Color Analysis

Oct. 23. 2013 Rei Kawakami (rei@cvl.iis.u-tokyo.ac.jp)

Major topics related to color analysis

Oral: 4.8% (60), Overall: 28.0% (352) Image segmentation papers: 23

Sylvain Paris, Fredo Durand (MIT)

International Conference on Computer Vision and Pattern Recognition (CVPR) 2007, Poster

A TOPOLOGICAL APPROACH TO HIERARCHICAL SEGMENTATION USING MEAN SHIFT

Image segmentation

Related work

Minimum distance classifier

Minimum distance classifier

K-means clustering

 Label a class randomly for each point

- Calculate the center
- Re-label the class to the nearest one for each pixel

http://d.hatena.ne.jp/nitoyon/20090409/kmeans_visualise

Region growing

adjacent pixel: similar feature vector \rightarrow same region

〈a〉原画像

〈b〉 小領域合併

〈c〉基本領域ごとのテクスチャ特徴量

Lazy snapping (Graph-cut)

(c) Grandpa $\left(\frac{4}{2}/11\right)$

(d) Twins (4/4/12)

Included in Microsoft Expression

Graph cut (Min-Cut/Max-Flow): Concept

Graph cut (Min-Cut/Max-Flow): Cost function

between pixel and region color similarity between adjacent pixel

Probabilistic (top-down) approach

- Use of priors (combined with recognition)
 - TextonBoost (Texture cue)

Advantage of mean shift

No priors nor human operation are required

 Unsupervised segmentation as a pre-processing

Input image

Mean-shift A

Mean-shift B

Hand labeled

Advantage of the proposed method

- Fast computation
 - Gaussian mean-shift (time-consuming)
 - Do not sacrifice accuracy for speed

- Hierarchical segmentation
 - Morse theory
 - Topological decomposition

Method

Mean shift segmentation

Distribution of identical billiard balls

Problem

• Computational time

$$\mathbf{y}_{j+1} = \frac{\sum_{i=1}^{n} K(\mathbf{y}_j - \mathbf{x}_i) \mathbf{x}_i}{\sum_{i=1}^{n} K(\mathbf{y}_j - \mathbf{x}_i)}$$

Underlying density function

Local maxima and saddles

Underlying Density Function

Real Data Samples

Problem

• Cluster hierarchy

Morse theory

Change in p creates a topological feature \rightarrow Critical point = **Positive** Change in p removes a feature \rightarrow Critical point = **Negative**

Hierarchy construction

h (d) simplified stable manifolds

Change *thr* from 0 to ∞ to construct a hierarchy

Computation of density function

5 dimensional values (x, y, r, g, b)

 $D(\mathbf{p}) = \sum_{i=1}^{n} \tilde{K}(\mathbf{p} - \mathbf{x}_i)$

Calculate the convolution of each Gaussian kernels

Separability of **Gaussian kernels** in dimensions

Mode extraction

Sort g(k) by the values D(g(k))
 Position of the grid cell Computer

Computation: $g1 \rightarrow g4 \rightarrow g2 \rightarrow g3$

- 2. When compute g(k),
 - − Zero label \rightarrow g(k) = local maxima
 - One label $\mathbf{m}(I) \rightarrow \mathbf{g}(k)$ is labeled with $\mathbf{m}(I)$
 - Two or more labels $\rightarrow g(k) = boundary$, label **b**

Result

Video

Quick time video

References

- 1. S. Paris et al., "A topological approach to hierarchical segmentation using mean shift," CVPR 2007.
- 2. Y. Li et al., "Lazy snapping," SIGGRAPH 2004.
- 3. J. Shotton et al., "TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation," ECCV 2006.
- 4. P. Kohli et al., "Robust higher order potentials for enforcing label consistency," CVPR 2008.
- 5. <u>http://www.wisdom.weizmann.ac.il/~deniss/vision_spring04</u> /files/mean_shift/mean_shift.ppt
- 6. <u>http://people.csail.mit.edu/sparis/</u>
Oral: 3.9% (47), Overall: 23.5% (280) Honorary Paper Mentions

Abhijeet Ghosh, Shruthi Achutha, Wolfgang Heidrich, Matthew O'Toole (Univ. of British Columbia) International Conference on Computer Vision (ICCV) 2007, Oral

BRDF ACQUISITION WITH BASIS ILLUMINATION

What is this paper about?

