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Computer Vision
Patch-based Object
* Recognition (2)

i Contents

= Papers on patch-based object recognition
= Previous class: basic idea
= Bayes Theorem: probability background

= Papers in this class
= Hierarchy recognition
= Application for contour extraction

i Previous class

= What is object recognition?
= Basic idea of object recognition

= Recent research

What is “Object Recognition?

= Traditional definition
For an given object A, to determine
automatically if A exists in an input
image X and where A is located if A
exists.

= Ultimate issue (unsolved)
For an given input image X, to
determine automatically what Xis.

An example of traditional issue

= What is this car?
= Is this car any of given cars in advance?

Training images

Input image

An example of ultimate issue

= What does this picture show?

= Street, 4 lanes for each direction, divided road, keeping
left, signalized intersection, daytime, in Tokyo,...
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i Basic idea

= Make models from training images
= Find closest model for each input image

= You need “good” model
= Objects are similar, so are models
= Objects are different, so are models
= Estimation of similarity is important
= (More compact models are, better)

i Recent models

= Extract a lot of feature patches

= Configuration of the patches makes
model
= Why patches?
= Object might be occluded
= Location of object is unknown
= No complete match in class recognition:
= Similarity among patches is easier
= Number is power

i Patch-based models

= Local features and its configuration

ure:a point in N-di

Configuration:relative position of features,
distribution of features, etc.

i Class and Specified object

= Recognition of specified object(s)
= Model is different from any other objects

= Class recognition

= Model is “similar” among objects in the
same class

= All objects in a class are not given

i Model in class recognition

= Clustering ° 1
. One class
Point can be model or feature .

(in high dim. vector space) o

= Support Vector Machine (20Q)

i Similarity Estimation

= Easy to estimate
= Images of the same dimension
= Points in the same vector space

= Hard to estimate
= Patch-based models
= Parts of images
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i How to Estimate Similarity

= Distance (or correlation)
= Points in a vector (metric) space
= Distance is not always euclidian

= Probability
= Clustering can be parameterized with pdf
= SVM, answer for H>0 can be probability

i Recognition with probability?

= Assume an input image is given
= Does a car exist in the image?
= For human: easy to answer: Yes or No.
= For computer: might be hard to answer,
but the answer should be yes or no!

= Why you can apply probability for yes-
no question?

i Posterior probability

= Situation

= You have just rushed on Chuo line train at
Ochanomizu stn for Shinjuku direction.

= Itis not crowded.
= Is it special rapid train?
= Discussion
= There is the timetable, the answer is known.
=« If you don’t know it, what will your answer?

i Background

= Any Chuo line train is rapid or special rapid
= You have no idea on which train you get on

= Special rapid train is more crowded than
rapid train

= S0 you can say, “If I bet, I prefer rapid
train”

= If odds is 1-2, do you bet?

i Estimation

= Assume the followings are known
= Pr(train is special rapid)
= Pr(special rapid is not crowded)
= Pr(rapid is not crowded)

= You can calculate the probability that
your train is actually rapid.

i Bayes Theorem

= P(ANB)=P(B|A)P(A)=P(A|B)P(B)
= P(B|A)=P(A|B)P(B)/P(A)

Even if B happens
prior than A, P(B|A)
) can be calculated

S T

A:crowded B:rapid
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i Answer for the example

= A:train is rapid

= B:train is not crowded

= P(A|B): Prob. of no-crowded train is rapid

= P(B)
=(prob. of rapid train is not crowded)
+(prob. of special rapid is not crowded)

= P(B]A)=(prob. of rapid train is not crowded)

= P(A|B)=P(B|A)P(A)/P(B) ... can be calculated

i For example...

