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Color in computer vision 
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Major topics related to color analysis 

• Image segmentation 

• BRDF acquisition 

• Radiometric camera calibration 

• Intrinsic image decomposition 

• Image similarity 

• Color constancy 

• Photometric stereo, Multiplexed illumination, 
Image matting 

Today’s topic 

Next week’s topic 

Search them for 
 further information 



A TOPOLOGICAL APPROACH TO 
HIERARCHICAL SEGMENTATION USING 
MEAN SHIFT 

Sylvain Paris, Fredo Durand (MIT) 

International Conference on Computer Vision and Pattern 
Recognition (CVPR) 2007, Poster 

Oral: 4.8% (60), Overall: 28.0% (352) 
Image segmentation papers: 23 



Image segmentation 



Related work 



Minimum distance classifier 
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K-means clustering 

http://d.hatena.ne.jp/nitoyon/20090409/kmeans_visualise 

• Label a class randomly 
for each point 

 

• Calculate the center 

• Re-label the class to the 
nearest one for each 
pixel  



Region growing 
adjacent pixel: similar feature vector  same region 



Lazy snapping (Graph-cut) 

Included in Microsoft Expression 



Graph cut (Min-Cut/Max-Flow): 
Concept 

pixel 
node 

cost 
edge 

region 
terminal 

cut where cost is minimum 



Graph cut (Min-Cut/Max-Flow):  
Cost function 

color similarity 
between 

pixel and region 

color similarity 
between 

adjacent pixel 
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Probabilistic (top-down) approach 

• Use of priors (combined with recognition) 

 

– TextonBoost (Texture cue) 

Hand-labeled images Segmentation result 



Advantage of mean shift 

• No priors nor human operation are required 

– Unsupervised segmentation as a pre-processing 

 

Input image Mean-shift A Mean-shift B Hand labeled 



Advantage of the proposed method 

• Fast computation 

– Gaussian mean-shift (time-consuming) 

– Do not sacrifice accuracy for speed 

 

• Hierarchical segmentation 

– Morse theory 

– Topological decomposition 



Method 



Mean shift segmentation 

: Kernel function 

: Series 

: Feature points (pixels) 

: Seed 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Objective : Find the densest region 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Objective : Find the densest region 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Objective : Find the densest region 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Objective : Find the densest region 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Mean Shift 
vector 

Objective : Find the densest region 



Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 
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vector 
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Intuitive Description 

Distribution of identical billiard balls 

Region of 
interest 

Center of 
mass 

Objective : Find the densest region 
Points that converges to the same limit 

 are grouped 



Problem 

• Computational time 



Underlying density function 

Non parametric 
Density gradient estimation 

of a shadow kernel 
(Mean Shift) 

Data PDF 

When a Gaussian kernel: 

Density function: 

No iteration 

Shadow kernel 

Density function is computable 



Local maxima and saddles 

Underlying Density Function Real Data Samples 

Group A 

Group B 

Segmentation 



Problem 

• Cluster hierarchy 



Morse theory 

Change in p creates a topological feature  Critical point = Positive 
Change in p removes a feature  Critical point = Negative 



Hierarchy construction 

Change thr  from 0 to ∞ 
to construct a hierarchy 



Computation of density function 
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Take histogram of 

5 dimensional values 
(x, y, r, g, b) 

Calculate the convolution of  
each Gaussian kernels 

Separability of 
Gaussian kernels 
in dimensions 



Mode extraction 

1. Sort g(k) by the values D(g(k)) 

 

2. When compute g(k), 
– Zero label    g(k) = local maxima 

– One label m(l)    g(k) is labeled with m(l) 

– Two or more labels   g(k) = boundary, label b 

Position of the grid cell Computation: g1 g4  g2  g3 



Result 



Video 

Quick time video 



References 

1. S. Paris et al., “A topological approach to hierarchical 
segmentation using mean shift,” CVPR 2007. 

 

2. Y. Li et al., “Lazy snapping,” SIGGRAPH 2004. 

3. J. Shotton et al., “TextonBoost: Joint appearance, shape and 
context modeling for multi-class object recognition and 
segmentation,” ECCV 2006. 