What is BRDF?

• Bidirectional Reflection Distribution Function

BRDF $f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{dL(\theta_o, \phi_o)}{dE(\theta_i, \phi_i)}$

incident irradiance

 Expresses object's reflection by 4 parameters

Reflected radiance

Related work

Parametric models of BRDF

• Lambertian surface

- Specular reflection
 - Phong, Oren-Nayar, Torrance-Sparrow, Blinn (simplified Torrance-Sparrow), Cook-Torrance, Beckman-Spizzichino
- Anisotropic reflection
 - Ward

Lambertian

 $I_d: diffuse reflection intensity
 K_d: diffuse albedo
 θ: angle → cos θ =$ **n**⋅**l**

light per unit area = L area in light direction = A cos θ radiant flux = L × A cos θ actual area = A irradiance = L × A cos $\theta \div$ A = L cos θ

Diffuse, specular lobe, specular spike

Anisotropic reflection

Direct measurement of BRDF

- Goniophotometers
- Light stage

Measure impulse response using **pencils of light** \Rightarrow **Dirac's delta function**

Efficient measurement of BRDF

- Assumption of isotoropic reflection
- Use of reflection models
- Use of a sphere for the target sample

Advantage of the proposed method

• Illuminations are smooth basis functions

– Efficient data acquisition

Method

System overview

Basis functions

$$\hat{f}_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) = f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) \cos \theta_i \approx \sum_k \underline{Z_k(\boldsymbol{\omega}_i)} z_k(\boldsymbol{\omega}_o)$$

New notation of BRDF

Basis functions

$$L_o(\boldsymbol{\omega}_o) = \int_{\mathbf{Z}} f_r(\boldsymbol{\omega}_i, \boldsymbol{\omega}_o) L_i(\boldsymbol{\omega}_i) \cos \theta_i \, d\boldsymbol{\omega}_i \approx \sum_k \underline{z_k(\boldsymbol{\omega}_o)} \int_{\mathbf{Z}} Z_k(\boldsymbol{\omega}_i) L_i(\boldsymbol{\omega}_i) \, d\boldsymbol{\omega}_i$$

BRDF

coefficients Basis functions

Measurement with basis functions

$$L(\omega_{o}) = \int f_{r}(\omega_{i}, \omega_{o}) L_{i}(\omega_{i}) \cos \theta_{i} d\omega_{i}$$

Incident radiance (illumination)
Basis function

$$\int_{\mathbf{Z}} f_{r}(\omega_{i}, \omega_{o}) Z_{1}(\omega_{i}) \cos \theta_{i} d\omega_{i}$$

$$= \int_{\mathbf{Z}} \left[\sum_{k} z_{k}(\omega_{o}) Z_{k}(\omega_{i}) \right] Z_{1}(\omega_{i}) d\omega_{i}$$

$$= \int_{\mathbf{Z}} \left[z_{1}(\omega_{o}) Z_{1}(\omega_{i}) + \dots + z_{K}(\omega_{o}) Z_{K}(\omega_{i}) \right] Z_{1}(\omega_{i}) d\omega_{i}$$

$$= \int_{\mathbf{Z}} z_{1}(\omega_{o}) Z_{1}(\omega_{i})^{2} d\omega_{i}$$

$$= z_{1}(\omega_{o})$$

Zonal basis functions

$$Z_l^m(\theta,\phi) = \begin{cases} \sqrt{2}\hat{K}_l^m \cos(m\phi)\hat{P}_l^m(\cos\theta) & \text{if } m > 0\\ \sqrt{2}\hat{K}_l^m \sin(-m\phi)\hat{P}_l^{-m}(\cos\theta) & \text{if } m < 0\\ \hat{K}_l^0\hat{P}_l^0(\cos\theta) & \text{if } m = 0 \end{cases}$$

where
$$\hat{K}_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{2\pi \cdot (\cos \theta_{min} - \cos \theta_{max}) \cdot (l+|m|)!}}$$