= Assume special rapid runs 0,20,40 and rapid runs
10, 30, 50; P(A)=0.5, P(A%)=0.5

= P(rapid is not crowded)=P(B|A)=0.7

= P(special rapid is not crowded)=P(B|Ac)=0.2

= P(train is not crowded)=P(B)=P(ANB)+P(Ac NB)
P(B|A) P(A)+ P(B|A<) P(A)=0.7x0.5+0.2x0.5=0.45

= P(rushed train is rapid if it is not crowded)=P(A|B)

=P(B|A)P(B)/P(A)

=(0.7x0.45)/0.5=0.63

Essence

= What you can investigate in advance is:
probability that train is not crowded
when it is rapid or special rapid
(general theory)

= What you like to know is:

probability that your train is rapid or not
when it is not crowded

(special case estimation)

i Apply for object recognition

= What you know in advance are:
the models of objects Xi (might be
class) will be like this if X/ appears in
given images

= What you like to know is:
The object X appears in this given

image if models of the possible objects
in it are like this

i How to apply

= X1, X2,...,Xn :Objects to be recognized
= [:Input image

= Now you have I, are there any Xiin I?
P(Xi exists |I'is observed)
ocP(I'is observed | Xi exists)P(Xi exists )

ocP (I'is observed | Xiexists) (if P(Xi exists )can
be considered to be constant for all /)

i First paper

= Semantic Hierarchies for
Recognizing Objects and Parts
= Boris Epshtein Shimon Uliman
= Weizmann Institute of Science, ISRAEL

=« CVPR 2007
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Abstract

= Patch-based class recognition

= Hierarchy
= Automatic generation of hierarchy from images

= Experiment

* Hierarchies (Face case)

Figure 1. Schematic illustration of a semantic hierarchy. A face
is represented as a combination of parts and sub-parts. Each parnt
is represented as a semantic equivalence set of different possible
appearances. The proposed scheme is the first to extract and
use semantic parts in feamre hierarchies.

sFeatures(texture, SIFT...)
oTheir distribution (location)

* Hierarchies (Theory)

= Tree diagram
= Classification and parts (patches)
= How to construct hierarchies

= Training method

* Tree diagram

B

P(evidence|C=1

P(evidence|C=0

4 & ©

a
Figure 2. (a) Class model (b) Noo-class model. F, are the
observable feamures, Y'ic the entire object, Y] are object parts, and
C 15 the class node. During recognition, the feamures F, are
observed m the images, and the compumtion mfers the most
likely values of I X,

* Class Model

= Class X consists of Xi, Xij, Xijk ...

= Each X1 has A(X1), L(X1)
= A(X1) : view of X1
ex) open mouth if 1, closed mouth if 2,....

= If X1 is an end, A(X1) corresponds to some
image feature F

= L(X1): location of X1
L(X1)=0 means Xi is occluded
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End of tree diagram

= If X1 is an end, A(X1) corresponds to
some image feature F1

= X1, F1 consists of NxK components
(S[]‘I]‘]IIS[]‘IN]IIS[KI]‘]IIS[KIN])I
where i in S[i,j] corresponds to view
change of XI, j to its location

= For each i,j, give similarity of F and X

i What we have to do

= {F}: Features in an input image
= p(X|{F}) is what we like to know:
= Larger it is, more assured object Xis
= P(XI{F})=P({F}IX)P(X)/P({F})
o<P({F}X)P(X)
Calculate P(X), P({F}|X)

i Basic relation

= From construction of tree diagram,

PX{FN=pX)Np(Xi | Xi")p(FelX) ...(1)

(Xi~ is the parent of Xi) 2

&
®

&l

(]
2]

a

i Calculation of P(X)

= P(A(X)=a, L(X)=I)
Probability of Object ais located at /

= Assume this distribution is uniform

= In the case of ID photo, /is not uniform
at all, but in this paper, assume this.

i P(Fi|A(X)=a,L(X)=I) part 1

= Prob. Of feature Fi is observed when Xi
looks like a and located /

= F=(S[1,1],...,S[N,K])
P(Fi|A(X)=a,L(X)=I)

=p(S[1,1],...,S[N,K]| A(X)=a,L(X)=I)...(2)
=Mp(S[k,n]| A(X)=a,L(X)=I)

= Assume SJ[i,j] are independent

i P(Fi|A(X)=a,L(X)=I) part 2

= View and location are independent

= Ph(S[a]): harmony with a

= Pm(S[a]): missharmony with a
p(S[1,1],...,S[N,K]| A(X)=a,L(X)=I)
=ph(S[a,))NPm(S[k,n]) (k*a,n#l)...(3)

p(S[1,1],...,S[N,K]| L(X)=0) ;can’t be seen
= MMPmM(S[k,n]) ...(4) ; independent with a
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P(Fi|A(Xi)=a,L(Xi)=I) part 3