4. P. Kohli et al., “Robust higher order potentials for enforcing 
label consistency,” CVPR 2008. 

 

5. http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04
/files/mean_shift/mean_ shift.ppt 

6. http://people.csail.mit.edu/sparis/ 

http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/mean_shift/mean_ shift.ppt
http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04/files/mean_shift/mean_ shift.ppt
http://people.csail.mit.edu/sparis/


BRDF ACQUISITION WITH BASIS 
ILLUMINATION 

Abhijeet Ghosh, Shruthi Achutha, Wolfgang Heidrich, 
Matthew O’Toole (Univ. of British Columbia) 

International Conference on Computer Vision (ICCV) 2007, 
Oral 

Oral: 3.9% (47), Overall: 23.5% (280) 
Honorary Paper Mentions 



What is this paper about? 

BRDF 

Images 



What is BRDF? 

• Bidirectional Reflection Distribution Function 

Incident 
light 

Surface 
normal 
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incident irradiance  

Outgoing radiance 
BRDF 

• Expresses object’s reflection 
by 4 parameters 



Reflected radiance 

 iiiioiro dLfL  cos)(),()(

),(   where  

Radiance 

BRDF dE (Incident irradiance/solid angle) 

Outgoing radiance 



Related work 



Parametric models of BRDF 

• Lambertian surface 

 

• Specular reflection 

– Phong, Oren-Nayar, Torrance-Sparrow, Blinn 
(simplified Torrance-Sparrow), Cook-Torrance, 
Beckman-Spizzichino 

 

• Anisotropic reflection 

– Ward 



Lambertian 

cosdd KI 
Id: diffuse reflection intensity 
Kd: diffuse albedo 
: angle  

 

n 
l 

A 

L L 

light per unit area = L 
area in light direction = A cos  

radiant flux = L  A cos  

actual area = A 
irradiance = L  A cos   A = L cos  

 

ln cos



Diffuse, specular lobe, specular spike 



Anisotropic reflection 



Direct measurement of BRDF 

• Goniophotometers 

• Light stage 

 

 

Measure impulse response using pencils of light  ≒ Dirac’s delta function 



Efficient measurement of BRDF 

• Assumption of isotoropic reflection 

• Use of reflection models 

• Use of a sphere for the target sample 



Advantage of the proposed method 

• Illuminations are smooth basis functions 

– Efficient data acquisition 

 

 



Method 



System overview 

Camera Projector 
Dome 

Sample Parabola 



Basis functions 

Measurement zone Z 

Basis functions 
New notation 
of BRDF 

BRDF 

Basis functions coefficients 



Measurement with basis functions 
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Incident radiance (illumination) 

Basis function 



Zonal basis functions 

where 



Results 

1 minute (BRDF measurement + re-projection into spherical harmonic basis) 



Results 

Representative set of BRDFs acquired with lower order zonal basis functions 

Red velvet Red printer toner Magenta plastic sheet Chrome gold dust  
automotive paint 



Video 

Quick time video 
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PRIORS FOR LARGE PHOTO 
COLLECTIONS AND WHAT THEY REVEAL 
ABOUT CAMERAS 

Sujit Kuthirummal, Aseem Agarwala, Dan B Goldman, Shree K 
Nayar (Columbia University and Adobe Systems, Inc.) 

European Conference on Computer Vision (ECCV) 2008, Oral 

Oral: 4.6% (40), Overall: 27.9% (243) 



Scene Camera Photographer Individual Photograph        (  Scene,  Camera,  Photographer ) 

Credit: Snowdosker @ Flickr  



Individual Photograph        (  Scene,  Camera,  Photographer ) 

Internet Photo Collections 

Exif Tags 

Recover information about  
Scenes,  Cameras, and Photographers 



Compute 
Aggregate 

Statistic 

Independent of 
Scenes & Photographers 

One Camera’s Distortion Dependent on 
Camera 

Free of Camera Distortions 

Compute 
Aggregate 

Statistic 

Independent of 
Scenes, Photographers 

& Cameras 
 1. Robust Statistical Priors 

2. Recover Radiometric Camera Properties 

Recover 
Camera Properties 



Related Work: Large Photo Collections 

Internet Stereo 
Goesele et al. ’07 

Object Insertion 
Lalonde et al. ’07 

Photo Tourism 
Snavely et al. ‘06 

Recover Camera Properties 

Recognition 
Torralba et al. ’07 

Hole Filling 
Hays et al. ’07 



• Natural Image Statistics 
• 1/f amplitude spectrum fall-off 
• Sparsity of image derivatives 
• Bias in gradient orientations 