Results

1 minute (BRDF measurement + re-projection into spherical harmonic basis)

Results

Red velvet

Red printer toner

Magenta plastic sheet

Chrome gold dust automotive paint

Representative set of BRDFs acquired with lower order zonal basis functions

Video

Quick time video

References

- 1. A. Ghosh et al., "BRDF acquisition with basis illumination," ICCV 2007.
- 2. S. K. Nayar, "Surface reflection: Physical and geometrical prespectives," TPAMI 1991.
- Y. Sato and Y. Mukaigawa "Inverse rendering," <u>http://www.am.sanken.osaka-</u> <u>u.ac.jp/~mukaigaw/papers/CVIM-145-9.pdf</u>, in Japanese

PRIORS FOR LARGE PHOTO COLLECTIONS AND WHAT THEY REVEAL ABOUT CAMERAS

European Conference on Computer Vision (ECCV) 2008, Oral

Sujit Kuthirummal, Aseem Agarwala, Dan B Goldman, Shree K Nayar (Columbia University and Adobe Systems, Inc.)

Individende hotograph Can(escene, Cameha)tographer)

Credit: Snowdosker @ Flickr

Individual Photograph (Scene, Camera, Photographer)

Internet Photo Collections

Exif Tags

Recover information about Scenes, Cameras, and Photographers

Related Work: Large Photo Collections

Photo Tourism *Snavely et al. '06*

Internet Stereo Goesele et al. '07

Object Insertion *Lalonde et al. '07*

Hole Filling *Hays et al. '07*

Recognition *Torralba et al. '07*

Recover Camera Properties

Related Work: Image Statistics

- Natural Image Statistics
 - 1/f amplitude spectrum fall-off
 - Sparsity of image derivatives
 - Bias in gradient orientations
- Exploit priors for
 - Scene recognition
 - Super-resolution
 - Deriving intrinsic images
 - Image denoising
 - Removing camera shake

Burton & Moorhead '87, Field '87 Olshausen & Field '96, Simoncelli '97 Switkes et al. '78, Baddeley '97

Baddeley. '97, Torralba & Oliva '03 Tappen et al. '03 Weiss '01 Roth et al. '05 Fergus et al. '06

- Priors attempt to describe statistics of individual photographs
- Our Priors describe aggregate statistics of many photographs

Camera Model Centric Photo Collections

Point-and-Shoot Camera Models

Canon S1IS

Exif Tags

Cropped

Photoshopped

Flash

Canon S1IS

Focal Length: 5.8 mm F-Number: 2.8

Focal Length: 5.8 mm F-Number: 4

Exif Tags

Focal Length: 58 mm F-Number: 3

Focal Length: 58 mm F-Number: 4

Training Set

Compute – Aggregate –––– Statistic

Independent of Scenes, Photographers & Cameras

1. Robust Statistical Priors

Creating the Training Set

Canon S1 IS

Camera Response

Vignetting Training Set

Remove − camera-specific → properties

Camera Distortion Free

Radiometric Camera Properties

• Properties of specific *camera models*

Camera response function

Vignetting for different lens settings

- Properties of specific camera instances
 - Bad pixels on the detector

Related Work: Response Estimation

- Multiple images
 - Varying camera exposures Mann & Picard '95, Debevec & Malik '97, Mitsunaga & Nayar '99, Grossberg & Nayar '03
 - Combinations of illuminations Manders et al. '04