P(FIA(X)=a,L(X)=])
oc P(F|A(X)=a,L(X)=1) /P(F|L(X)=0) ...(5)
=ph(S[a,!])/Pm(S[a,l])

i PCAXI), LX) [A(Xi™), L(Xi™))

p(Xi | Xi*) is still unknown in
PXAFR)=p(X)Mp(Xi | Xi*)p(FlX) ...(1)

= View and location are independent
PCA(X), LX) [A(Xi™),L(Xi™))

= p(AX)|AXi™))p(L(Xi),L(Xi™)) ...(6)
= Calculate 1st term and 2nd term

P(ACXI)[A(XI™))

= Probability of what children can be if
the parent is known

= No theoretical method; determine
through training (explain later)

= Can be calculated in advance

i p(L(Xi),L(Xi™))

= Probability of child location when parent
location is known

= When L(Xi~)=0 (The parent can’t be seen)
= Uniform: P(L(Xi) =I, L(Xi*)=0 )=380/K
= P(L(X)=0, L(Xi*)=0 =1- &o

= L(Xi~)#0
= P(L(Xi)=0, L(Xi)=L) =1- 81
= Gaussian: P((L(Xi)=I, L(Xi*)=L) is determined as

normal distribution of |

= These parameters are determined throughout

training

i Classification and parts

= Estimating p(C=1|F)
= P(C=1|F)/p(C=0]F)
=P(F|C=1)P(C=1)/(P(F|C=0)P(C=0))
o<P(F|C=1)/P(F|C=0)
= Bottom up
= Top down

i Bottom up

= P(F|C=0) is constant.

= P(F|C=1) can be calculated by bottom-up
method

= F(Xi):evidence of subtree under node Xi
PF(X)| X =k)=
=TI PFX, )X, =0)p(X, =1| X, =k}

(8)
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i Top-down

= In bottom-up method, all probability of
edges in tree diagram is calculated

= Now P(X,F)can be calculated, thus

D) =agmaxp(LF|C=] ®

can be calculated by top-down method

i Hierarchic structure

= Simple hierarchy (from one image)
= semantic hierarchy (add images)

= Any node can be hierarchic if necessary

i Example E |
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Figure 6. An example of simple hierarchy (top) and examples of
additional semantic features at different levels of the semantic
hierarchy.

iExampIe of hierarchic structure
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Figure 7. Additional examples of the semantic hierarchies.

i Simple hierarchy

= Make node where a lot of features
appear

= Use one image or a few images

i Semantic nodes (1)

= T={Tn|n=1,2,...} Training images
Make semantic nodes from training images
= For each Tn, calculate
H(X)=D(X)=arg max p(X,F|C=1)
= L(Xi)=0 or probability is small but
L(Xi~)=0,
L(Xi)=arg max p(L(Xi)|L(Xi~))
A(Xi ) is the one located at L(Xi)
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i Semantic nodes (2)

= Repeat previous step

= For each node, there become a list of
“unseen views”

= Remove isolated unseen views (such that
there are no similar views around it)

= For each node, find “effective” new views
and add them as views

i Semantic nodes (3)

= As adding new views, nodes can be
hierarchies

= Even some views can be similar,
hierarchies can distinguish each other

Training

= Determine the parameters

= Initialize
Location: distance between the parent and a child is

in simple hierarchy, variance is half of the distance

dis 0.001
P(A(Xi)|A(Xi~)) is determined by counting

= For each training image, find H(X) and
optimal {Xi}, and tune parameters

= Repeat this

i Experiment

= Class recognition

= Parts detection

i Class Recognition

alla
Figure 3. E.un:p'le; of class imsges. Rows, ﬁo top to
Horses, motorbikes, cars, JAFFE dataset

i Result (motorbikes)

Motorbikes detection
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i Result (Horses) i Result (Cars)

Cars detection

Horses detection 1
0.995
0.9 ==
J 0.99
0.8)
- = £ o985
0.7}
0.98]
0.6}
; —— Semantic Hierarchy 0.975!
054 : | —_ Simple hierarch : —— Semantic Hierarchy
o 01 02 03 04 05 06 5 d —— Simple hierarchy
receame ' 001 002 003 004 005
b False Alarms
C

i Result i Parts Detection
Jﬂﬂ- I

o
@

]
@

1

DELTAHITS
o
-

o
Y]

0.2 0.3
FALSE ALARMS

d

0.4 0.5

. ) " -
- - e e P -

Figure 5. Variability of the object parts detected by the semantic
hierarchy.