 

• Exploit priors for 
• Scene recognition 
• Super-resolution 
• Deriving intrinsic images 
• Image denoising 
• Removing camera shake 

 

• Priors attempt to describe statistics of individual photographs 
 
 

• Our Priors describe aggregate statistics of many photographs 
 

Related Work: Image Statistics 

Burton & Moorhead ’87, Field ‘87 

Olshausen & Field ’96, Simoncelli ‘97 

Switkes et al. ’78, Baddeley ‘97 

Baddeley. ’97, Torralba & Oliva ‘03 

Tappen et al. ’03 

Roth et al. ’05 

Weiss ’01 

Fergus et al. ‘06 



Camera Model Centric Photo Collections 

Point-and-Shoot Camera Models 





Canon S1IS 

Cropped 

Portrait Mode 

Photoshopped 

Flash 

Exif Tags 



Focal Length: 5.8 mm  F-Number: 2.8 Focal Length: 5.8 mm  F-Number: 4 

Focal Length: 58 mm  F-Number: 4 Focal Length: 58 mm  F-Number: 3 

Exif Tags 

Canon S1IS 



Camera Distortion Free 

Compute 
Aggregate 

Statistic 

Independent of 
Scenes, Photographers 

& Cameras 
 

1. Robust Statistical Priors 

Training Set 

http://flickr.com/photos/ancama_99/614067352/
http://flickr.com/photos/11717181@N02/1170861540/
http://flickr.com/photos/carlos-diaz/541751514/
http://flickr.com/photos/jbonnain/523672080/
http://flickr.com/photos/photosbycat/2124970877/
http://flickr.com/photos/lothiriel/2229089014/
http://flickr.com/photos/paren/698032564/
http://flickr.com/photos/kale2006/1988158562/


Creating the Training Set 

Canon S1 IS Camera Response Vignetting 

Remove 
camera-specific 

properties 

Camera Distortion Free 

Training Set 



Radiometric Camera Properties 

• Properties of specific camera models  
 

 Camera response function 
 
 Vignetting for different lens settings 

 

 
 

• Properties of specific camera instances 
 

 Bad pixels on the detector 



• Multiple images 
 

 

 
 

 
 

 
 

• Single image 
 

 
 
 

 

 
 

 Varying camera exposures  

 
 
 Combinations of illuminations 

 
 
 

  
 

 High order Fourier correlations 
 
 

 Intensity statistics at edges 

Related Work: Response Estimation 

• Fully automatic, robust estimation 
• Do not need access to the camera 

Mann & Picard ’95, Debevec & Malik ’97,  
Mitsunaga & Nayar ’99, Grossberg & Nayar ‘03 

Manders et al. ‘04 

Farid ‘01 

Lin et al. ’04, ‘05 





The Gradient Prior 

Fergus et al. ’06 



Joint Histogram of Irradiances at Neighboring Pixels 
(Linearized Images) 



• Probability of co-occurrence of two irradiances is not uniform 
 
 

• Joint histograms for different color channels are different 
 

Red Channel Green Channel Blue Channel 

Canon S1IS         Focal Length: 5.8 mm        F-Number: 4.5       15,550 Images 

100 

200 200 200 

200 200 200 

200 200 

Joint Histogram of Irradiances at Neighboring Pixels 
(Linearized Images) 



• Joint Histograms are very similar across camera models 
 

 Especially for smallest focal length and largest f-number 
 

 KL Divergence between corresponding histograms of  
          Canon S1IS and Sony W1 cameras – 
 

           Red: 0.059                 Green: 0.081                  Blue: 0.068 
 

Prior: Joint Histograms of any one camera model 

Joint Histogram of Irradiances at Neighboring Pixels 
(Linearized Images) 

Red Channel Green Channel Blue Channel 

Canon S1IS         Focal Length: 5.8 mm        F-Number: 4.5       15,550 Images 



Estimating Camera Response Function 

Optimization 

R(i)    Irradiance corresponding to intensity i 
α        Polynomial coefficients 
D       Polynomial degree ( 5 ) 
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Estimated  
Joint Histogram 