- Single image
 - High order Fourier correlations *Farid '01*
 - Intensity statistics at edges Lin et al. '04, '05
 - Fully automatic, robust estimation
 - Do not need access to the camera
The Gradient Prior

Fergus et al. '06

Joint Histogram of Irradiances at Neighboring Pixels (Linearized Images)

Joint Histogram of Irradiances at Neighboring Pixels (Linearized Images)

Joint Histogram of Irradiances at Neighboring Pixels (Linearized Images)

- Joint Histograms are very similar across camera models
 - Especially for smallest focal length and largest f-number

Blue: 0.068

• KL Divergence between corresponding histograms of Priori Jain Histograms of pranaecamera model

Red: 0.059 Green: 0.081

Canon G5: Green Channel

Minolta Z2: Red Channel

	Sony W1		Canon G5		Casio Z120		Minolta Z2	
	RMS %	Mean %	RMS %	Mean %	RMS %	Mean %	RMS %	Mean %
Red	1.344	1.131	1.759	1.554	2.269	1.176	2.226	1.701
Green	1.993	1.498	0.865	0.748	2.521	2.071	2.743	2.011
Blue	1.164	0.771	2.523	2.244	2.051	1.403	2.653	2.200

We need ~ 50 photographs to get estimates with RMS Error ~ 2%

Radiometric Camera Properties

- Properties of specific *camera models*
 - Camera response function
 - Vignetting for different lens settings

- Properties of specific camera instances
 - Bad pixels on the detector

Related Work: Vignetting

Integrating sphere

- Multiple images
 - Known illuminant at different image locations *Stumpfel et al. '04*
 - Overlapping images of an arbitrary scene Goldman & Chen '05, Litvinov & Schechner '05, Jia & Tang '05
- Single image
 - Iterative segmentation and vignetting estimation *Zheng et al. '06*
 - Distribution of radial gradients *Zheng et al. '08*
 - Fully automatic, robust linear estimation
 - Do not need access to the camera

Torralba & Oliva. '02

The Graduate

Newlyweds

Salavon

What does the average of a group of photographs with the same lens setting look like?

Canon S1ISFocal Length: 5.8 mmF-Number: 4.5195/15,550 ImagesImages are linearized and have no vignetting

Spatial Distribution of Average Luminances

Average Log(Luminance) of 15,500 Images Canon S1 IS Focal Length: 5.8 mm F-Number: 4.5

d out particula

Average Log(Luminance) of 13,874 Images

Canon S1 IS Focal Length: 5.8 mm F-Number: 2.8

Spatial Distribution of Average Luminances

- Use estimated response function to linearize images
- Compute average log-luminance image

Prior: In the *absence of vignetting*, average log-luminance image

- Has a vertical gradient
- No horizontal gradient

What if photographs *have vignetting*?

Average Log(Luminance) of 15,500 Images Canon S1 IS Focal Length: 5.8 mm F-Number: 4.5

Average Log(Luminance) of 13,874 Images

Canon S1 IS Focal Length: 5.8 mm F-Number: 2.8

 $m_i(x, y) =$

Measured image luminance Vignetting Image luminance when no vignetting

$$\frac{1}{N}\sum_{i}\log(m_{i}(x,y)) = \log(v(x,y)) + \frac{1}{N}\sum_{i}(\log(t_{i}(x,y)))$$

N = Number of photographs

M(x, y)Known Unknown Unknown M(x, y) = V(x, y) + L(y)

Prior: $L(x, y) = \sum_{k}^{D} \beta_{k} r^{k}$ • Has a vertical gradient • No horizontal gradient $M(x, y) = \sum_{k} \beta_{k} r^{k} + L(y)$

Estimate Vignetting Linearly

Average Log(Luminance) of 15,500 Images Canon S1 IS Focal Length: 5.8 mm F-Number: 4.5

Average Log(Luminance) of 13,874 Images Canon S1 IS Focal Length: 5.8 mm F-Number: 2.8