Result (Parts detection)

Part

Simple Semantic
hierarchy hierarchy
39.1% 25.7%

I 41.9% 36.0%
51.8% 19.2%
4.87% 4.3%
18% 3.4%

I 28.85% 5.14%

- 0.93% 0%

‘W 22.5% 4.2%
M [52% 0%

Table 1. Percentage of incorrectly detected or mussed parts.

i Summary

= Semantic hierarchies
= Recognize a lot of parts

= Parts can be hierarchical if it becomes too
complicated

= Better than simple hierarchies

= Hierarchies are automatically generated
even in complicated cases

10
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i Final paper i Abstract

= Accurate Object Localization with = Extract shape of an object class
Shape Masks = “spin-off” method for class recognition
= Marcin Marszaek Cordelia Schmid = Robust against bad images

= INRIA, LEAR - LUK

= Make mask image from an input image

= Mask image consists of not 0, 1 but
probability (0.0-1.0)

= CVPR 2007

Aim i Examples of input images

(b) cars

(c) people

i Contents i Technique

= Technique = Local feature and localization
= Distance between masks = Local feature
= Framework = Localization with features
=« Training method = Mask
= Recognition method = Similarity of mask images
= Experiment = Classification of masks using SVM
= Conclusion

11
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i Local feature and localization i Localization

= Local features
= Invariant against translation, rotation and/or scale
= Scale invariant and normalization

= Localization using local features
= Local feature 8 in image 1 and 2 are similar
= pl: normalized translation of feature 6 in image 1
= p2: normalized translation of feature 6 in image 2
= Localization between two images: p12=p1-! p2

= P12: left to right (scale-up and translation)

P12

'Q/Ph
()

Image 1 normalized Image 2
i Shape mask similarity i Mask classification using SVM
= Similarity between binary masks = Classify the view in the shape
ou(@n = IO Emin@e ) = Inside—Hi={Hij}, Hij=#of feature j
= Similarity between probability masks = Any feature is one of v features
[ win@, R) = V-dim vector for each image
o0s(Q,R)= 4
[ max(Q, R)
- 4 min(€2, (5) . . .
“TarrR-c ¢ _.[ . = Hi’s can be classified with 20Q method
= Localized similarity = SVM(Support Vector Machine)
osid) = 0u(Gio By ) = 0u(GinGi o Fi) - (6) = Automatically generate “good” questions

i Mask classification using SVM i End of technique
= Distance(similarity) between Hi and Hj is = Similarity between two shape masks
defined as follows
K(H;, H;) = e~ % PEHLH;) (7)

= Similarity between two views in shape
mask

-

(lin — h
D in )u (8)
2:: hin +Ris = Make training and recognition

Where A is average of all D(Hi,Hj)

12
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i Framework

= Training

= Recognition

i Training procedure

e parse local features

cccccc

Find similar pairs| -

Merge similar
features

Figure 2. Overview of the training procedure. The main operation
blocks are executed iteratively,

i 1.Feature extraction

= Any feature can be one of V features
= In training, object area is known
= Features outside of shape is ignored

= For each feature /in the shape is recorded
along with normalized parameter pi

i 2. Similarity

= Two masks are similar if

= Shape masks are similar

= Local features with their location are similar
= More precisely,

= If local feature /in image 1 and local feature j

in image 2 is similar, localize two image with
Pij

= Similar if mask simlarity =0.85
= Try all combination of similar local features

i 3.Voting shape masks

= Method 2 takes lots of time

= For any pair (x,y) of shape masks,

= Vote 1 to point (x,y) if they are similar for
some pij

= Vote will be large if local features with their
location are similar

= Merge closest pair (X,y) (explain later)
= Repeat until no more merging

i Key point of the vote

(a) Hypothesis evaluation

13
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i 4.Location of merged mask

= New location of the mask merged with
two masks

= For all pairs (i,j) of the same feature,
= Localize two masks using Pij
= Calculate similarity as follows