Prior 
Joint Histogram 

Similarity 
(KL Divergence) 

Image Intensity 
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0 100 200 
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Inverse Response 
Guess 

Compute 

Quality of Inverse  
Response Guess 



Estimating Camera Response Function 
Sony W1: Red Channel Canon G5: Green Channel 

Casio Z120: Blue Channel Minolta Z2: Red Channel 



Estimating Camera Response Function 

2.200 2.653 1.403 2.051 2.244 2.523 0.771 1.164 Blue 

2.011 2.743 2.071 2.521 0.748 0.865 1.498 1.993 Green 

1.701 2.226 1.176 2.269 1.554 1.759 1.131 1.344 Red 

Mean % RMS % Mean % RMS % Mean % RMS % Mean % RMS % 

Minolta Z2 Casio Z120 Canon G5 Sony W1 

We need ~ 50 photographs to get estimates with RMS Error ~ 2% 



Radiometric Camera Properties 

• Properties of specific camera models  
 

 Camera response function 
 
 Vignetting for different lens settings 

 

 
 

• Properties of specific camera instances 
 

 Bad pixels on the detector 



• Fully automatic, robust linear estimation  
• Do not need access to the camera 

Related Work: Vignetting 

• Integrating sphere 
 
 

 

• Multiple images 
 

 Known illuminant at different image locations 

 
 Overlapping images of an arbitrary scene 

 
 

• Single image 
 

 Iterative segmentation and vignetting estimation 

 
 Distribution of radial gradients 

Stumpfel et al. ‘04 

Goldman & Chen ’05, Litvinov & Schechner ’05, Jia & Tang ‘05 

Zheng et al. ’06 

Zheng et al. ’08 



Torralba & Oliva. ’02 Salavon 

Newlyweds 

The Graduate 

What does the average of a group of photographs  
with the same lens setting look like? 



Canon S1IS         Focal Length: 5.8 mm        F-Number: 4.5       195/15,550 Images 

Images are linearized and have no vignetting 



Spatial Distribution of Average Luminances 

Average Log(Luminance) of 15,500 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 4.5 

Average Log(Luminance) of 13,874 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 2.8 

Averaged out particular scenes 



Spatial Distribution of Average Luminances 

 
Focal Length: 5.8 mm 

F-Number: 4.5 

 
Focal Length: 5.8 mm 

F-Number: 2.8 

 
•  Have a vertical gradient 

 
•  No horizontal gradient 

 

Prior 
 



Estimating Vignetting for a Lens Setting 

 Prior: In the absence of vignetting, average log-luminance image 
 

•  Has a vertical gradient 
 

•  No horizontal gradient 
 

What if photographs have vignetting? 

• Use estimated response function to linearize images 
 

• Compute average log-luminance image 



Estimating Vignetting for a Lens Setting 

Average Log(Luminance) of 15,500 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 4.5 

Average Log(Luminance) of 13,874 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 2.8 



r = radial distance to (x,y) 
β= Polynomial coefficients 
D = Polynomial degree ( 9 ) 


D

k

    ),( k

kryxV 
Prior:  
• Has a vertical gradient 
• No horizontal gradient 
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Estimating Vignetting for a Lens Setting 

Measured image luminance 
Vignetting 

Image luminance when no vignetting 

Estimate Vignetting Linearly 
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N = Number of photographs 



Estimating Vignetting for a Lens Setting 

Average Log(Luminance) of 15,500 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 4.5 

Average Log(Luminance) of 13,874 Images 
Canon S1 IS 

Focal Length: 5.8 mm 
F-Number: 2.8 



Vignetting Estimation Results 

Focal Length: 7.9 mm, F-Number: 5.6 Focal Length: 7.9 mm, F-Number: 2.8 Sony W1 

Focal Length: 7.2 mm, F-Number: 4 Focal Length: 7.2 mm, F-Number: 2 Canon G5 



Vignetting Estimation Error 

F/2.0 F/4.0 

 

F/2.8 

 

F/5.6 

 

