examples of input images

Contents

 Technique
 Distance between masks

 Framework
 Training method
 Recognition method

 Experiment
 Conclusion

Technique

 Local feature and localization
 Local feature
 Localization with features

 Mask
 Similarity of mask images

 Classification of masks using SVM
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Local feature and localization
 Local features

 Invariant against translation, rotation and/or scale
 Scale invariant and normalization

 Localization using local features
 Local feature θ in image 1 and 2 are similar
 p1: normalized translation of feature θ in image 1
 p2: normalized translation of feature θ in image 2
 Localization between two images: p12=p1-1 p2

Localization
 P12: left to right (scale-up and translation)

Image 1 Image 2normalized

P12

P1 P2

Shape mask similarity

 Similarity between binary masks

 Similarity between probability masks

 Localized similarity

Mask classification using SVM

 Classify the view in the shape
 Inside→Hi={Hij}, Hij=#of feature j

 Any feature is one of v features
 V-dim vector for each image

 Hi’s can be classified with 20Q method
 SVM(Support Vector Machine)
 Automatically generate “good” questions

Mask classification using SVM
 Distance(similarity) between Hi and Hj is 

defined as follows

Where A is average of all D(Hi,Hj)

End of technique

 Similarity between two shape masks

 Similarity between two views in shape 
mask

 Make training and recognition
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Framework

 Training

 Recognition

Training procedure

Find similar pairs

Merge similar 
features

1.Feature extraction

 Any feature can be one of V features
 In training, object area is known

 Features outside of shape is ignored
 For each feature i in the shape is recorded 

along with normalized parameter pi

2. Similarity
 Two masks are similar if

 Shape masks are similar
 Local features with their location are similar

 More precisely,
 If local feature i in image 1 and local feature j

in image 2 is similar, localize two image with 
Pij

 Similar if mask simlarity ≧0.85
 Try all combination of similar local features

3.Voting shape masks

 Method 2 takes lots of time
 For any pair (x,y) of shape masks,

 Vote 1 to point (x,y) if they are similar for 
some pij

 Vote will be large if local features with their 
location are similar

 Merge closest pair (x,y) (explain later)
 Repeat until no more merging

Key point of the vote
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4.Location of merged mask

 New location of the mask merged with 
two masks

 For all pairs (i,j) of the same feature,
 Localize two masks using Pij
 Calculate similarity as follows

 Pij: (i,j)=arg max of(I,j) is determined

5.Merge shape masks
 Merge to “larger” mask
 Localized two images with Pij
 Merge weighted average

 No detail is described, but probably depending on 
the number of masks merged before, merging will 
be executed.

 View of the new shape mask is changed, 
hence, shape mask distance from the new 
shape mask is re-calculated

6.Merging local features
 Local features are also merged
 Local features in the shape will be 

similar
 Local features are merged with the 

same way as local shape (weighted 
average)

 Repeat until merging can be

７．Remove singleton
 Singleton: after merging procedure, 

image X is not merged with any other 
images, then X is called a singleton

 This kind of image might be an outlier 
hence we remove all singletons

8. Training SVM

 SVM is also trained

 SVM is trained for each object class
 Should be trained for each view
 Number of each view was small

Recognition
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Recognition framework 1.Local features

 Extract local features from an input 
image

 Any feature is assumed as one of V-
features

2. Hypothesis

 Local feature i in an input image
 Local feature j in an trained mask

 Localize Pij

 Hypothesis appears that a mask is 
located at some location

 Too large number of hypothesis!

3.Hypothesis evaluation

 H can be calculated in the shape area
 H is also classified with SVM
 Confidence is calculated

Hypothesis evaluation 4. Cluster Hypothesis

 Occlusion decreases confidence
 View and location of local feature is used

 Lots of shape mask hypothesis
 Necessity of clustering

 Similar hypothesis should be clustered
 New mask depending on confidence
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Evidence collection 5.Decision

 To decrease false Positive
 Assume that there is only outside 

occlusion
 No self-occlusion

 No detailed description
 Not only confidence, but also accept 

hypothesis whose confidence is spread 
into whole mask

Experiment

 Graz-02 dataset

 Effect of aspect clustering

 Comparison with Shotton’s method

Examples of Graz-02 dataset

Recognition Result Extracted Shape Masks
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Clustering sample Right-hand side

Effect of aspect clustering Comparison (Houses)

Extracted Shape (Houses) Summary of this paper

 Global feature: Shape mask
 Local feature: view of features

 Generation of class mask
 Good result for clean images
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Conclusion
 Class recognition from still image
 Model of view, location and similarity

 View similarity, location similarity
 View similarity can be clustered

 Bag of features
 Comparison with 20Q: Number is power

 Intersection of many features is unique
 Probability is used for similarity instead of 

yes, no