Vignetting Estimation Results

Sony W1 Focal Length: 7.9 mm, F-Number: 5.6

Canon G5 Focal Length: 7.2 mm, F-Number: 4

Focal Length: 7.9 mm, F-Number: 2.8

Focal Length: 7.2 mm, F-Number: 2

Vignetting Estimation Error

	Canon S1IS Focal Length: 5.8 mm		Son	y W1	Canon G5		
			Focal Leng	gth: 7.9 mm	Focal Length: 7.18 mm		
	F/4.5	F/2.8	F/5.6	F/2.8	F/4.0	F/2.0	
RMS %	0.989	1.399	0.594	2.324	0.664	1.723	
Mean %	0.895	1.221	0.460	1.980	0.484	1.398	
Median %	0.990	1.183	0.317	1.966	0.296	1.084	

We need ~ 3000 photographs to get estimates with RMS Error ~ 2%

Estimated Vignetting

Canon S1IS Focal Length: 5.8 mm, F-Number: 2.8

Canon S1IS Focal Length: 5.8 mm, F-Number: 2.8 w/ Vignetting Correction

Radiometric Camera Properties

- Properties of specific *camera models*
 - Camera response function
 - Vignetting for different lens settings

• Properties of specific camera instances

Bad pixels on the detector

Identifying Bad Pixels on a Camera Detector

Group images by camera instance (Flickr username)

Prior: Average image should be smooth

Camera Model	# of Cameras	Mean Defects	Median Defects
Canon G5	15	2.2	1
Canon SD 300	13	1.08	1
Sony W1	13	0.384	0

Priors and Camera Properties

Spatial Distribution of Average Luminances

Recover Radiometric Camera Properties

Bad Pixels

Discussion

- Need a large number of photographs
- Fully automatic , do not need access to camera
- Other priors
 - Distribution of gradients
 - Statistics of Fourier coefficients
 - Higher order joint statistics
- Database of camera properties
 - Fully automatic
 - Zero cost

Other camera properties

- Radial distortion
- Chromatic aberration
- Varying lens softness

• Information about scenes and photographers

Priors and Camera Properties

Spatial Distribution of Average Luminances

Recover Radiometric Camera Properties

Bad Pixels

	Sony W1		Canon G5		Casio Z120		Minolta Z2	
	Our	Lin et al.	Our	Lin et al.	Our	Lin et al.	Our	Lin et al.
Red	1.344	2.587	1.759	2.553	2.269	1.518	2.226	4.914
Green	1.993	1.243	0.865	3.396	2.521	1.155	2.743	3.237
Blue	1.164	1.783	2.523	2.154	2.051	3.053	2.653	3.292

Vignetting in Canon S1IS Cameras

How many images do we need?

We need ~50 photographs to get estimates with RMS Error < 2%

Vignetting Estimation Results

How many images do we need?

We need ~3000 photographs to get estimates with RMS Error < 2%

Reference

- S. Kuthirummal et al., "Priors for large photo collections and what they reveal about cameras," ECCV 2008.
- http://www1.cs.columbia.edu/~sujit/
- T. Mitsunaga et al., "Radiometric self calibration," CVPR 1999.
- S. Lin et al., "Radiometric calibration using a single image," CVPR 2004.

Li Shen (MSRA), Ping Tan (Univ. of Singapore), Stephen Lin (MSRA)

International Conference on Computer Vision and Pattern Recognition (CVPR) 2008, Poster

INTRINSIC IMAGE DECOMPOSITION WITH NON-LOCAL TEXTURE CUES

Intrinsic images

Original Image

Shape Image

Reflectance Image

Result - Shading

Result - Reflectance

Result - Shading

Result - Reflectance

Result - Shading

Result - reflectance

References

- L. Shen et al., "Intrinsic image decomposition with non-local texture cues," CVPR 2008.
- M. F. Tappen et al., "Recovering intrinsic images from a single image," TPAMI, 2005.
- Y. Weiss, "Deriving intrinsic images from image sequences," ICCV 2001.