F/2.8 F/4.5 

1.084 0.296 1.966 0.317 1.183 0.990 Median % 

1.398 0.484 1.980 0.460 1.221 0.895 Mean % 

1.723 0.664 2.324 0.594 1.399 0.989 RMS % 

Canon G5 
Focal Length: 7.18 mm 

Sony W1 
Focal Length: 7.9 mm 

Canon S1IS 
Focal Length: 5.8 mm 

We need ~ 3000 photographs to get estimates with RMS Error ~ 2% 



Estimated Vignetting 

Focal Length: 7.9 mm, F-Number: 2.8 

Sony W1 

Focal Length: 5.8 mm, F-Number: 2.8 

Canon S1IS 



Canon S1IS   Focal Length: 5.8 mm, F-Number: 2.8 



Canon S1IS   Focal Length: 5.8 mm, F-Number: 2.8 

w/ Vignetting Correction 



Radiometric Camera Properties 

• Properties of specific camera models  
 

 Camera response function 
 
 Vignetting for different lens settings 

 

 
 

• Properties of specific camera instances 
 

 Bad pixels on the detector 



Identifying Bad Pixels on a Camera Detector 

0.384 13 Sony W1 

1.08 13 Canon SD 300 

1 2.2 15 Canon G5 

0 

1 

Median Defects Mean Defects # of Cameras Camera Model 

  Prior: Average image should be smooth 

  Group images by camera instance (Flickr username) 



Joint Histogram 
of Irradiances  

Priors and Camera Properties 

Robust Statistical Priors 

Recover Radiometric Camera Properties 

Spatial Distribution of  
Average Luminances 

Vignetting Response Function Bad Pixels 



Discussion 

• Need a large number of photographs 
 

• Fully automatic , do not need access to camera 
 

• Other priors 

  
 
 

 
• Database of camera properties 

 Fully automatic  
 Zero cost  
 

 

• Information about scenes and photographers 
 

PTLens, DxO 

 Radial distortion 
 Chromatic aberration 
 Varying lens softness 

 Distribution of gradients     
 Statistics of Fourier coefficients 
 Higher order joint statistics 

Other camera properties 



Joint Histogram 
of Irradiances  

Priors and Camera Properties 

Robust Statistical Priors 

Recover Radiometric Camera Properties 

Spatial Distribution of  
Average Luminances 

Vignetting Response Function Bad Pixels 



Estimating Camera Response Function 

3.292 2.653 3.053 2.051 2.154 2.523 1.783 1.164 Blue 

3.237 2.743 1.155 2.521 3.396 0.865 1.243 1.993 Green 

4.914 2.226 1.518 2.269 2.553 1.759 2.587 1.344 Red 

Lin et al. Our Lin et al. Our Lin et al. Our Lin et al. Our 

Minolta Z2 Casio Z120 Canon G5 Sony W1 



Vignetting in Canon S1IS Cameras 

Focal Length: 5.8 mm, F-Number: 4.5 Focal Length: 5.8 mm, F-Number: 2.8 

Entire 
Image 

Bottom 
Half 

RMS Errors for the two settings: 2.297% and 1.498% 



Estimating Camera Response Function 

We need ~50 photographs to get estimates with RMS Error < 2% 

Sony W1: Red Channel Canon G5: Green Channel Casio Z120: Blue Channel 

How many images do we need? 



Vignetting Estimation Results 

We need ~3000 photographs to get estimates with RMS Error < 2% 

How many images do we need? 

Canon S1IS 
Focal Length: 5.8 mm 

F Number: 4.5 

Sony W1 
Focal Length: 7.9 mm 

F Number: 2.8 

Canon G5 
Focal Length: 7.2 mm 

F Number: 4.0 
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INTRINSIC IMAGE DECOMPOSITION 
WITH NON-LOCAL TEXTURE CUES 

Li Shen (MSRA), Ping Tan (Univ. of Singapore), Stephen Lin 
(MSRA) 

International Conference on Computer Vision and Pattern 
Recognition (CVPR) 2008, Poster 

Oral: 3.8% (62), Overall: 31.6% (506) 



Intrinsic images 



Result - Shading 



Result - Reflectance 



Result - Shading 



Result - Reflectance 



Result - Shading 



Result - reflectance 
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