Of(j-.j) = Os{gz O Paj-g_j) = O.s(gugi Pja) (6)

= Pij: (i,j)=arg max og(1,j) is determined

i 5.Merge shape masks

= Merge to “larger” mask
= Localized two images with Pij

= Merge weighted average
= No detail is described, but probably depending on
the number of masks merged before, merging will
be executed.
= View of the new shape mask is changed,
hence, shape mask distance from the new
shape mask is re-calculated

6.Merging local features

= Local features are also merged

= Local features in the shape will be
similar

= Local features are merged with the
same way as local shape (weighted
average)

= Repeat until merging can be

i 7. Remove singleton

= Singleton: after merging procedure,
image X is not merged with any other
images, then Xis called a singleton

= This kind of image might be an outlier
hence we remove all singletons

i 8. Training SVM

= SVM is also trained

= SVM is trained for each object class
= Should be trained for each view
= Number of each view was small

i Recognition

H Compute sparse local features )

Cast hypotheses

Evaluate hypotheses
Cluster hypotheses

Filter decisions O]

Figure 4. Overview of the recognition procedure. The main oper-
ation block is executed in a pipe to reduce memory requirements.

14
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i Recognition framework

(a) Hypothesis evaluation

(b) Evidence collection

i 1.Local features

= Extract local features from an input
image

= Any feature is assumed as one of V-
features

i 2. Hypothesis

= Local feature i in an input image
= Local feature j in an trained mask
= Localize Pij

= Hypothesis appears that a mask is
located at some location

= Too large number of hypothesis!

i 3.Hypothesis evaluation

= H can be calculated in the shape area
= H is also classified with SVM
= Confidence is calculated

i Hypothesis evaluation

(a) Hypothesis evaluation

i 4. Cluster Hypothesis

= Occlusion decreases confidence
= View and location of local feature is used
= Lots of shape mask hypothesis
= Necessity of clustering
= Similar hypothesis should be clustered
= New mask depending on confidence

_ﬂ6+¢“§ WO 4 )8

. =6
S + e We =30 38 ()

15



2013/11/11

* Evidence collection

(b) Evidence collection

$ 5.Decision

= To decrease false Positive

= Assume that there is only outside
occlusion
= No self-occlusion

= No detailed description

= Not only confidence, but also accept

hypothesis whose confidence is spread
into whole mask

i Experiment

= Graz-02 dataset

= Effect of aspect clustering

= Comparison with Shotton’s method

i Examples of Graz-02 dataset

(a) bikes (b) cars

(c) people

* Recognition Result

[ object class [ cars [ people | bicycles |
no hypothesis evaluation || 40.4% | 28.4% | 46.6%
no evidence collection 50.3% | 40.3% | 48.9%
our full framework 53.8% | 4.1% | 61.8%

Table 1. Pixel-based RPC EER measuring the impact of hypothesis
evaluation and evidence collection.

* Extracted Shape Masks

"l '-H-

16
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i Clustering sample

=B

Figure 5. Several car aspects detected by agglomerative clustering.

i Right-hand side

L

i Effect of aspect clustering

= -
06 e e
b
L7
g
3 04 it
o
0.2 x
f No aspect clusicring ‘s
No singletons pruning == ==
Our full framework = =
e o

! 0 02 04 06 08 1 12 14 16 18
FP/image
Figure 6. Recognition rate for cars given as recall in a function of
FP per image. We can observe the impact of aspect clustering.

i Comparison (Houses)

Shotton [21]

92.1%

Our framework (1" = 0.85, with singletons)

94.6 %

Our framework (1" = 0.7, no singletons)

94.6 %

Table 2. RPC EER for Weizmann horse dataset.

$ Extracted Shape (Houses)

Figure 8, Results on Weizmann horses dataset. Note that the shape
masks are very accurate: the horse articulations are visible.

i Summary of this paper

= Global feature: Shape mask
= Local feature: view of features

= Generation of class mask
= Good result for clean images

17
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i Conclusion

= Class recognition from still image

= Model of view, location and similarity
= View similarity, location similarity
= View similarity can be clustered

= Bag of features

= Comparison with 20Q: Number is power
= Intersection of many features is unique

= Probability is used for similarity instead of
yes, no

18



